1
|
Fu R, Feng H. Deciphering Bacterial Chemorepulsion: The Complex Response of Microbes to Environmental Stimuli. Microorganisms 2024; 12:1706. [PMID: 39203548 PMCID: PMC11357200 DOI: 10.3390/microorganisms12081706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Bacterial motility relying on flagella is characterized by several modes, including swimming, swarming, twitching, and gliding. This motility allows bacteria to adapt remarkably well to hostile environments. More than 50% of bacteria naturally contain flagella, which are crucial for bacterial chemotaxis motility. Chemotaxis can be either positive, where bacteria move towards a chemical source, or negative, known as chemorepulsion, where bacteria move away from the source. Although much is known about the mechanisms driving chemotaxis towards attractants, the molecular mechanisms underlying chemorepulsion remain elusive. Chemotaxis plays an important role in the colonization of the rhizosphere by rhizobacteria. Recently, researchers have systematically studied the identification and recognition mechanisms of chemoattractants. However, the mechanisms underlying chemorepellents remain unclear. Systematically sorting and analyzing research on chemorepellents could significantly enhance our understanding of how these compounds help probiotics evade harmful environments or drive away pathogens.
Collapse
Affiliation(s)
- Ruixin Fu
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Haichao Feng
- College of Agriculture, Henan University, Kaifeng 475004, China
- Food Laboratory of Zhongyuan, Henan University, Luohe 462300, China
| |
Collapse
|
2
|
Xu W, Cerna-Vargas JP, Tajuelo A, Lozano-Montoya A, Kivoloka M, Krink N, Monteagudo-Cascales E, Matilla MA, Krell T, Sourjik V. Systematic mapping of chemoreceptor specificities for Pseudomonas aeruginosa. mBio 2023; 14:e0209923. [PMID: 37791891 PMCID: PMC10653921 DOI: 10.1128/mbio.02099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Chemotaxis of motile bacteria has multiple physiological functions. It enables bacteria to locate optimal ecological niches, mediates collective behaviors, and can play an important role in infection. These multiple functions largely depend on ligand specificities of chemoreceptors, and the number and identities of chemoreceptors show high diversity between organisms. Similar diversity is observed for the spectra of chemoeffectors, which include not only chemicals of high metabolic value but also bacterial, plant, and animal signaling molecules. However, the systematic identification of chemoeffectors and their mapping to specific chemoreceptors remains a challenge. Here, we combined several in vivo and in vitro approaches to establish a systematic screening strategy for the identification of receptor ligands and we applied it to identify a number of new physiologically relevant chemoeffectors for the important opportunistic human pathogen P. aeruginosa. This strategy can be equally applicable to map specificities of sensory domains from a wide variety of receptor types and bacteria.
Collapse
Affiliation(s)
- Wenhao Xu
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Jean Paul Cerna-Vargas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Centro de Biotecnología y Genómica de Plantas CBGP, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM, Pozuelo de Alarcón, Madrid, Spain
| | - Ana Tajuelo
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Andrea Lozano-Montoya
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Melissa Kivoloka
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Nicolas Krink
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
3
|
Martín-Rodríguez AJ. Respiration-induced biofilm formation as a driver for bacterial niche colonization. Trends Microbiol 2023; 31:120-134. [PMID: 36075785 DOI: 10.1016/j.tim.2022.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
Depending on their physiology and metabolism, bacteria can carry out diverse redox processes for energy acquisition, which facilitates adaptation to environmental or host-associated niches. Of these processes, respiration, using oxygen or alternative terminal electron acceptors, is energetically the most favorable in heterotrophic bacteria. The biofilm lifestyle, a coordinated multicellular behavior, is ubiquitous in bacteria and is regulated by a variety of intrinsic and extrinsic cues. Respiration of distinct electron acceptors has been shown to induce biofilm formation or dispersal. The notion of biofilm formation regulation by electron acceptor availability and respiration has often been considered species-specific. However, recent evidence suggests that this phenomenon can be strain-specific, even in strains sharing the same functional respiratory pathways, thereby implying subtle regulatory mechanisms. On this basis, I argue that induction of biofilm formation by sensing and respiration of electron acceptors might direct subgroups of redox-specialized strains to occupy certain niches. A palette of respiration and electron-transfer-mediated microbial social interactions within biofilms may broaden ecological opportunities. The strain specificity of this phenomenon represents an important opportunity to identify key molecular mechanisms and their ecophysiological significance, which in turn may lay the ground for applications in areas ranging from biotechnology to the prevention of antimicrobial resistance.
Collapse
|
4
|
Matilla MA, Genova R, Martín-Mora D, Maaβ S, Becher D, Krell T. The Cellular Abundance of Chemoreceptors, Chemosensory Signaling Proteins, Sensor Histidine Kinases, and Solute Binding Proteins of Pseudomonas aeruginosa Provides Insight into Sensory Preferences and Signaling Mechanisms. Int J Mol Sci 2023; 24:ijms24021363. [PMID: 36674894 PMCID: PMC9864684 DOI: 10.3390/ijms24021363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023] Open
Abstract
Chemosensory pathways and two-component systems are important bacterial signal transduction systems. In the human pathogen Pseudomonas aeruginosa, these systems control many virulence traits. Previous studies showed that inorganic phosphate (Pi) deficiency induces virulence. We report here the abundance of chemosensory and two-component signaling proteins of P. aeruginosa grown in Pi deficient and sufficient media. The cellular abundance of chemoreceptors differed greatly, since a 2400-fold difference between the most and least abundant receptors was observed. For many chemoreceptors, their amount varied with the growth condition. The amount of chemoreceptors did not correlate with the magnitude of chemotaxis to their cognate chemoeffectors. Of the four chemosensory pathways, proteins of the Che chemotaxis pathway were most abundant and showed little variation in different growth conditions. The abundance of chemoreceptors and solute binding proteins indicates a sensing preference for amino acids and polyamines. There was an excess of response regulators over sensor histidine kinases in two-component systems. In contrast, ratios of the response regulators CheY and CheB to the histidine kinase CheA of the Che pathway were all below 1, indicative of different signaling mechanisms. This study will serve as a reference for exploring sensing preferences and signaling mechanisms of other bacteria.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Roberta Genova
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Sandra Maaβ
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
- Correspondence: ; Tel.: +34-958-526579
| |
Collapse
|
5
|
Rico‐Jiménez M, Roca A, Krell T, Matilla MA. A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. Environ Microbiol 2022; 24:3580-3597. [PMID: 35088505 PMCID: PMC9543091 DOI: 10.1111/1462-2920.15920] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Indole-3-acetic acid (IAA) is the main naturally occurring auxin and is produced by organisms of all kingdoms of life. In addition to the regulation of plant growth and development, IAA plays an important role in the interaction between plants and growth-promoting and phytopathogenic bacteria by regulating bacterial gene expression and physiology. We show here that an IAA metabolizing plant-associated Pseudomonas putida isolate exhibits chemotaxis to IAA that is independent of auxin metabolism. We found that IAA chemotaxis is based on the activity of the PcpI chemoreceptor and heterologous expression of pcpI conferred IAA taxis to different environmental and human pathogenic isolates of the Pseudomonas genus. Using ligand screening, microcalorimetry and quantitative chemotaxis assays, we found that PcpI failed to bind IAA directly, but recognized and mediated chemoattractions to various aromatic compounds, including the phytohormone salicylic acid. The expression of pcpI and its role in the interactions with plants was also investigated. PcpI extends the range of central signal molecules recognized by chemoreceptors. To our knowledge, this is the first report on a bacterial receptor that responds to two different phytohormones. Our study reinforces the multifunctional role of IAA and salicylic acid as intra- and inter-kingdom signal molecules.
Collapse
Affiliation(s)
- Miriam Rico‐Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Amalia Roca
- Department of Microbiology, Facultad de FarmaciaCampus Universitario de Cartuja, Universidad de GranadaGranada18071Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
6
|
Abstract
Acetylcholine is a central biological signal molecule present in all kingdoms of life. In humans, acetylcholine is the primary neurotransmitter of the peripheral nervous system; it mediates signal transmission at neuromuscular junctions. Here, we show that the opportunistic human pathogen Pseudomonas aeruginosa exhibits chemoattraction toward acetylcholine over a concentration range of 1 μM to 100 mM. The maximal magnitude of the response was superior to that of many other P. aeruginosa chemoeffectors. We demonstrate that this chemoattraction is mediated by the PctD (PA4633) chemoreceptor. Using microcalorimetry, we show that the PctD ligand-binding domain (LBD) binds acetylcholine with a equilibrium dissociation constant (KD) of 23 μM. It also binds choline and with lower affinity betaine. Highly sensitive responses to acetylcholine and choline, and less sensitive responses to betaine and l-carnitine, were observed in Escherichia coli expressing a chimeric receptor comprising the PctD-LBD fused to the Tar chemoreceptor signaling domain. We also identified the PacA (ECA_RS10935) chemoreceptor of the phytopathogen Pectobacterium atrosepticum, which binds choline and betaine but fails to recognize acetylcholine. To identify the molecular determinants for acetylcholine recognition, we report high-resolution structures of PctD-LBD (with bound acetylcholine and choline) and PacA-LBD (with bound betaine). We identified an amino acid motif in PctD-LBD that interacts with the acetylcholine tail. This motif is absent in PacA-LBD. Significant acetylcholine chemotaxis was also detected in the plant pathogens Agrobacterium tumefaciens and Dickeya solani. To the best of our knowledge, this is the first report of acetylcholine chemotaxis and extends the range of host signals perceived by bacterial chemoreceptors.
