1
|
Poláček A, Lombard V, Coutinho PM, Terrapon N, Janeček Š. Dividing the α-amylase family GH57 of starch hydrolases and related enzymes into subfamilies using evolutionary, clustering and functional criteria. Int J Biol Macromol 2025; 309:142823. [PMID: 40187459 DOI: 10.1016/j.ijbiomac.2025.142823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
In the CAZy classification, four glycoside hydrolase families - GH13, GH57, GH119 and GH126 - have been designated as α-amylase families. The present study applied to a dataset of over 5000 family GH57 sequences, delivers a functionally balanced subdivision of the family GH57 into ten subfamilies. Eight of these subfamilies bear a specific enzyme activity: GH57_1, 4-α-glucanotransferases; GH57_2, amylopullulanases; GH57_3, α-amylases; GH57_4, α-galactosidases; GH57_5, α-glucan-branching enzymes; GH57_6, non-specified amylases; GH57_7, amylopullulanases-cyclomaltodextrinases; and GH57_8, maltogenic amylases. Two subfamilies, GH57_9 and GH57_10, not including any characterized members so far despite their conserved catalytic machinery, will deserve the community attention. Each subfamily is highlighted by its sequence fingerprints, through the logo of the five GH57 conserved sequence regions. The structural features are also compared with regard to domains complementing the catalytic module composed by the (β/α)7-barrel and the succeeding α-helical bundle. Characterized members in each subfamily display a strong agreement in their functional profile, indicating that the here proposed GH57 subfamily annotation results in functionally meaningful subsets. Moreover, several small groups of sequences still lacking sufficient sequence diversity and biochemical characterization did not integrate any of the created GH57 subfamilies so far; nevertheless, they could complete the overall GH57 subfamily picture in future.
Collapse
Affiliation(s)
- Adam Poláček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS, Aix-Marseille Univ, USC 1408 INRAE, F-13288 Marseille, France
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS, Aix-Marseille Univ, USC 1408 INRAE, F-13288 Marseille, France
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS, Aix-Marseille Univ, USC 1408 INRAE, F-13288 Marseille, France.
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia; Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, SK-91701 Trnava, Slovakia.
| |
Collapse
|
2
|
Sequence-structural features and evolution of the α-amylase family GH119 revealed by the in silico analysis of its relatedness to the family GH57. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Biochemical Insights into the functionality of a novel thermostable β-amylase from Dioclea reflexa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Amin K, Tranchimand S, Benvegnu T, Abdel-Razzak Z, Chamieh H. Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology. Biomolecules 2021; 11:1557. [PMID: 34827555 PMCID: PMC8615776 DOI: 10.3390/biom11111557] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 01/18/2023] Open
Abstract
Hyperthermophilic Archaea colonizing unnatural habitats of extremes conditions such as volcanoes and deep-sea hydrothermal vents represent an unmeasurable bioresource for enzymes used in various industrial applications. Their enzymes show distinct structural and functional properties and are resistant to extreme conditions of temperature and pressure where their mesophilic homologs fail. In this review, we will outline carbohydrate-active enzymes (CAZymes) from hyperthermophilic Archaea with specific focus on the two largest families, glycoside hydrolases (GHs) and glycosyltransferases (GTs). We will present the latest advances on these enzymes particularly in the light of novel accumulating data from genomics and metagenomics sequencing technologies. We will discuss the contribution of these enzymes from hyperthermophilic Archaea to industrial applications and put the emphasis on newly identifed enzymes. We will highlight their common biochemical and distinct features. Finally, we will overview the areas that remain to be explored to identify novel promising hyperthermozymes.