Collapse
|
7
|
Wang N, Li H, Wang B, Ding J, Liu Y, Wei Y, Li J, Ding GC. Taxonomic and Functional Diversity of Rhizosphere Microbiome Recruited From Compost Synergistically Determined by Plant Species and Compost. Front Microbiol 2022; 12:798476. [PMID: 35095808 PMCID: PMC8792965 DOI: 10.3389/fmicb.2021.798476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022] Open
Abstract
Compost is frequently served as the first reservoir for plants to recruit rhizosphere microbiome when used as growing substrate in the seedling nursery. In the present study, recruitment of rhizosphere microbiome from two composts by tomato, pepper, or maize was addressed by shotgun metagenomics and 16S rRNA amplicon sequencing. The 16S rRNA amplicon sequencing analysis showed that 41% of variation in the rhizosphere bacterial community was explained by compost, in contrast to 23% by plant species. Proteobacterial genera were commonly recruited by all three plant species with specific selections for Ralstonia by tomato and Enterobacteria by maize. These findings were confirmed by analysis of 16S rRNA retrieved from the shotgun metagenomics library. Approximately 70% of functional gene clusters differed more than sevenfold in abundance between rhizosphere and compost. Functional groups associated with the sensing and up-taking of C3 and C4 carboxylic acids, amino acids, monosaccharide, production of antimicrobial substances, and antibiotic resistance were over-represented in the rhizosphere. In summary, compost and plant species synergistically shaped the composition of the rhizosphere microbiome and selected for functional traits associated with the competition on root exudates.
Collapse
Affiliation(s)
- Ning Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Huixiu Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Tangshan Normal University, Tangshan, China
| | - Bo Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Jia Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Yingjie Liu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Yuquan Wei
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Guo-Chun Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
- *Correspondence: Guo-Chun Ding,
| |
Collapse
|
8
|
Matilla MA, Velando F, Monteagudo-Cascales E, Krell T. Flagella, Chemotaxis and Surface Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:185-221. [DOI: 10.1007/978-3-031-08491-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Phylogenetic Analysis with Prediction of Cofactor or Ligand Binding for Pseudomonas aeruginosa PAS and Cache Domains. Microbiol Spectr 2021; 9:e0102621. [PMID: 34937179 PMCID: PMC8694187 DOI: 10.1128/spectrum.01026-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PAS domains are omnipresent building blocks of multidomain proteins in all domains of life. Bacteria possess a variety of PAS domains in intracellular proteins and the related Cache domains in periplasmic or extracellular proteins. PAS and Cache domains are predominant in sensory systems, often carry cofactors or bind ligands, and serve as dimerization domains in protein association. To aid our understanding of the wide distribution of these domains, we analyzed the proteome of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 in silico. The ability of this bacterium to survive under different environmental conditions, to switch between planktonic and sessile/biofilm lifestyle, or to evade stresses, notably involves c-di-GMP regulatory proteins or depends on sensory pathways involving multidomain proteins that possess PAS or Cache domains. Maximum likelihood phylogeny was used to group PAS and Cache domains on the basis of amino acid sequence. Conservation of cofactor- or ligand-coordinating amino acids aided by structure-based comparison was used to inform function. The resulting classification presented here includes PAS domains that are candidate binders of carboxylic acids, amino acids, fatty acids, flavin adenine dinucleotide (FAD), 4-hydroxycinnamic acid, and heme. These predictions are put in context to previously described phenotypic data, often generated from deletion mutants. The analysis predicts novel functions for sensory proteins and sheds light on functional diversification in a large set of proteins with similar architecture. IMPORTANCE To adjust to a variety of life conditions, bacteria typically use multidomain proteins, where the modular structure allows functional differentiation. Proteins responding to environmental cues and regulating physiological responses are found in chemotaxis pathways that respond to a wide range of stimuli to affect movement. Environmental cues also regulate intracellular levels of cyclic-di-GMP, a universal bacterial secondary messenger that is a key determinant of bacterial lifestyle and virulence. We study Pseudomonas aeruginosa, an organism known to colonize a broad range of environments that can switch lifestyle between the sessile biofilm and the planktonic swimming form. We have investigated the PAS and Cache domains, of which we identified 101 in 70 Pseudomonas aeruginosa PAO1 proteins, and have grouped these by phylogeny with domains of known structure. The resulting data set integrates sequence analysis and structure prediction to infer ligand or cofactor binding. With this data set, functional predictions for PAS and Cache domain-containing proteins are made.
Collapse
|
10
|
Pseudomonas aeruginosa as a Model To Study Chemosensory Pathway Signaling. Microbiol Mol Biol Rev 2021; 85:85/1/e00151-20. [PMID: 33441490 DOI: 10.1128/mmbr.00151-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria have evolved a variety of signal transduction mechanisms that generate different outputs in response to external stimuli. Chemosensory pathways are widespread in bacteria and are among the most complex signaling mechanisms, requiring the participation of at least six proteins. These pathways mediate flagellar chemotaxis, in addition to controlling alternative functions such as second messenger levels or twitching motility. The human pathogen Pseudomonas aeruginosa has four different chemosensory pathways that carry out different functions and are stimulated by signal binding to 26 chemoreceptors. Recent research employing a diverse range of experimental approaches has advanced enormously our knowledge on these four pathways, establishing P. aeruginosa as a primary model organism in this field. In the first part of this article, we review data on the function and physiological relevance of chemosensory pathways as well as their involvement in virulence, whereas the different transcriptional and posttranscriptional regulatory mechanisms that govern pathway function are summarized in the second part. The information presented will be of help to advance the understanding of pathway function in other organisms.
Collapse
|
11
|
Gasperotti AF, Herrera Seitz MK, Balmaceda RS, Prosa LM, Jung K, Studdert CA. Direct binding of benzoate derivatives to two chemoreceptors with Cache sensor domains in Halomonas titanicae KHS3. Mol Microbiol 2020; 115:672-683. [PMID: 33098326 DOI: 10.1111/mmi.14630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Halomonas titanicae KHS3, isolated from a hydrocarbon-contaminated sea harbor in Argentina, is able to grow on aromatic hydrocarbons and displays chemotaxis toward those compounds. This behavior might contribute to the efficiency of its degradation capacity. Using high throughput screening, we identified two chemoreceptors (Htc1 and Htc2) that bind benzoate derivatives and other organic acids. Whereas Htc1 has a high affinity for benzoate (Kd 112 µM) and 2-hydroxybenzoate (Kd 83 µM), Htc2 binds 2-hydroxybenzoate with low affinity (Kd 3.25 mM), and also C3/C4 dicarboxylates. Both chemoreceptors are able to trigger a chemotactic response of E. coli cells to the specific ligands. A H. titanicae htc1 mutant has reduced chemotaxis toward benzoate, and is complemented upon expression of the corresponding receptor. Both chemoreceptors have a Cache-type sensor domain, double (Htc1) or single (Htc2), and their ability to bind aromatic compounds is reported here for the first time.
Collapse
Affiliation(s)
- Ana F Gasperotti
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.,Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - M Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Rocío S Balmaceda
- Instituto de Agrobiotecnología del Litoral, CONICET - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luciano M Prosa
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Kirsten Jung
- Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Claudia A Studdert
- Instituto de Agrobiotecnología del Litoral, CONICET - Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
12
|
Nolan LM, McCaughey LC, Merjane J, Turnbull L, Whitchurch CB. ChpC controls twitching motility-mediated expansion of Pseudomonas aeruginosa biofilms in response to serum albumin, mucin and oligopeptides. MICROBIOLOGY (READING, ENGLAND) 2020; 166:669-678. [PMID: 32478653 PMCID: PMC7657506 DOI: 10.1099/mic.0.000911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 12/31/2022]
Abstract
Twitching motility-mediated biofilm expansion occurs via coordinated, multi-cellular collective behaviour to allow bacteria to actively expand across surfaces. Type-IV pili (T4P) are cell-associated virulence factors which mediate twitching motility via rounds of extension, surface attachment and retraction. The Chp chemosensory system is thought to respond to environmental signals to regulate the biogenesis, assembly and twitching motility function of T4P. In other well characterised chemosensory systems, methyl-accepting chemotaxis proteins (MCPs) feed environmental signals through a CheW adapter protein to the histidine kinase CheA to modulate motility. The Pseudomonas aeruginosa Chp system has an MCP PilJ and two CheW adapter proteins, PilI and ChpC, that likely interact with the histidine kinase ChpA to feed environmental signals into the system. In the current study we show that ChpC is involved in the response to host-derived signals serum albumin, mucin and oligopeptides. We demonstrate that these signals stimulate an increase in twitching motility, as well as in levels of 3'-5'-cyclic adenosine monophosphate (cAMP) and surface-assembled T4P. Interestingly, our data shows that changes in cAMP and surface piliation levels are independent of ChpC but that the twitching motility response to these environmental signals requires ChpC. Furthermore, we show that protease activity is required for the twitching motility response of P. aeruginosa to environmental signals. Based upon our data we propose a model whereby ChpC feeds these environmental signals into the Chp system, potentially via PilJ or another MCP, to control twitching motility. PilJ and PilI then modulate T4P surface levels to allow the cell to continue to undergo twitching motility. Our study is the first to link environmental signals to the Chp chemosensory system and refines our understanding of how this system controls twitching motility-mediated biofilm expansion in P. aeruginosa.
Collapse
Affiliation(s)
- Laura M. Nolan
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Laura C. McCaughey
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jessica Merjane
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Cynthia B. Whitchurch
- The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
- Microbes in the Food Chain Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ and School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
| |
Collapse
|
13
|
Matilla MA, Martín-Mora D, Krell T. The use of isothermal titration calorimetry to unravel chemotactic signalling mechanisms. Environ Microbiol 2020; 22:3005-3019. [PMID: 32329116 DOI: 10.1111/1462-2920.15035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Chemotaxis is based on the action of chemosensory pathways and is typically initiated by the recognition of chemoeffectors at chemoreceptor ligand-binding domains (LBD). Chemosensory signalling is highly complex; aspect that is not only reflected in the intricate interaction between many signalling proteins but also in the fact that bacteria frequently possess multiple chemosensory pathways and often a large number of chemoreceptors, which are mostly of unknown function. We review here the usefulness of isothermal titration calorimetry (ITC) to study this complexity. ITC is the gold standard for studying binding processes due to its precision and sensitivity, as well as its capability to determine simultaneously the association equilibrium constant, enthalpy change and stoichiometry of binding. There is now evidence that members of all major LBD families can be produced as individual recombinant proteins that maintain their ligand-binding properties. High-throughput screening of these proteins using thermal shift assays offer interesting initial information on chemoreceptor ligands, providing the basis for microcalorimetric analyses and microbiological experimentation. ITC has permitted the identification and characterization of many chemoreceptors with novel specificities. This ITC-based approach can also be used to identify signal molecules that stimulate members of other families of sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
14
|
Ma GL, Chandra H, Liang ZX. Taming the flagellar motor of pseudomonads with a nucleotide messenger. Environ Microbiol 2020; 22:2496-2513. [PMID: 32329141 DOI: 10.1111/1462-2920.15036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/11/2023]
Abstract
Pseudomonads rely on the flagellar motor to rotate a polar flagellum for swimming and swarming, and to sense surfaces for initiating the motile-to-sessile transition to adopt a surface-dwelling lifestyle. Deciphering the function and regulation of the flagellar motor is of paramount importance for understanding the behaviours of environmental and pathogenic pseudomonads. Recent studies disclosed the preeminent role played by the messenger c-di-GMP in controlling the real-time performance of the flagellar motor in pseudomonads. The studies revealed that c-di-GMP controls the dynamic exchange of flagellar stator units to regulate motor torque/speed and modulates the frequency of flagellar motor switching via the chemosensory signalling pathways. Apart from being a rotary motor, the flagellar motor is emerging as a mechanosensor that transduces surface-induced mechanical signals into an increase of cellular c-di-GMP concentration to initiate the cellular programs required for long-term colonization. Collectively, the studies generate long-awaited mechanistic insights into how c-di-GMP regulates bacterial motility and the motile-to-sessile transition. The new findings also raise the fundamental questions of how cellular c-di-GMP concentrations are dynamically coupled to flagellar output and the proton-motive force, and how c-di-GMP signalling is coordinated spatiotemporally to fine-tune flagellar response and the behaviour of pseudomonads in solutions and on surfaces.
Collapse
Affiliation(s)
- Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| | - Hartono Chandra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| |
Collapse
|
15
|
Booth SC, Turner RJ. Phylogenetic characterization of the energy taxis receptor Aer in Pseudomonas and phenotypic characterization in Pseudomonas pseudoalcaligenes KF707. MICROBIOLOGY-SGM 2020; 165:1331-1344. [PMID: 31639075 DOI: 10.1099/mic.0.000864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotaxis allows bacteria to sense gradients in their environment and respond by directing their swimming. Aer is a receptor that, instead of responding to a specific chemoattractant, allows bacteria to sense cellular energy levels and move towards favourable environments. In Pseudomonas, the number of apparent Aer homologues differs between the only two species it has been characterized in, Pseudomonas aeruginosa and Pseudomonas putida. Here we combined bioinformatic approaches with deletional mutagenesis in Pseudomonas pseudoalcaligenes KF707 to further characterize Aer. It was determined that the number of Aer homologues varies between zero and four throughout the genus Pseudomonas, and they were phylogenetically classified into five subgroups. We also used sequence analysis to show that these homologous receptors differ in their HAMP signal transduction domains. Genetic analysis also indicated that some Aer homologues have likely been subject to horizontal transfer. P. pseudoalcaligenes KF707 was unique among strains for having three Aer homologues as well as the receptors CttP and McpB. Phenotypic characterization in this strain showed that the most prevalent homologue of Aer was key, but not essential, for energy taxis. This study demonstrates that energy taxis in Pseudomonas varies between species and provides a new naming convention and associated phylogenetic details for Aer chemoreceptors.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Present address: Department of Zoology, University of Oxford, Oxford, UK
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Hybrid Two-Component Sensors for Identification of Bacterial Chemoreceptor Function. Appl Environ Microbiol 2019; 85:AEM.01626-19. [PMID: 31492670 DOI: 10.1128/aem.01626-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022] Open
Abstract
Soil bacteria adapt to diverse and rapidly changing environmental conditions by sensing and responding to environmental cues using a variety of sensory systems. Two-component systems are a widespread type of signal transduction system present in all three domains of life and typically are comprised of a sensor kinase and a response regulator. Many two-component systems function by regulating gene expression in response to environmental stimuli. The bacterial chemotaxis system is a modified two-component system with additional protein components and a response that, rather than regulating gene expression, involves behavioral adaptation and results in net movement toward or away from a chemical stimulus. Soil bacteria generally have 20 to 40 or more chemoreceptors encoded in their genomes. To simplify the identification of chemoeffectors (ligands) sensed by bacterial chemoreceptors, we constructed hybrid sensor proteins by fusing the sensor domains of Pseudomonas putida chemoreceptors to the signaling domains of the Escherichia coli NarX/NarQ nitrate sensors. Responses to potential attractants were monitored by β-galactosidase assays using an E. coli reporter strain in which the nitrate-responsive narG promoter was fused to lacZ Hybrid receptors constructed from PcaY, McfR, and NahY, which are chemoreceptors for aromatic acids, tricarboxylic acid cycle intermediates, and naphthalene, respectively, were sensitive and specific for detecting known attractants, and the β-galactosidase activities measured in E. coli correlated well with results of chemotaxis assays in the native P. putida strain. In addition, a screen of the hybrid receptors successfully identified new ligands for chemoreceptor proteins and resulted in the identification of six receptors that detect propionate.IMPORTANCE Relatively few of the thousands of chemoreceptors encoded in bacterial genomes have been functionally characterized. More importantly, although methyl-accepting chemotaxis proteins, the major type of chemoreceptors present in bacteria, are easily identified bioinformatically, it is not currently possible to predict what chemicals will bind to a particular chemoreceptor. Chemotaxis is known to play roles in biodegradation as well as in host-pathogen and host-symbiont interactions, but many studies are currently limited by the inability to identify relevant chemoreceptor ligands. The use of hybrid receptors and this simple E. coli reporter system allowed rapid and sensitive screening for potential chemoeffectors. The fusion site chosen for this study resulted in a high percentage of functional hybrids, indicating that it could be used to broadly test chemoreceptor responses from phylogenetically diverse samples. Considering the wide range of chemical attractants detected by soil bacteria, hybrid receptors may also be useful as sensitive biosensors.