Collapse
Affiliation(s)
- Khadija Amin
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Sylvain Tranchimand
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Thierry Benvegnu
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Ziad Abdel-Razzak
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Beirut P.O. Box 6573, Lebanon
| | - Hala Chamieh
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Beirut P.O. Box 6573, Lebanon
| |
Collapse
|
5
|
Janeček Š, Martinovičová M. New groups of protein homologues in the α-amylase family GH57 closely related to α-glucan branching enzymes and 4-α-glucanotransferases. Genetica 2020; 148:77-86. [PMID: 32096055 DOI: 10.1007/s10709-020-00089-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
The glycoside hydrolase family GH57 is known as the second α-amylase family. Its main characteristics are as follows: (i) employing the retaining reaction mechanism; (ii) adopting the (β/α)7-barrel (the incomplete TIM-barrel) with succeeding bundle of α-helices as the catalytic domain; (iii) sharing the five conserved sequence regions (CSRs) exhibiting the sequence fingerprints of the individual enzyme specificities; and (iv) using the catalytic machinery consisting of glutamic acid (the catalytic nucleophile) and aspartic acid (the proton donor) positioned at strands β4 (CSR-3) and β7 (CSR-4) of the (β/α)7-barrel domain, respectively. Several years ago, a group of hypothetical proteins closely related to the specificity of α-amylase was revealed, the so-called α-amylase-like homologues, the members of which lack either one or even both catalytic residues. The novelty of the present study lies in delivering two additional groups of the "like" proteins that are homologues of α-glucan-branching enzyme (GBE) and 4-α-glucanotransferase (4AGT) specificities. Based on a recently published in silico analysis of more than 1600 family GH57 sequences, 13 GBE-like and 18 4AGT-like proteins from unique sources were collected and analyzed in a detail with respect to their taxonomical origin, sequence and structural features as well as evolutionary relationships. This in silico study could accelerate the efforts leading to experimental revealing the real function of the enzymes-like proteins in the α-amylase family GH57.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 84551, Bratislava, Slovakia. .,Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nam. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Mária Martinovičová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nam. J. Herdu 2, 91701, Trnava, Slovakia
| |
Collapse
|
6
|
Strazzulli A, Cobucci-Ponzano B, Iacono R, Giglio R, Maurelli L, Curci N, Schiano-di-Cola C, Santangelo A, Contursi P, Lombard V, Henrissat B, Lauro FM, Fontes CMGA, Moracci M. Discovery of hyperstable carbohydrate-active enzymes through metagenomics of extreme environments. FEBS J 2019; 287:1116-1137. [PMID: 31595646 DOI: 10.1111/febs.15080] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
The enzymes from hyperthermophilic microorganisms populating volcanic sites represent interesting cases of protein adaptation and biotransformations under conditions where conventional enzymes quickly denature. The difficulties in cultivating extremophiles severely limit access to this class of biocatalysts. To circumvent this problem, we embarked on the exploration of the biodiversity of the solfatara Pisciarelli, Agnano (Naples, Italy), to discover hyperthermophilic carbohydrate-active enzymes (CAZymes) and to characterize the entire set of such enzymes in this environment (CAZome). Here, we report the results of the metagenomic analysis of two mud/water pools that greatly differ in both temperature and pH (T = 85 °C and pH 5.5; T = 92 °C and pH 1.5, for Pool1 and Pool2, respectively). DNA deep sequencing and following in silico analysis led to 14 934 and 17 652 complete ORFs in Pool1 and Pool2, respectively. They exclusively belonged to archaeal cells and viruses with great genera variance within the phylum Crenarchaeota, which reflected the difference in temperature and pH of the two Pools. Surprisingly, 30% and 62% of all of the reads obtained from Pool1 and 2, respectively, had no match in nucleotide databanks. Genes associated with carbohydrate metabolism were 15% and 16% of the total in the two Pools, with 278 and 308 putative CAZymes in Pool1 and 2, corresponding to ~ 2.0% of all ORFs. Biochemical characterization of two CAZymes of a previously unknown archaeon revealed a novel subfamily GH5_19 β-mannanase/β-1,3-glucanase whose hemicellulose specificity correlates with the vegetation surrounding the sampling site, and a novel NAD+ -dependent GH109 with a previously unreported β-N-acetylglucosaminide/β-glucoside specificity. DATABASES: The sequencing reads are available in the NCBI Sequence Read Archive (SRA) database under the accession numbers SRR7545549 (Pool1) and SRR7545550 (Pool2). The sequences of GH5_Pool2 and GH109_Pool2 are available in GenBank database under the accession numbers MK869723 and MK86972, respectively. The environmental data relative to Pool1 and Pool2 (NCBI BioProject PRJNA481947) are available in the Biosamples database under the accession numbers SAMN09692669 (Pool1) and SAMN09692670 (Pool2).