Collapse
|
17
|
Martín-Mora D, Ortega Á, Matilla MA, Martínez-Rodríguez S, Gavira JA, Krell T. The Molecular Mechanism of Nitrate Chemotaxis via Direct Ligand Binding to the PilJ Domain of McpN. mBio 2019; 10:e02334-18. [PMID: 30782655 PMCID: PMC6381276 DOI: 10.1128/mbio.02334-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Chemotaxis and energy taxis permit directed bacterial movements in gradients of environmental cues. Nitrate is a final electron acceptor for anaerobic respiration and can also serve as a nitrogen source for aerobic growth. Previous studies indicated that bacterial nitrate taxis is mediated by energy taxis mechanisms, which are based on the cytosolic detection of consequences of nitrate metabolism. Here we show that Pseudomonas aeruginosa PAO1 mediates nitrate chemotaxis on the basis of specific nitrate sensing by the periplasmic PilJ domain of the PA2788/McpN chemoreceptor. The presence of nitrate reduced mcpN transcript levels, and McpN-mediated taxis occurred only under nitrate starvation conditions. In contrast to the NarX and NarQ sensor kinases, McpN bound nitrate specifically and showed no affinity for other ligands such as nitrite. We report the three-dimensional structure of the McpN ligand binding domain (LBD) at 1.3-Å resolution in complex with nitrate. Although structurally similar to 4-helix bundle domains, the ligand binding mode differs since a single nitrate molecule is bound to a site on the dimer symmetry axis. As for 4-helix bundle domains, ligand binding stabilized the McpN-LBD dimer. McpN homologues showed a wide phylogenetic distribution, indicating that nitrate chemotaxis is a widespread phenotype. These homologues were particularly abundant in bacteria that couple sulfide/sulfur oxidation with nitrate reduction. This work expands the range of known chemotaxis effectors and forms the basis for the exploration of nitrate chemotaxis in other bacteria and for the study of its physiological role.IMPORTANCE Nitrate is of central importance in bacterial physiology. Previous studies indicated that movements toward nitrate are due to energy taxis, which is based on the cytosolic sensing of consequences of nitrate metabolism. Here we present the first report on nitrate chemotaxis. This process is initiated by specific nitrate binding to the periplasmic ligand binding domain (LBD) of McpN. Nitrate chemotaxis is highly regulated and occurred only under nitrate starvation conditions, which is helpful information to explore nitrate chemotaxis in other bacteria. We present the three-dimensional structure of the McpN-LBD in complex with nitrate, which is the first structure of a chemoreceptor PilJ-type domain. This structure reveals striking similarities to that of the abundant 4-helix bundle domain but employs a different sensing mechanism. Since McpN homologues show a wide phylogenetic distribution, nitrate chemotaxis is likely a widespread phenomenon with importance for the life cycle of ecologically diverse bacteria.
Collapse
Affiliation(s)
- David Martín-Mora
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sergio Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Melilla, Spain
- Laboratorio de Estudios Cristalográficos, IACT, Superior de Investigaciones Científicas (CSIC) y la Universidad de Granada (UGR), Armilla, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, Superior de Investigaciones Científicas (CSIC) y la Universidad de Granada (UGR), Armilla, Spain
| | - Tino Krell
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
18
|
Sheng S, Xin L, Yam JKH, Salido MM, Khong NZJ, Liu Q, Chea RA, Li HY, Yang L, Liang ZX, Xu L. The MapZ-Mediated Methylation of Chemoreceptors Contributes to Pathogenicity of Pseudomonas aeruginosa. Front Microbiol 2019; 10:67. [PMID: 30804897 PMCID: PMC6370697 DOI: 10.3389/fmicb.2019.00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa is notorious for causing acute and chronic infections in humans. The ability to infect host by P. aeruginosa is dependent on a complex cellular signaling network, which includes a large number of chemosensory signaling pathways that rely on the methyl-accepting chemotaxis proteins (MCPs). We previously found that the second messenger c-di-GMP-binding adaptor MapZ modulates the methylation of an amino acid-detecting MCP by directly interacting with a chemotaxis methyltransferase CheR1. The current study further expands our understanding of the role of MapZ in regulating chemosensory pathways by demonstrating that MapZ suppresses the methylation of multiple MCPs in P. aeruginosa PAO1. The MCPs under the control of MapZ include five MCPs (Aer, CtpH, CptM, PctA, and PctB) for detecting oxygen/energy, inorganic phosphate, malate and amino acids, and three MCPs (PA1251, PA1608, and PA2867) for detecting unknown chemoattractant or chemorepellent. Chemotaxis assays showed that overexpression of MapZ hampered the taxis of P. aeruginosa toward chemoattractants and scratch-wounded human cells. Mouse infection experiments demonstrated that a dysfunction in MapZ regulation had a profound negative impact on the dissemination of P. aeruginosa and resulted in attenuated bacterial virulence. Together, the results imply that by controlling the methylation of various MCPs via the adaptor protein MapZ, c-di-GMP exerts a profound influence on chemotactic responses and bacterial pathogenesis.
Collapse
Affiliation(s)
- Shuo Sheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology, South China Agricultural University, Guangzhou, China
| | - Lingyi Xin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Joey Kuok Hoong Yam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - May Margarette Salido
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Nicole Zi Jia Khong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qiong Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology, South China Agricultural University, Guangzhou, China
| | - Rachel Andrea Chea
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hoi Yeung Li
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Linghui Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Martín-Mora D, Fernández M, Velando F, Ortega Á, Gavira JA, Matilla MA, Krell T. Functional Annotation of Bacterial Signal Transduction Systems: Progress and Challenges. Int J Mol Sci 2018; 19:ijms19123755. [PMID: 30486299 PMCID: PMC6321045 DOI: 10.3390/ijms19123755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023] Open
Abstract
Bacteria possess a large number of signal transduction systems that sense and respond to different environmental cues. Most frequently these are transcriptional regulators, two-component systems and chemosensory pathways. A major bottleneck in the field of signal transduction is the lack of information on signal molecules that modulate the activity of the large majority of these systems. We review here the progress made in the functional annotation of sensor proteins using high-throughput ligand screening approaches of purified sensor proteins or individual ligand binding domains. In these assays, the alteration in protein thermal stability following ligand binding is monitored using Differential Scanning Fluorimetry. We illustrate on several examples how the identification of the sensor protein ligand has facilitated the elucidation of the molecular mechanism of the regulatory process. We will also discuss the use of virtual ligand screening approaches to identify sensor protein ligands. Both approaches have been successfully applied to functionally annotate a significant number of bacterial sensor proteins but can also be used to study proteins from other kingdoms. The major challenge consists in the study of sensor proteins that do not recognize signal molecules directly, but that are activated by signal molecule-loaded binding proteins.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain.
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, (CSIC-UGR), Avenida las Palmeras 4, 18100 Armilla, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
20
|
High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa. mBio 2018; 9:mBio.01894-18. [PMID: 30425146 PMCID: PMC6234866 DOI: 10.1128/mbio.01894-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome analyses indicate that many bacteria possess an elevated number of chemoreceptors, suggesting that these species are able to perform chemotaxis to a wide variety of compounds. The scientific community is now only beginning to explore this diversity and to elucidate the corresponding physiological relevance. The discovery of histamine chemotaxis in the human pathogen Pseudomonas aeruginosa provides insight into tactic movements that occur within the host. Since histamine is released in response to bacterial pathogens, histamine chemotaxis may permit bacterial migration and accumulation at infection sites, potentially modulating, in turn, quorum-sensing-mediated processes and the expression of virulence genes. As a consequence, the modulation of histamine chemotaxis by signal analogues may result in alterations of the bacterial virulence. As the first report of bacterial histamine chemotaxis, this study lays the foundation for the exploration of the physiological relevance of histamine chemotaxis and its role in pathogenicity. Histamine is a key biological signaling molecule. It acts as a neurotransmitter in the central and peripheral nervous systems and coordinates local inflammatory responses by modulating the activity of different immune cells. During inflammatory processes, including bacterial infections, neutrophils stimulate the production and release of histamine. Here, we report that the opportunistic human pathogen Pseudomonas aeruginosa exhibits chemotaxis toward histamine. This chemotactic response is mediated by the concerted action of the TlpQ, PctA, and PctC chemoreceptors, which display differing sensitivities to histamine. Low concentrations of histamine were sufficient to activate TlpQ, which binds histamine with an affinity of 639 nM. To explore this binding, we resolved the high-resolution structure of the TlpQ ligand binding domain in complex with histamine. It has an unusually large dCACHE domain and binds histamine through a highly negatively charged pocket at its membrane distal module. Chemotaxis to histamine may play a role in the virulence of P. aeruginosa by recruiting cells at the infection site and consequently modulating the expression of quorum-sensing-dependent virulence genes. TlpQ is the first bacterial histamine receptor to be described and greatly differs from human histamine receptors, indicating that eukaryotes and bacteria have pursued different strategies for histamine recognition.
Collapse
|
21
|
The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Sci Rep 2018; 8:2102. [PMID: 29391435 PMCID: PMC5795001 DOI: 10.1038/s41598-018-20283-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022] Open
Abstract
Chemotaxis toward organic acids has been associated with colonization fitness and virulence and the opportunistic pathogen Pseudomonas aeruginosa exhibits taxis toward several tricarboxylic acid intermediates. In this study, we used high-throughput ligand screening and isothermal titration calorimetry to demonstrate that the ligand binding domain (LBD) of the chemoreceptor PA2652 directly recognizes five C4-dicarboxylic acids with KD values ranging from 23 µM to 1.24 mM. In vivo experimentation showed that three of the identified ligands act as chemoattractants whereas two of them behave as antagonists by inhibiting the downstream chemotaxis signalling cascade. In vitro and in vivo competition assays showed that antagonists compete with chemoattractants for binding to PA2652-LBD, thereby decreasing the affinity for chemoattractants and the subsequent chemotactic response. Two chemosensory pathways encoded in the genome of P. aeruginosa, che and che2, have been associated to chemotaxis but we found that only the che pathway is involved in PA2652-mediated taxis. The receptor PA2652 is predicted to contain a sCACHE LBD and analytical ultracentrifugation analyses showed that PA2652-LBD is dimeric in the presence and the absence of ligands. Our results indicate the feasibility of using antagonists to interfere specifically with chemotaxis, which may be an alternative strategy to fight bacterial pathogens.
Collapse
|
22
|
Abstract
Although the mechanism of bacterial chemotaxis has been extensively studied in enteric bacteria, the hunt for novel and atypical chemoeffectors (in enterics and distantly-related species alike) has necessitated the modification of classic chemotaxis assays to deal with recalcitrant and potentially toxic chemicals. Here, we describe detailed protocols for the quantitative and qualitative assessment of chemotaxis responses that are categorized into short-term direct population response assays and long-term metabolism-based assays that can be used to identify novel chemoeffector molecules and the specific chemoreceptors involved. We emphasize the importance of behavior-based assays to verify the biochemical and physiological relevance of newly identified chemoeffector-receptor pairs.
Collapse
Affiliation(s)
- Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jayna L Ditty
- Department of Biology, College of Arts and Sciences, University of St. Thomas, St. Paul, MN, USA.
| |
Collapse
|
23
|
Fernández M, Ortega Á, Rico-Jiménez M, Martín-Mora D, Daddaoua A, Matilla MA, Krell T. High-Throughput Screening to Identify Chemoreceptor Ligands. Methods Mol Biol 2018; 1729:291-301. [PMID: 29429099 DOI: 10.1007/978-1-4939-7577-8_23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The majority of bacterial chemoreceptors remain functionally un-annotated. The knowledge of chemoreceptor function, however, is indispensable to understanding the evolution of the chemotaxis system in bacteria with different lifestyles. Significant progress in the annotation of chemoreceptor function has been made using experimental strategies that are based on the individual, genetically engineered ligand binding domain (LBD) of chemoreceptors. There is now evidence that all major classes of LBDs can be produced as individual domains that retain their ligand binding activity. Here, we provide a protocol for the combined use of high-throughput ligand screening using Differential Scanning Fluorimetry followed by Isothermal Titration Calorimetry to identify and characterize ligands that bind to recombinant chemoreceptor LBDs. This approach has been shown to be very efficient for determining the function of novel chemoreceptors.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
24
|
Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:12809-12814. [PMID: 29133402 DOI: 10.1073/pnas.1708842114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In contrast to Escherichia coli, a model organism for chemotaxis that has 5 chemoreceptors and a single chemosensory pathway, Pseudomonas aeruginosa PAO1 has a much more complex chemosensory network, which consists of 26 chemoreceptors feeding into four chemosensory pathways. While several chemoreceptors were rigorously linked to specific pathways in a series of experimental studies, for most of them this information is not available. Thus, we addressed the problem computationally. Protein-protein interaction network prediction, coexpression data mining, and phylogenetic profiling all produced incomplete and uncertain assignments of chemoreceptors to pathways. However, comparative sequence analysis specifically targeting chemoreceptor regions involved in pathway interactions revealed conserved sequence patterns that enabled us to unambiguously link all 26 chemoreceptors to four pathways. Placing computational evidence in the context of experimental data allowed us to conclude that three chemosensory pathways in P. aeruginosa utilize one chemoreceptor per pathway, whereas the fourth pathway, which is the main system controlling chemotaxis, utilizes the other 23 chemoreceptors. Our results show that while only a very few amino acid positions in receptors, kinases, and adaptors determine their pathway specificity, assigning receptors to pathways computationally is possible. This requires substantial knowledge about interacting partners on a molecular level and focusing comparative sequence analysis on the pathway-specific regions. This general principle should be applicable to resolving many other receptor-pathway interactions.
Collapse
|
25
|
Abstract
Chemoreceptors in bacteria detect a variety of signals and feed this information into chemosensory pathways that represent a major mode of signal transduction. The five chemoreceptors from Escherichia coli have served as traditional models in the study of this protein family. Genome analyses revealed that many bacteria contain much larger numbers of chemoreceptors with broader sensory capabilities. Chemoreceptors differ in topology, sensing mode, cellular location, and, above all, the type of ligand binding domain (LBD). Here, we highlight LBD diversity using well-established and emerging model organisms as well as genomic surveys. Nearly a hundred different types of protein domains that are found in chemoreceptor sequences are known or predicted LBDs, but only a few of them are ubiquitous. LBDs of the same class recognize different ligands, and conversely, the same ligand can be recognized by structurally different LBDs; however, recent studies began to reveal common characteristics in signal-LBD relationships. Although signals can stimulate chemoreceptors in a variety of different ways, diverse LBDs appear to employ a universal transmembrane signaling mechanism. Current and future studies aim to establish relationships between LBD types, the nature of signals that they recognize, and the mechanisms of signal recognition and transduction.
Collapse
|
26
|
Matilla MA, Krell T. Chemoreceptor-based signal sensing. Curr Opin Biotechnol 2017; 45:8-14. [PMID: 28088095 DOI: 10.1016/j.copbio.2016.11.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 01/02/2023]
Abstract
Chemoreceptors are at the beginning of chemosensory signaling cascades that correspond to a major signal transduction mechanism. Chemoreceptors show a significant structural diversity of their ligand binding domains which present either a mono-modular or bi-modular arrangement. Although the majority of chemoreceptors are of unknown function, significant progress has been made in recent years in their functional annotation, which is reviewed here. In vitro ligand binding studies to recombinant ligand binding domains proved to be an efficient strategy to identify chemoreceptor functions. Obtained information is consistent with the view that a major driving force for the evolution of chemotaxis is to access carbon and nitrogen sources. The use of the newly generated information for the construction of biosensors is discussed.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
27
|
Abstract
Vibrio cholerae, the causative agent of cholera, swims in aqueous environments with a single polar flagellum. In a spatial gradient of a chemical, the bacterium can migrate in "favorable" directions, a property that is termed chemotaxis. The chemotaxis of V. cholerae is not only critical for survival in various environments and but also is implicated in pathogenicity. In this chapter, we describe how to characterize the chemotactic behaviors of V. cholerae: these methods include swarm assay, temporal stimulation assay, capillary assay, and receptor methylation assay.
Collapse
Affiliation(s)
- Ikuro Kawagishi
- Department of Frontier Bioscience, Hosei University, Kajino-cho, Koganei, Tokyo, 184-8584, Japan.
- Research Center for Micro-Nano Technology, Hosei University, Midori-cho, Koganei, Tokyo, Japan.
| | - So-Ichiro Nishiyama
- Department of Frontier Bioscience, Hosei University, Kajino-cho, Koganei, Tokyo, 184-8584, Japan
- Research Center for Micro-Nano Technology, Hosei University, Midori-cho, Koganei, Tokyo, Japan
| |
Collapse
|
28
|
Martín-Mora D, Ortega A, Reyes-Darias JA, García V, López-Farfán D, Matilla MA, Krell T. Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate. Front Microbiol 2016; 7:1937. [PMID: 27965656 PMCID: PMC5126104 DOI: 10.3389/fmicb.2016.01937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous pathogen able to infect humans, animals, and plants. Chemotaxis was found to be associated with the virulence of this and other pathogens. Although established as a model for chemotaxis research, the majority of the 26 P. aeruginosa chemoreceptors remain functionally un-annotated. We report here the identification of PA5072 (named McpK) as chemoreceptor for α-ketoglutarate (αKG). High-throughput thermal shift assays and isothermal titration calorimetry studies (ITC) of the recombinant McpK ligand binding domain (LBD) showed that it recognizes exclusively α-ketoglutarate. The ITC analysis indicated that the ligand bound with positive cooperativity (Kd1 = 301 μM, Kd2 = 81 μM). McpK is predicted to possess a helical bimodular (HBM) type of LBD and this and other studies suggest that this domain type may be associated with the recognition of organic acids. Analytical ultracentrifugation (AUC) studies revealed that McpK-LBD is present in monomer-dimer equilibrium. Alpha-KG binding stabilized the dimer and dimer self-dissociation constants of 55 μM and 5.9 μM were derived for ligand-free and αKG-bound forms of McpK-LBD, respectively. Ligand-induced LBD dimer stabilization has been observed for other HBM domain containing receptors and may correspond to a general mechanism of this protein family. Quantitative capillary chemotaxis assays demonstrated that P. aeruginosa showed chemotaxis to a broad range of αKG concentrations with maximal responses at 500 μM. Deletion of the mcpK gene reduced chemotaxis over the entire concentration range to close to background levels and wild type like chemotaxis was recovered following complementation. Real-time PCR studies indicated that the presence of αKG does not modulate mcpK expression. Since αKG is present in plant root exudates it was investigated whether the deletion of mcpK altered maize root colonization. However, no significant changes with respect to the wild type strain were observed. The existence of a chemoreceptor specific for αKG may be due to its central metabolic role as well as to its function as signaling molecule. This work expands the range of known chemoreceptor types and underlines the important physiological role of chemotaxis toward tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Alvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - José A Reyes-Darias
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Vanina García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Diana López-Farfán
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
29
|
Schwarzer C, Fischer H, Machen TE. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells. PLoS One 2016; 11:e0150109. [PMID: 27031335 PMCID: PMC4816407 DOI: 10.1371/journal.pone.0150109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11) with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses) in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI) were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells). PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins) and massively (10–80 fold increase, termed “swarming”), but transiently (random swimming after 15 mins), to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW) and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC) and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i) PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii) PA use pili to bind to epithelial cells near wounds.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Corral-Lugo A, De la Torre J, Matilla MA, Fernández M, Morel B, Espinosa-Urgel M, Krell T. Assessment of the contribution of chemoreceptor-based signalling to biofilm formation. Environ Microbiol 2016; 18:3355-3372. [PMID: 26662997 DOI: 10.1111/1462-2920.13170] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/30/2015] [Indexed: 12/01/2022]
Abstract
Although it is well established that one- and two-component regulatory systems participate in regulating biofilm formation, there also exists evidence suggesting that chemosensory pathways are also involved. However, little information exists about which chemoreceptors and signals modulate this process. Here we report the generation of the complete set of chemoreceptor mutants of Pseudomonas putida KT2440 and the identification of four mutants with significantly altered biofilm phenotypes. These receptors are a WspA homologue of Pseudomonas aeruginosa, previously identified to control biofilm formation by regulating c-di-GMP levels, and three uncharacterized chemoreceptors. One of these receptors, named McpU, was found to mediate chemotaxis towards different polyamines. The functional annotation of McpU was initiated by high-throughput thermal shift assays of the receptor ligand binding domain (LBD). Isothermal titration calorimetry showed that McpU-LBD specifically binds putrescine, cadaverine and spermidine, indicating that McpU represents a novel chemoreceptor type. Another uncharacterized receptor, named McpA, specifically binds 12 different proteinogenic amino acids and mediates chemotaxis towards these compounds. We also show that mutants in McpU and WspA-Pp have a significantly reduced ability to colonize plant roots. Data agree with other reports showing that polyamines are signal molecules involved in the regulation of bacteria-plant communication and biofilm formation.