Collapse
Affiliation(s)
- Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Italy
| | | | - Roberta Iacono
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy.,Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Rosa Giglio
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Luisa Maurelli
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Nicola Curci
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy.,Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Corinna Schiano-di-Cola
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Annalisa Santangelo
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Italy
| | - Vincent Lombard
- Centre National de la Recherche Scientifique, INRA, AFMB, USC 1408, Aix Marseille Univ, France
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique, INRA, AFMB, USC 1408, Aix Marseille Univ, France.,Department Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Federico M Lauro
- Asian School of the Environment, Nanyang Technological University, Singapore City, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Carlos M G A Fontes
- NZYTech LDA, Estrada Do Paco Do Lumiar, Lisbon, Portugal.,CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Portugal
| | - Marco Moracci
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Italy.,Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| |
Collapse
|
7
|
Thomas SC, Tamadonfar KO, Seymour CO, Lai D, Dodsworth JA, Murugapiran SK, Eloe-Fadrosh EA, Dijkstra P, Hedlund BP. Position-Specific Metabolic Probing and Metagenomics of Microbial Communities Reveal Conserved Central Carbon Metabolic Network Activities at High Temperatures. Front Microbiol 2019; 10:1427. [PMID: 31333598 PMCID: PMC6624737 DOI: 10.3389/fmicb.2019.01427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/05/2019] [Indexed: 12/02/2022] Open
Abstract
Temperature is a primary driver of microbial community composition and taxonomic diversity; however, it is unclear to what extent temperature affects characteristics of central carbon metabolic pathways (CCMPs) at the community level. In this study, 16S rRNA gene amplicon and metagenome sequencing were combined with 13C-labeled metabolite probing of the CCMPs to assess community carbon metabolism along a temperature gradient (60–95°C) in Great Boiling Spring, NV. 16S rRNA gene amplicon diversity was inversely proportional to temperature, and Archaea were dominant at higher temperatures. KO richness and diversity were also inversely proportional to temperature, yet CCMP genes were similarly represented across the temperature gradient and many individual metagenome-assembled genomes had complete pathways. In contrast, genes encoding cellulosomes and many genes involved in plant matter degradation and photosynthesis were absent at higher temperatures. In situ13C-CO2 production from labeled isotopomer pairs of glucose, pyruvate, and acetate suggested lower relative oxidative pentose phosphate pathway activity and/or fermentation at 60°C, and a stable or decreased maintenance energy demand at higher temperatures. Catabolism of 13C-labeled citrate, succinate, L-alanine, L-serine, and L-cysteine was observed at 85°C, demonstrating broad heterotrophic activity and confirming functioning of the TCA cycle. Together, these results suggest that temperature-driven losses in biodiversity and gene content in geothermal systems may not alter CCMP function or maintenance energy demands at a community level.