Collapse
Affiliation(s)
- Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Jesús De la Torre
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Bertrand Morel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
31
|
Hida A, Oku S, Kawasaki T, Nakashimada Y, Tajima T, Kato J. Identification of the mcpA and mcpM genes, encoding methyl-accepting proteins involved in amino acid and l-malate chemotaxis, and involvement of McpM-mediated chemotaxis in plant infection by Ralstonia pseudosolanacearum (formerly Ralstonia solanacearum phylotypes I and III). Appl Environ Microbiol 2015; 81:7420-30. [PMID: 26276117 PMCID: PMC4592874 DOI: 10.1128/aem.01870-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/06/2015] [Indexed: 11/20/2022] Open
Abstract
Sequence analysis has revealed the presence of 22 putative methyl-accepting chemotaxis protein (mcp) genes in the Ralstonia pseudosolanacearum GMI1000 genome. PCR analysis and DNA sequencing showed that the highly motile R. pseudosolanacearum strain Ps29 possesses homologs of all 22 R. pseudosolanacearum GMI1000 mcp genes. We constructed a complete collection of single mcp gene deletion mutants of R. pseudosolanacearum Ps29 by unmarked gene deletion. Screening of the mutant collection revealed that R. pseudosolanacearum Ps29 mutants of RSp0507 and RSc0606 homologs were defective in chemotaxis to l-malate and amino acids, respectively. RSp0507 and RSc0606 homologs were designated mcpM and mcpA. While wild-type R. pseudosolanacearum strain Ps29 displayed attraction to 16 amino acids, the mcpA mutant showed no response to 12 of these amino acids and decreased responses to 4 amino acids. We constructed mcpA and mcpM deletion mutants of highly virulent R. pseudosolanacearum strain MAFF106611 to investigate the contribution of chemotaxis to l-malate and amino acids to tomato plant infection. Neither single mutant exhibited altered virulence for tomato plants when tested by root dip inoculation assays. In contrast, the mcpM mutant (but not the mcpA mutant) was significantly less infectious than the wild type when tested by a sand soak inoculation assay, which requires bacteria to locate and invade host roots from sand. Thus, McpM-mediated chemotaxis, possibly reflecting chemotaxis to l-malate, facilitates R. pseudosolanacearum motility to tomato roots in sand.
Collapse
Affiliation(s)
- Akiko Hida
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Shota Oku
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takahisa Tajima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
32
|
Río-Álvarez I, Muñoz-Gómez C, Navas-Vásquez M, Martínez-García PM, Antúnez-Lamas M, Rodríguez-Palenzuela P, López-Solanilla E. Role of Dickeya dadantii 3937 chemoreceptors in the entry to Arabidopsis leaves through wounds. MOLECULAR PLANT PATHOLOGY 2015; 16:685-98. [PMID: 25487519 PMCID: PMC6638404 DOI: 10.1111/mpp.12227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemotaxis enables bacteria to move towards an optimal environment in response to chemical signals. In the case of plant-pathogenic bacteria, chemotaxis allows pathogens to explore the plant surface for potential entry sites with the ultimate aim to prosper inside plant tissues and to cause disease. Chemoreceptors, which constitute the sensory core of the chemotaxis system, are usually transmembrane proteins which change their conformation when sensing chemicals in the periplasm and transduce the signal through a kinase pathway to the flagellar motor. In the particular case of the soft-rot pathogen Dickeya dadantii 3937, jasmonic acid released in a plant wound has been found to be a strong chemoattractant which drives pathogen entry into the plant apoplast. In order to identify candidate chemoreceptors sensing wound-derived plant compounds, we carried out a bioinformatics search of candidate chemoreceptors in the genome of Dickeya dadantii 3937. The study of the chemotactic response to several compounds and the analysis of the entry process to Arabidopsis leaves of 10 selected mutants in chemoreceptors allowed us to determine the implications of at least two of them (ABF-0020167 and ABF-0046680) in the chemotaxis-driven entry process through plant wounds. Our data suggest that ABF-0020167 and ABF-0046680 may be candidate receptors of jasmonic acid and xylose, respectively.
Collapse
Affiliation(s)
- Isabel Río-Álvarez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Cristina Muñoz-Gómez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Mariela Navas-Vásquez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Pedro M Martínez-García
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, E-29071, Málaga, Spain
| | - María Antúnez-Lamas
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| |
Collapse
|
33
|
Sampedro I, Kato J, Hill JE. Elastin degradation product isodesmosine is a chemoattractant for Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2015; 161:1496-503. [PMID: 25855762 PMCID: PMC10727130 DOI: 10.1099/mic.0.000090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/24/2022]
Abstract
Previous studies have demonstrated that Pseudomonas aeruginosa PAO1 is chemotactic towards proteinogenic amino acids, however, the chemotaxis response of this strain towards non-proteinogenic amino acids and the specific chemoreceptors involved in this response are essentially unknown. In this study, we analysed the chemotactic response of PAO1 towards two degradation products of elastin, the lysine-rich, non-proteinogenic amino acids, desmosine and isodesmosine. We observed that isodesmosine, a potential biomarker for different diseases, served as a chemoattractant for PAO1. A screen of 251methyl-accepting chemotaxis proteins mutants of PAO1 identified PctA as the chemoreceptor for isodesmosine. We also showed that the positive chemotactic response to isodesmosine is potentially common by demonstrating chemoattraction in 12 of 15 diverse (in terms of source of isolation) clinical isolates, suggesting that the chemotactic response to this non-proteinogenic amino acid might be a conserved feature of acute infection isolates and thus could influence the colonization of potential infection sites.
Collapse
Affiliation(s)
- Inmaculada Sampedro
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Jane E. Hill
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| |
Collapse
|
34
|
Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids. Appl Environ Microbiol 2015; 81:5449-57. [PMID: 26048936 DOI: 10.1128/aem.01529-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 12/13/2022] Open
Abstract
Chemoreceptors are at the beginnings of chemosensory signaling cascades that mediate chemotaxis. Most bacterial chemoreceptors are functionally unannotated and are characterized by a diversity in the structure of their ligand binding domains (LBDs). The data available indicate that there are two major chemoreceptor families at the functional level, namely, those that respond to amino acids or to Krebs cycle intermediates. Since pseudomonads show chemotaxis to many different compounds and possess different types of chemoreceptors, they are model organisms to establish relationships between chemoreceptor structure and function. Here, we identify PP2861 (termed McpP) of Pseudomonas putida KT2440 as a chemoreceptor with a novel ligand profile. We show that the recombinant McpP LBD recognizes acetate, pyruvate, propionate, and l-lactate, with KD (equilibrium dissociation constant) values ranging from 34 to 107 μM. Deletion of the mcpP gene resulted in a dramatic reduction in chemotaxis toward these ligands, and complementation restored a native-like phenotype, indicating that McpP is the major chemoreceptor for these compounds. McpP has a CACHE-type LBD, and we present data indicating that CACHE-containing chemoreceptors of other species also mediate taxis to C2 and C3 carboxylic acids. In addition, the LBD of NbaY of Pseudomonas fluorescens, an McpP homologue mediating chemotaxis to 2-nitrobenzoate, bound neither nitrobenzoates nor the McpP ligands. This work provides further insight into receptor structure-function relationships and will be helpful to annotate chemoreceptors of other bacteria.