Collapse
Affiliation(s)
- Scott C Thomas
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Kevin O Tamadonfar
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, United States
| | | | - Emiley A Eloe-Fadrosh
- Department of Energy Joint Genome Institute, Joint Genome Institute, Walnut Creek, CA, United States
| | - Paul Dijkstra
- Department of Biological Sciences, Center of Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
8
|
Cabrera MÁ, Blamey JM. Biotechnological applications of archaeal enzymes from extreme environments. Biol Res 2018; 51:37. [PMID: 30290805 PMCID: PMC6172850 DOI: 10.1186/s40659-018-0186-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/25/2018] [Indexed: 11/10/2022] Open
Abstract
To date, many industrial processes are performed using chemical compounds, which are harmful to nature. An alternative to overcome this problem is biocatalysis, which uses whole cells or enzymes to carry out chemical reactions in an environmentally friendly manner. Enzymes can be used as biocatalyst in food and feed, pharmaceutical, textile, detergent and beverage industries, among others. Since industrial processes require harsh reaction conditions to be performed, these enzymes must possess several characteristics that make them suitable for this purpose. Currently the best option is to use enzymes from extremophilic microorganisms, particularly archaea because of their special characteristics, such as stability to elevated temperatures, extremes of pH, organic solvents, and high ionic strength. Extremozymes, are being used in biotechnological industry and improved through modern technologies, such as protein engineering for best performance. Despite the wide distribution of archaea, exist only few reports about these microorganisms isolated from Antarctica and very little is known about thermophilic or hyperthermophilic archaeal enzymes particularly from Antarctica. This review summarizes current knowledge of archaeal enzymes with biotechnological applications, including two extremozymes from Antarctic archaea with potential industrial use, which are being studied in our laboratory. Both enzymes have been discovered through conventional screening and genome sequencing, respectively.
Collapse
Affiliation(s)
- Ma Ángeles Cabrera
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Santiago, Chile.,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins, 3363, Santiago, Chile
| | - Jenny M Blamey
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Santiago, Chile. .,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins, 3363, Santiago, Chile.
| |
Collapse
|
9
|
In silico analysis of the α-amylase family GH57: eventual subfamilies reflecting enzyme specificities. 3 Biotech 2018; 8:307. [PMID: 29998051 PMCID: PMC6037648 DOI: 10.1007/s13205-018-1325-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/20/2018] [Indexed: 01/20/2023] Open
Abstract
Glycoside hydrolases (GHs) have been classified in the CAZy database into 153 GH families. Currently, there might be four α-amylase families: the main family GH13, the family GH57 with related GH119 and, eventually, also GH126. The family GH57 was established in 1996 as the second and smaller α-amylase family. In addition to α-amylase, it contains 4-α-glucanotransferase, α-glucan branching enzyme, amylopullulanase, dual-specificity amylopullulanase–cyclomaltodextrinase, non-specified amylase, maltogenic amylase and α-galactosidase. The family GH57 enzymes employ the retaining reaction mechanism, share five typical conserved sequence regions and possess catalytic (β/α)7-barrel succeeded by a four-helix bundle with the catalytic machinery consisting of catalytic nucleophile and proton donor (glutamic acid and aspartic acid at strands β4 and β7, respectively). The present bioinformatics study delivers a detailed sequence comparison of 1602 family GH57 sequences with the aim to highlight the uniqueness of each enzyme’s specificity and all eventual protein groups. This was achieved by creating the evolutionary tree focused on both the enzyme specificities and taxonomical origin. The substantial increase of numbers of sequences from recent comparisons done more than 5 years ago has allowed to refine the details of the sequence logos for the individual enzyme specificities. The study identifies a new evolutionary distinct group of α-galactosidase-related enzymes with until-now-undefined enzyme specificity but positioned on the evolutionary tree on a branch adjacent to α-galactosidases. The specificity of α-galactosidase is, moreover, the only one of the entire family GH57 for which there is no structural support for the proposal of the proton donor based on sequence analysis. The analysis also suggests a few so-called “like” protein groups related to some family GH57 enzyme specificities but lacking one or both catalytic residues.