Collapse
|
35
|
Krell T. Tackling the bottleneck in bacterial signal transduction research: high-throughput identification of signal molecules. Mol Microbiol 2015; 96:685-8. [DOI: 10.1111/mmi.12975] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Tino Krell
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 Granada 18008 Spain
| |
Collapse
|
36
|
McKellar JLO, Minnell JJ, Gerth ML. A high‐throughput screen for ligand binding reveals the specificities of three amino acid chemoreceptors from
P
seudomonas syringae
pv.
actinidiae. Mol Microbiol 2015; 96:694-707. [DOI: 10.1111/mmi.12964] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
Affiliation(s)
- James L. O. McKellar
- Department of Biochemistry University of Otago PO Box 56 Dunedin 9054 New Zealand
| | - Jordan J. Minnell
- Department of Biochemistry University of Otago PO Box 56 Dunedin 9054 New Zealand
| | - Monica L. Gerth
- Department of Biochemistry University of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
37
|
Luu RA, Kootstra JD, Nesteryuk V, Brunton CN, Parales JV, Ditty JL, Parales RE. Integration of chemotaxis, transport and catabolism inPseudomonas putidaand identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 2015; 96:134-47. [DOI: 10.1111/mmi.12929] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Rita A. Luu
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Joshua D. Kootstra
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Vasyl Nesteryuk
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Ceanne N. Brunton
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Juanito V. Parales
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Jayna L. Ditty
- Department of Biology; University of St. Thomas; St. Paul MN USA
| | - Rebecca E. Parales
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| |
Collapse
|
38
|
Yamamoto-Tamura K, Kawagishi I, Ogawa N, Fujii T. A putative porin gene of Burkholderia sp. NK8 involved in chemotaxis toward β-ketoadipate. Biosci Biotechnol Biochem 2015; 79:926-36. [PMID: 25649919 DOI: 10.1080/09168451.2015.1006571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Burkholderia sp. NK8 can utilize 3-chlorobenzoate (3CB) as a sole source of carbon because it has a megaplasmid (pNK8) that carries the gene cluster (tfdT-CDEF) encoding chlorocatechol-degrading enzymes. The expression of tfdT-CDEF is induced by 3CB. In this study, we found that NK8 cells were attracted to 3CB and its degradation products, 3- and 4-chlorocatechol, and β-ketoadipate. Capillary assays revealed that a pNK8-eliminated strain (NK82) was defective in chemotaxis toward β-ketoadipate. The introduction of a plasmid carrying a putative outer membrane porin gene, which we name ompNK8, into strain NK82 restored chemotaxis toward β-ketoadipate. RT-PCR analyses demonstrated that the transcription of the ompNK8 gene was enhanced in the presence of 3CB.
Collapse
Affiliation(s)
- Kimiko Yamamoto-Tamura
- a Environmental Biofunction Division , National Institute for Agro-Environmental Sciences , Tsukuba , Japan
| | | | | | | |
Collapse
|
39
|
A novel chemoreceptor MCP2983 from Comamonas testosteroni specifically binds to cis-aconitate and triggers chemotaxis towards diverse organic compounds. Appl Microbiol Biotechnol 2014; 99:2773-81. [DOI: 10.1007/s00253-014-6216-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 01/25/2023]
|
40
|
Oku S, Komatsu A, Nakashimada Y, Tajima T, Kato J. Identification of Pseudomonas fluorescens chemotaxis sensory proteins for malate, succinate, and fumarate, and their involvement in root colonization. Microbes Environ 2014; 29:413-9. [PMID: 25491753 PMCID: PMC4262366 DOI: 10.1264/jsme2.me14128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas fluorescens Pf0-1 exhibited chemotactic responses to l-malate, succinate, and fumarate. We constructed a plasmid library of 37 methyl-accepting chemotaxis protein (MCP) genes of P. fluorescens Pf0-1. To identify a MCP for l-malate, the plasmid library was screened using the PA2652 mutant of Pseudomonas aeruginosa PAO1, a mutant defective in chemotaxis to l-malate. The introduction of Pfl01_0728 and Pfl01_3768 genes restored the ability of the PA2652 mutant to respond to l-malate. The Pfl01_0728 and Pfl01_3768 double mutant of P. fluorescens Pf0-1 showed no response to l-malate or succinate, while the Pfl01_0728 single mutant did not respond to fumarate. These results indicated that Pfl01_0728 and Pfl01_3768 were the major MCPs for l-malate and succinate, and Pfl01_0728 was also a major MCP for fumarate. The Pfl01_0728 and Pfl01_3768 double mutant unexpectedly exhibited stronger responses toward the tomato root exudate and amino acids such as proline, asparagine, methionine, and phenylalanine than those of the wild-type strain. The ctaA, ctaB, ctaC (genes of the major MCPs for amino acids), Pfl01_0728, and Pfl01_3768 quintuple mutant of P. fluorescens Pf0-1 was less competitive than the ctaA ctaB ctaC triple mutant in competitive root colonization, suggesting that chemotaxis to l-malate, succinate, and/or fumarate was involved in tomato root colonization by P. fluorescens Pf0-1.
Collapse
Affiliation(s)
- Shota Oku
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| | | | | | | | | |
Collapse
|
41
|
Abstract
Pseudomonads sense changes in the concentration of chemicals in their environment and exhibit a behavioral response mediated by flagella or pili coupled with a chemosensory system. The two known chemotaxis pathways, a flagella-mediated pathway and a putative pili-mediated system, are described in this review. Pseudomonas shows chemotaxis response toward a wide range of chemicals, and this review includes a summary of them organized by chemical structure. The assays used to measure positive and negative chemotaxis swimming and twitching Pseudomonas as well as improvements to those assays and new assays are also described. This review demonstrates that there is ample research and intellectual space for future investigators to elucidate the role of chemotaxis in important processes such as pathogenesis, bioremediation, and the bioprotection of plants and animals.
Collapse
Affiliation(s)
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Tino Krell
- Department of Environmental Protection, CSIC, Estacion Experimental del Zaidin, Granada, Spain
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
42
|
Parales RE, Nesteryuk V, Hughes JG, Luu RA, Ditty JL. Cytosine chemoreceptor McpC in Pseudomonas putida F1 also detects nicotinic acid. MICROBIOLOGY-SGM 2014; 160:2661-2669. [PMID: 25294107 DOI: 10.1099/mic.0.081968-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Soil bacteria are generally capable of growth on a wide range of organic chemicals, and pseudomonads are particularly adept at utilizing aromatic compounds. Pseudomonads are motile bacteria that are capable of sensing a wide range of chemicals, using both energy taxis and chemotaxis. Whilst the identification of specific chemicals detected by the ≥26 chemoreceptors encoded in Pseudomonas genomes is ongoing, the functions of only a limited number of Pseudomonas chemoreceptors have been revealed to date. We report here that McpC, a methyl-accepting chemotaxis protein in Pseudomonas putida F1 that was previously shown to function as a receptor for cytosine, was also responsible for the chemotactic response to the carboxylated pyridine nicotinic acid.
Collapse
Affiliation(s)
- Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Vasyl Nesteryuk
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jonathan G Hughes
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Rita A Luu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jayna L Ditty
- Department of Biology, University of St Thomas, St Paul, MN, USA
| |
Collapse
|
43
|
Darias JAR, García-Fontana C, Lugo AC, Rico-Jiménez M, Krell T. Qualitative and quantitative assays for flagellum-mediated chemotaxis. Methods Mol Biol 2014; 1149:87-97. [PMID: 24818900 DOI: 10.1007/978-1-4939-0473-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A primary driving force during bacterial evolution was the capacity to access compounds necessary for growth and survival. Since the species of the genus Pseudomonas are characterized by metabolic versatility, these bacteria have developed chemotactic behaviors towards a wide range of different compounds. The specificity of a chemotactic response is determined by the chemoreceptor, which is at the beginning of the signaling cascade and to which chemoattractants and chemorepellents bind. The number of chemoreceptor genes of Pseudomonas species is significantly higher than the average number in motile bacteria. Although some of the receptors have been annotated with a function, the cognate signal molecules for the majority of them still need to be identified. Different qualitative and quantitative methods are presented that can be used to study flagellum-mediated taxis.