Collapse
|
10
|
Reichelt R, Gindner A, Thomm M, Hausner W. Genome-wide binding analysis of the transcriptional regulator TrmBL1 in Pyrococcus furiosus. BMC Genomics 2016; 17:40. [PMID: 26747700 PMCID: PMC4706686 DOI: 10.1186/s12864-015-2360-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/28/2015] [Indexed: 01/19/2023] Open
Abstract
Background Several in vitro studies document the function of the transcriptional regulator TrmBL1 of Pyrococcus furiosus. These data indicate that the protein can act as repressor or activator and is mainly involved in transcriptional control of sugar uptake and in the switch between glycolysis and gluconeogenesis. The aim of this study was to complement the in vitro data with an in vivo analysis using ChIP-seq to explore the genome-wide binding profile of TrmBL1 under glycolytic and gluconeogenic growth conditions. Results The ChIP-seq analysis revealed under gluconeogenic growth conditions 28 TrmBL1 binding sites where the TGM is located upstream of coding regions and no binding sites under glycolytic conditions. The experimental confirmation of the binding sites using qPCR, EMSA, DNase I footprinting and in vitro transcription experiments validated the in vivo identified TrmBL1 binding sites. Furthermore, this study provides evidence that TrmBL1 is also involved in transcriptional regulation of additional cellular processes e.g. amino acid metabolism, transcriptional control or metabolic pathways. In the initial setup we were interested to include the binding analysis of TrmB, an additional member of the TrmB family, but western blot experiments and the ChIP-seq data indicated that the corresponding gene is deleted in our Pyrococcus strain. A detailed analysis of a new type strain demonstrated that a 16 kb fragment containing the trmb gene is almost completely deleted after the first re-cultivation. Conclusions The identified binding sites in the P. furiosus genome classified TrmBL1 as a more global regulator as hitherto known. Furthermore, the high resolution of the mapped binding positions enabled reliable predictions, if TrmBL1 activates (binding site upstream of the promoter) or represses transcription (binding site downstream) of the corresponding genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2360-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Reichelt
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany.
| | - Antonia Gindner
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany.
| | - Michael Thomm
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany.
| | - Winfried Hausner
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany.
| |
Collapse
|
11
|
Function and Structure Studies of GH Family 31 and 97 α-Glycosidases. Biosci Biotechnol Biochem 2014; 75:2269-77. [DOI: 10.1271/bbb.110610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Janeček Š, Svensson B, MacGregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 2014; 71:1149-70. [PMID: 23807207 PMCID: PMC11114072 DOI: 10.1007/s00018-013-1388-z] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases classified in family GH13 employ a reaction mechanism giving retention of configuration, share 4-7 conserved sequence regions (CSRs) and catalytic machinery, and adopt the (β/α)8-barrel catalytic domain. Although the family GH57 α-amylases also employ the retaining reaction mechanism, they possess their own five CSRs and catalytic machinery, and adopt a (β/α)7-barrel fold. These family GH57 attributes are likely to be characteristic of α-amylases from the family GH119, too. With regard to family GH126, confirmation of the unambiguous presence of the α-amylase specificity may need more biochemical investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia,
| | | | | |
Collapse
|
13
|
Jeon EJ, Jung JH, Seo DH, Jung DH, Holden JF, Park CS. Bioinformatic and biochemical analysis of a novel maltose-forming α-amylase of the GH57 family in the hyperthermophilic archaeon Thermococcus sp. CL1. Enzyme Microb Technol 2014; 60:9-15. [PMID: 24835094 DOI: 10.1016/j.enzmictec.2014.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 11/15/2022]
Abstract
Maltose-forming α-amylase is a glycoside hydrolase family 57 (GH57) member that is unique because it displays dual hydrolysis activity toward α-1,4- and α-1,6-glycosidic linkages and only recognizes maltose. This enzyme was previously identified only in Pyrococcus sp. ST04 (PSMA); however, we recently found two homologs subgroups in Thermococcus species. One subgroup (subgroup A) showed relatively high amino acid sequence similarity to PSMA (>71%), while the other subgroup (subgroup B) showed lower homology with PSMA (<59%). To characterize the subgroup B maltose-forming α-amylase from Thermococcus species (TCMA), we cloned the CL1_0868 gene from Thermococcus sp. CL1 and then successfully expressed the gene in Escherichia coli. Although TCMA has a different oligomeric state relative to PSMA, TCMA showed similar substrate specificity. However, TCMA was shown to hydrolyze maltooligosaccharides more easily than PSMA. Also, TCMA displayed different optimum conditions depending on the glycosidic linkage of the substrate. TCMA had the highest activity at 85°C and at pH 5.0 for α-1,4-glycosidic linkage hydrolysis whereas it showed its maximal activity to cleave α-1,6-glycosidic linkages at 98°C and pH 6.0.