Collapse
Affiliation(s)
- José Antonio Reyes Darias
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda 1, 18008, Granada, Spain
| | | | | | | | | |
Collapse
|
44
|
Ni B, Huang Z, Fan Z, Jiang CY, Liu SJ. Comamonas testosteroniuses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol Microbiol 2013; 90:813-23. [DOI: 10.1111/mmi.12400] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Bin Ni
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zheng Fan
- Core facility at Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- Environmental Microbiology Research Center; Chinese Academy of Sciences; Beijing 100101 China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- Environmental Microbiology Research Center; Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
45
|
Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2013; 79:7241-8. [PMID: 24038698 DOI: 10.1128/aem.02428-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemotaxis influences the ability of bacteria to survive and thrive in most environments, including polluted ones. Despite numerous reports of the phenotypic characterization of chemotactic bacteria, only a few molecular details of chemoreceptors for aromatic pollutants have been described. In this study, the molecular basis of chemotaxis toward an environmentally toxic chlorinated aromatic pollutant, 4-chloroaniline (4CA), was evaluated. Among the three Pseudomonas spp. tested, Pseudomonas aeruginosa PAO1 exhibited positive chemotaxis both to the nonmetabolizable 4CA, where 4-chloroacetanilide was formed as a dead-end transformation product, and to the metabolizable catechol. Molecular analysis of all 26 mutants with a disrupted methyl-accepting chemotaxis gene revealed that CtpL, a chromosomally encoded chemoreceptor, was responsible for the positive chemotactic response toward 4CA. Since CtpL has previously been described to be a major chemoreceptor for inorganic phosphate at low concentrations in PAO1, this report describes a fortuitous ability of CtpL to function toward aromatic pollutants. In addition, its regulation not only was dependent on the presence of the chemoattractant inducer but also was regulated by conditions of phosphate starvation. These results expand the range of known chemotactic transducers and their function in the environmental bacterium PAO1.
Collapse
|
46
|
Parales RE, Luu RA, Chen GY, Liu X, Wu V, Lin P, Hughes JG, Nesteryuk V, Parales JV, Ditty JL. Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. MICROBIOLOGY-SGM 2013; 159:1086-1096. [PMID: 23618999 DOI: 10.1099/mic.0.065698-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have demonstrated that Pseudomonas putida strains are not only capable of growth on a wide range of organic substrates, but also chemotactic towards many of these compounds. However, in most cases the specific chemoreceptors that are involved have not been identified. The complete genome sequences of P. putida strains F1 and KT2440 revealed that each strain is predicted to encode 27 methyl-accepting chemotaxis proteins (MCPs) or MCP-like proteins, 25 of which are shared by both strains. It was expected that orthologous MCPs in closely related strains of the same species would be functionally equivalent. However, deletion of the gene encoding the P. putida F1 orthologue (locus tag Pput_4520, designated mcfS) of McpS, a known receptor for organic acids in P. putida KT2440, did not result in an obvious chemotaxis phenotype. Therefore, we constructed individual markerless MCP gene deletion mutants in P. putida F1 and screened for defective sensory responses to succinate, malate, fumarate and citrate. This screen resulted in the identification of a receptor, McfQ (locus tag Pput_4894), which responds to citrate and fumarate. An additional receptor, McfR (locus tag Pput_0339), which detects succinate, malate and fumarate, was found by individually expressing each of the 18 genes encoding canonical MCPs from strain F1 in a KT2440 mcpS-deletion mutant. Expression of mcfS in the same mcpS deletion mutant demonstrated that, like McfR, McfS responds to succinate, malate, citrate and fumarate. Therefore, at least three receptors, McfR, McfS, and McfQ, work in concert to detect organic acids in P. putida F1.
Collapse
Affiliation(s)
- Rebecca E Parales
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Rita A Luu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Grischa Y Chen
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xianxian Liu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Victoria Wu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Pamela Lin
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jonathan G Hughes
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Vasyl Nesteryuk
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Juanito V Parales
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jayna L Ditty
- Department of Biology, University of St. Thomas, St. Paul, MN, USA
| |
Collapse
|
47
|
Chemoreceptor VfcA mediates amino acid chemotaxis in Vibrio fischeri. Appl Environ Microbiol 2013; 79:1889-96. [PMID: 23315744 DOI: 10.1128/aem.03794-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flagellar motility and chemotaxis by Vibrio fischeri are important behaviors mediating the colonization of its mutualistic host, the Hawaiian bobtail squid. However, none of the 43 putative methyl-accepting chemotaxis proteins (MCPs) encoded in the V. fischeri genome has been previously characterized. Using both an available transposon mutant collection and directed mutagenesis, we isolated mutants for 19 of these genes, and screened them for altered chemotaxis to six previously identified chemoattractants. Only one mutant was defective in responding to any of the tested compounds; the disrupted gene was thus named vfcA (Vibrio fischeri chemoreceptor A; locus tag VF_0777). In soft-agar plates, mutants disrupted in vfcA did not exhibit the serine-sensing chemotactic ring, and the pattern of migration in the mutant was not affected by the addition of exogenous serine. Using a capillary chemotaxis assay, we showed that, unlike wild-type V. fischeri, the vfcA mutant did not undergo chemotaxis toward serine and that expression of vfcA on a plasmid in the mutant was sufficient to restore the behavior. In addition to serine, we demonstrated that alanine, cysteine, and threonine are strong attractants for wild-type V. fischeri and that the attraction is also mediated by VfcA. This study thus provides the first insights into how V. fischeri integrates information from one of its 43 MCPs to respond to environmental stimuli.
Collapse
|
48
|
Ditty JL, Williams KM, Keller MM, Chen GY, Liu X, Parales RE. Integrating grant-funded research into the undergraduate biology curriculum using IMG-ACT. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 41:16-23. [PMID: 23382122 DOI: 10.1002/bmb.20662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Indexed: 06/01/2023]
Abstract
It has become clear in current scientific pedagogy that the emersion of students in the scientific process in terms of designing, implementing, and analyzing experiments is imperative for their education; as such, it has been our goal to model this active learning process in the classroom and laboratory in the context of a genuine scientific question. Toward this objective, the National Science Foundation funded a collaborative research grant between a primarily undergraduate institution and a research-intensive institution to study the chemotactic responses of the bacterium Pseudomonas putida F1. As part of the project, a new Bioinformatics course was developed in which undergraduates annotate relevant regions of the P. putida F1 genome using Integrated Microbial Genomes Annotation Collaboration Toolkit, a bioinformatics interface specifically developed for undergraduate programs by the Department of Energy Joint Genome Institute. Based on annotations of putative chemotaxis genes in P. putida F1 and comparative genomics studies, undergraduate students from both institutions developed functional genomics research projects that evolved from the annotations. The purpose of this study is to describe the nature of the NSF grant, the development of the Bioinformatics lecture and wet laboratory course, and how undergraduate student involvement in the project that was initiated in the classroom has served as a springboard for independent undergraduate research projects.
Collapse
Affiliation(s)
- Jayna L Ditty
- Department of Biology, University of St. Thomas, St. Paul, MN, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Lacal J, Reyes-Darias JA, García-Fontana C, Ramos JL, Krell T. Tactic responses to pollutants and their potential to increase biodegradation efficiency. J Appl Microbiol 2012; 114:923-33. [PMID: 23163356 DOI: 10.1111/jam.12076] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/07/2012] [Accepted: 11/11/2012] [Indexed: 11/26/2022]
Abstract
A significant number of bacterial strains are able to use toxic aromatic hydrocarbons as carbon and energy sources. In a number of cases, the evolution of the corresponding degradation pathway was accompanied by the evolution of tactic behaviours either towards or away from these toxic carbon sources. Reports are reviewed which show that a chemoattraction to heterogeneously distributed aromatic pollutants increases the bioavailability of these compounds and their biodegradation efficiency. An extreme form of chemoattraction towards aromatic pollutants, termed 'hyperchemotaxis', was described for Pseudomonas putida DOT-T1E, which is based on the action of the plasmid-encoded McpT chemoreceptor. Cells with this phenotype were found of being able to approach and of establishing contact with undiluted crude oil samples. Although close McpT homologues are found on other degradation plasmids, the sequence of their ligand-binding domains does not share significant similarity with that of NahY, the other characterized chemoreceptor for aromatic hydrocarbons. This may suggest the existence of at least two families of chemoreceptors for aromatic pollutants. The use of receptor chimers comprising the ligand-binding region of McpT for biosensing purposes is discussed.
Collapse
Affiliation(s)
- J Lacal
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | |
Collapse
|
50
|
O'Connor JR, Kuwada NJ, Huangyutitham V, Wiggins PA, Harwood CS. Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system leading to c-di-GMP production. Mol Microbiol 2012; 86:720-9. [PMID: 22957788 DOI: 10.1111/mmi.12013] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2012] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa responds to growth on agar surfaces to produce cyclic-di-GMP, which stimulates biofilm formation. This is mediated by an alternative cellular function chemotaxis-like system called Wsp. The receptor protein WspA, is bioinformatically indistinguishable from methyl-accepting chemotaxis proteins. However, unlike standard chemoreceptors, WspA does not form stable clusters at cell poles. Rather, it forms dynamic clusters at both polar and lateral subcellular locations. To begin to study the mechanism of Wsp signal transduction in response to surfaces, we carried out a structure-function study of WspA and found that its C-terminus is important for its lateral subcellular localization and function. When this region was replaced with that of a chemoreceptor for amino acids, WspA became polarly localized. In addition, introduction of mutations in the C-terminal region of WspA that rendered this protein able to form more stable receptor-receptor interactions, also resulted in a WspA protein that was less capable of activating signal transduction. Receptor chimeras with a WspA C-terminus and N-terminal periplasmic domains from chemoreceptors that sense amino acids or malate responded to surfaces to produce c-di-GMP. Thus, the amino acid sequence of the WspA periplasmic region did not need to be conserved for the Wsp system to respond to surfaces.
Collapse
Affiliation(s)
- Jennifer R O'Connor
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|