Collapse
Affiliation(s)
- Eun-Jung Jeon
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Jong-Hyun Jung
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 446-701, Republic of Korea; Research Division for Biotechnology, Korea Atomic Energy Research Institute (KAERI), Jeongeup 580-185, Republic of Korea
| | - Dong-Ho Seo
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Dong-Hyun Jung
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Cheon-Seok Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 446-701, Republic of Korea.
| |
Collapse
|
14
|
Identification and characterization of an archaeal kojibiose catabolic pathway in the hyperthermophilic Pyrococcus sp. strain ST04. J Bacteriol 2014; 196:1122-31. [PMID: 24391053 DOI: 10.1128/jb.01222-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A unique gene cluster responsible for kojibiose utilization was identified in the genome of Pyrococcus sp. strain ST04. The proteins it encodes hydrolyze kojibiose, a disaccharide product of glucose caramelization, and form glucose-6-phosphate (G6P) in two steps. Heterologous expression of the kojibiose-related enzymes in Escherichia coli revealed that two genes, Py04_1502 and Py04_1503, encode kojibiose phosphorylase (designated PsKP, for Pyrococcus sp. strain ST04 kojibiose phosphorylase) and β-phosphoglucomutase (PsPGM), respectively. Enzymatic assays show that PsKP hydrolyzes kojibiose to glucose and β-glucose-1-phosphate (β-G1P). The Km values for kojibiose and phosphate were determined to be 2.53 ± 0.21 mM and 1.34 ± 0.04 mM, respectively. PsPGM then converts β-G1P into G6P in the presence of 6 mM MgCl2. Conversion activity from β-G1P to G6P was 46.81 ± 3.66 U/mg, and reverse conversion activity from G6P to β-G1P was 3.51 ± 0.13 U/mg. The proteins are highly thermostable, with optimal temperatures of 90°C for PsKP and 95°C for PsPGM. These results indicate that Pyrococcus sp. strain ST04 converts kojibiose into G6P, a substrate of the glycolytic pathway. This is the first report of a disaccharide utilization pathway via phosphorolysis in hyperthermophilic archaea.
Collapse
|
15
|
Schmid G, Mathiesen G, Arntzen MO, Eijsink VGH, Thomm M. Experimental and computational analysis of the secretome of the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 2013; 17:921-30. [PMID: 23979514 PMCID: PMC3824201 DOI: 10.1007/s00792-013-0574-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 07/30/2013] [Indexed: 11/24/2022]
Abstract
Although Pyrococcus furiosus is one of the best studied hyperthermophilic archaea, to date no experimental investigation of the extent of protein secretion has been performed. We describe experimental verification of the extracellular proteome of P. furiosus grown on starch. LC-MS/MS-based analysis of culture supernatants led to the identification of 58 proteins. Fifteen of these proteins had a putative N-terminal signal peptide (SP), tagging the proteins for translocation across the membrane. The detected proteins with predicted SPs and known function were almost exclusively involved in important extracellular functions, like substrate degradation or transport. Most of the 43 proteins without predicted N-terminal signal sequences are known to have intracellular functions, mainly (70 %) related to intracellular metabolism. In silico analyses indicated that the genome of P. furiosus encodes 145 proteins with N-terminal SPs, including 21 putative lipoproteins and 17 with a class III peptide. From these we identified 15 (10 %; 7 SPI, 3 SPIII and 5 lipoproteins) under the specific growth conditions of this study. The putative lipoprotein signal peptides have a unique sequence motif, distinct from the motifs in bacteria and other archaeal orders.
Collapse
Affiliation(s)
- G. Schmid
- Hyperthermics Regensburg GmbH, Josef-Engert-Straße 9, 93053 Regensburg, Germany
| | - G. Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - M. O. Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
- Biotechnology Centre of Oslo, University of Oslo, 0317 Oslo, Norway
| | - V. G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - M. Thomm
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
- Hyperthermics Regensburg GmbH, Josef-Engert-Straße 9, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Blesák K, Janeček Š. Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57. MICROBIOLOGY-SGM 2013; 159:2584-2593. [PMID: 24109595 DOI: 10.1099/mic.0.071084-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glycoside hydrolase (GH) family 57 consists of more than 900 proteins from Archaea (roughly one-quarter) and Bacteria (roughly three-quarters), mostly from thermophiles. Fewer than 20 GH57 members have already been biochemically characterized as real, (almost exclusively) amylolytic enzymes. In addition to a recently described dual-specificity amylopullulanase-cyclomaltodextrinase, five enzyme specificities have been well established in the family--α-amylase, amylopullulanase, branching enzyme, 4-α-glucanotransferase and α-galactosidase--plus a group of the so-called α-amylase-like homologues probably without the enzyme activity. A (β/α)7-barrel succeeded by a bundle of a few α-helices forming the catalytic domain, and five conserved sequence regions (CSRs), are the main characteristics of family GH57. The main goal of the present bioinformatics study was to describe two novel groups within family GH57 that represent potential non-specified amylases (127 sequences mostly from Bacteria) and maltogenic amylases (12 sequences from Archaea). These were collected from sequence databases based on an indication of their biochemical characterization. Although both the non-specified amylases and the maltogenic amylases share the in silico identified catalytic machinery and predicted fold with the experimentally determined GH57 members, the two novel groups may define new GH57 subfamilies. They are distinguishable from the other, previously recognized, subfamilies by specific sequence features present especially in their CSRs (the so-called sequence fingerprints), also reflecting their own evolutionary histories.
Collapse
Affiliation(s)
- Karol Blesák
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia
| |
Collapse
|
17
|
Maltose-forming α-amylase from the hyperthermophilic archaeon Pyrococcus sp. ST04. Appl Microbiol Biotechnol 2013; 98:2121-31. [PMID: 23884203 DOI: 10.1007/s00253-013-5068-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
The deduced amino acid sequence from a gene of the hyperthermophilic archaeon Pyrococcus sp. ST04 (Py04_0872) contained a conserved glycoside hydrolase family 57 (GH57) motif, but showed <13% sequence identity with other known Pyrococcus GH57 enzymes, such as 4-α-glucanotransferase (EC 2.4.1.25), amylopullulanase (EC 3.2.1.41), and branching enzyme (EC 2.4.1.18). This gene was cloned and expressed in Escherichia coli, and the recombinant product (Pyrococcus sp. ST04 maltose-forming α-amylase, PSMA) was a novel 70-kDa maltose-forming α-amylase. PSMA only recognized maltose (G2) units with α-1,4 and α-1,6 linkages in polysaccharides (e.g., starch, amylopectin, and glycogen) and hydrolyzed pullulan very poorly. G2 was the primary end product of hydrolysis. Branched cyclodextrin (CD) was only hydrolyzed along its branched maltooligosaccharides. 6-O-glucosyl-β-cyclodextrin (G1-β-CD) and β-cyclodextrin (β-CD) were resistant to PSMA suggesting that PSMA is an exo-type glucan hydrolase with α-1,4- and α-1,6-glucan hydrolytic activities. The half-saturation value (Km) for the α-1,4 linkage of maltotriose (G3) was 8.4 mM while that of the α-1,6 linkage of 6-O-maltosyl-β-cyclodextrin (G2-β-CD) was 0.3 mM. The kcat values were 381.0 min(-1) for G3 and 1,545.0 min(-1) for G2-β-CD. The enzyme was inhibited competitively by the reaction product G2, and the Ki constant was 0.7 mM. PSMA bridges the gap between amylases that hydrolyze larger maltodextrins and α-glucosidase that feeds G2 into glycolysis by hydrolyzing smaller glucans into G2 units.
Collapse
|
18
|
Janeček S, Kuchtová A. In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the α-amylase family GH57. FEBS Lett 2012; 586:3360-6. [PMID: 22819817 DOI: 10.1016/j.febslet.2012.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 06/30/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
Abstract
The glycoside hydrolase family 119 (GH119) contains the α-amylase from Bacillus circulans and five other hypothetical proteins. Until now, nothing has been reported on the catalytic residues and catalytic-domain fold of GH119. Based on a detailed in silico analysis involving sequence comparison in combination with BLAST searches and structural modelling, an unambiguous relationship was revealed between the families GH119 and GH57. This includes sharing the catalytic residues, i.e. Glu231 and Asp373 as catalytic nucleophile and proton donor, respectively, in the predicted catalytic (β/α)(7)-barrel domain of GH119 B. circulans α-amylase. The GH57 and GH119 families may thus define a new CAZy clan.
Collapse
Affiliation(s)
- Stefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | |
Collapse
|
19
|
Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. Extremophiles 2012; 16:497-506. [PMID: 22527043 DOI: 10.1007/s00792-012-0449-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
The glycoside hydrolase family 57 (GH57) contains five well-established enzyme specificities: α-amylase, amylopullulanase, branching enzyme, 4-α-glucanotransferase and α-galactosidase. Around 700 GH57 members originate from Bacteria and Archaea, a substantial number being produced by thermophiles. An intriguing feature of family GH57 is that only slightly more than 2 % of its members (i.e., less than 20 enzymes) have already been biochemically characterized. The main goal of the present bioinformatics study was to retrieve from databases, and analyze in detail, sequences having clear features of the five GH57 enzyme specificities mentioned above. Of the 367 GH57 sequences, 56 were evaluated as α-amylases, 99 as amylopullulanases, 158 as branching enzymes, 46 as 4-α-glucanotransferases and 8 as α-galactosidases. Based on the analysis of collected sequences, sequence logos were created for each specificity and unique sequence features were identified within the logos. These features were proposed to define the so-called sequence fingerprints of GH57 enzyme specificities. Domain arrangements characteristic of the individual enzyme specificities as well as evolutionary relationships within the family GH57 are also discussed. The results of this study could find use in rational protein design of family GH57 amylolytic enzymes and also in the possibility of assigning a GH57 specificity to a hypothetical GH57 member prior to its biochemical characterization.
Collapse
|
20
|
Bagos PG, Tsirigos KD, Plessas SK, Liakopoulos TD, Hamodrakas SJ. Prediction of signal peptides in archaea. Protein Eng Des Sel 2008; 22:27-35. [PMID: 18988691 DOI: 10.1093/protein/gzn064] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Computational prediction of signal peptides (SPs) and their cleavage sites is of great importance in computational biology; however, currently there is no available method capable of predicting reliably the SPs of archaea, due to the limited amount of experimentally verified proteins with SPs. We performed an extensive literature search in order to identify archaeal proteins having experimentally verified SP and managed to find 69 such proteins, the largest number ever reported. A detailed analysis of these sequences revealed some unique features of the SPs of archaea, such as the unique amino acid composition of the hydrophobic region with a higher than expected occurrence of isoleucine, and a cleavage site resembling more the sequences of gram-positives with almost equal amounts of alanine and valine at the position-3 before the cleavage site and a dominant alanine at position-1, followed in abundance by serine and glycine. Using these proteins as a training set, we trained a hidden Markov model method that predicts the presence of the SPs and their cleavage sites and also discriminates such proteins from cytoplasmic and transmembrane ones. The method performs satisfactorily, yielding a 35-fold cross-validation procedure, a sensitivity of 100% and specificity 98.41% with the Matthews' correlation coefficient being equal to 0.964. This particular method is currently the only available method for the prediction of secretory SPs in archaea, and performs consistently and significantly better compared with other available predictors that were trained on sequences of eukaryotic or bacterial origin. Searching 48 completely sequenced archaeal genomes we identified 9437 putative SPs. The method, PRED-SIGNAL, and the results are freely available for academic users at http://bioinformatics.biol.uoa.gr/PRED-SIGNAL/ and we anticipate that it will be a valuable tool for the computational analysis of archaeal genomes.
Collapse
Affiliation(s)
- P G Bagos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15701, Greece.
| | | | | | | | | |
Collapse
|