1
|
Hashizume-Takizawa T, Ando T, Urakawa A, Aoki K, Senpuku H. Cell wall glycosyltransferase of Streptococcus mutans impacts its dissemination to murine organs. Infect Immun 2025; 93:e0009724. [PMID: 39976456 PMCID: PMC11895454 DOI: 10.1128/iai.00097-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/22/2025] [Indexed: 03/12/2025] Open
Abstract
Streptococcus mutans, a cariogenic bacterium in humans, is associated with systemic disorders. Its cariogenic factors include glucosyltransferases (GTFs) and the glycosyltransferase rhamnose-glucose polysaccharide I (RgpI), which is involved in cell wall synthesis. However, the potential roles of these enzymes in systemic disorders remain unclear. We constructed a luciferase-tagged S. mutans UA159 mutant strain that lacked rgpI to explore the involvement of this enzyme in the systemic pathogenicity of S. mutans. We also employed the luciferase-tagged S. mutans UA159 variant, which exhibited reduced GTF production and therefore had a low glucan synthesis ability. We intravenously inoculated these luciferase-tagged mutants and parent strains into 12-week-old male BALB/c mice to evaluate their distribution to organs. Strong luminescence was noted in the spleen and kidneys, indicating that S. mutans was disseminated to these organs. Several organs collected from mice inoculated with the luciferase-tagged parent strain emitted a signal, and inflammatory cytokine production was detected in the blood. The luminescence intensity was lower in the kidneys of mice challenged with the mutant strain, which has a low glucan synthesis ability. Conversely, challenge with the rgpI deletion mutant strain resulted in the lowest number of luminescent organs, with a lower intensity and attenuated inflammation. Furthermore, all the mice inoculated with the rgpI deletion mutant strain survived, whereas not all the mice inoculated with the parent strain survived. Collectively, these results suggest that RgpI is involved in the systemic pathogenicity of S. mutans UA159.
Collapse
Affiliation(s)
- Tomomi Hashizume-Takizawa
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Taiki Ando
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayaka Urakawa
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedenobu Senpuku
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
2
|
Uruén C, García C, Fraile L, Tommassen J, Arenas J. How Streptococcus suis escapes antibiotic treatments. Vet Res 2022; 53:91. [DOI: 10.1186/s13567-022-01111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractStreptococcus suis is a zoonotic agent that causes sepsis and meningitis in pigs and humans. S. suis infections are responsible for large economic losses in pig production. The lack of effective vaccines to prevent the disease has promoted the extensive use of antibiotics worldwide. This has been followed by the emergence of resistance against different classes of antibiotics. The rates of resistance to tetracyclines, lincosamides, and macrolides are extremely high, and resistance has spread worldwide. The genetic origin of S. suis resistance is multiple and includes the production of target-modifying and antibiotic-inactivating enzymes and mutations in antibiotic targets. S. suis genomes contain traits of horizontal gene transfer. Many mobile genetic elements carry a variety of genes that confer resistance to antibiotics as well as genes for autonomous DNA transfer and, thus, S. suis can rapidly acquire multiresistance. In addition, S. suis forms microcolonies on host tissues, which are associations of microorganisms that generate tolerance to antibiotics through a variety of mechanisms and favor the exchange of genetic material. Thus, alternatives to currently used antibiotics are highly demanded. A deep understanding of the mechanisms by which S. suis becomes resistant or tolerant to antibiotics may help to develop novel molecules or combinations of antimicrobials to fight these infections. Meanwhile, phage therapy and vaccination are promising alternative strategies, which could alleviate disease pressure and, thereby, antibiotic use.
Collapse
|
3
|
Scannapieco FA, Cantos A. Oral inflammation and infection, and chronic medical diseases: implications for the elderly. Periodontol 2000 2018; 72:153-75. [PMID: 27501498 DOI: 10.1111/prd.12129] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 12/12/2022]
Abstract
Oral diseases, such as caries and periodontitis, not only have local effects on the dentition and on tooth-supporting tissues but also may impact a number of systemic conditions. Emerging evidence suggests that poor oral health influences the initiation and/or progression of diseases such as atherosclerosis (with sequelae including myocardial infarction and stoke), diabetes mellitus and neurodegenerative diseases (such as Alzheimer's disease, rheumatoid arthritis and others). Aspiration of oropharyngeal (including periodontal) bacteria causes pneumonia, especially in hospitalized patients and the elderly, and may influence the course of chronic obstructive pulmonary disease. This article addresses several pertinent aspects related to the medical implications of periodontal disease in the elderly. There is moderate evidence that improved oral hygiene may help prevent aspiration pneumonia in high-risk patients. For other medical conditions, because of the absence of well-designed randomized clinical trials in elderly patients, no specific guidance can be provided regarding oral hygiene or periodontal interventions that enhance the medical management of older adults.
Collapse
|
4
|
Syed M, Chopra R, Shrivastava V, Sachdev V. Comparative evaluation of 0.2% Chlorhexidine Mouthwash, Xylitol Chewing Gum, and Combination of 0.2% Chlorhexidine Mouthwash and Xylitol Chewing Gum on Salivary Streptococcus mutans and Biofilm Levels in 8- to 12-Year-Old Children. Int J Clin Pediatr Dent 2016; 9:313-319. [PMID: 28127162 PMCID: PMC5233697 DOI: 10.5005/jp-journals-10005-1384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/26/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To assess the effect of combining 0.2% chlorhexidine (CHX) mouthwash with xylitol (XYL) chewing gum on Streptococcus mutans and biofilm levels among 8- to 12-year-old children. MATERIALS AND METHODS Sixty children aged 8 to 12 years were selected with moderate and high salivary S. mutans levels. They were divided into three groups of 20 children each: (1) XYL group where the subjects chewed XYL twice daily; (2) CHX where rinsing was done twice daily; and (3) combination of XYL and CHX group (XYL+CHX) where both the agents were used once daily. The S. mutans colony-forming units (CFUs) were counted by using the mitis salivarius agar plate at the beginning of the study and at 15 days, 1, 2, and 6 months from the start of the study. RESULTS The XYL+CHX group showed the maximum reduction in both the biofilm and S. mutans scores throughout the study period. CONCLUSION The XYL+CHX combination reduced both the biofilm and S. mutans score significantly better than either XYL chewing gums or CHX mouthwash used alone. HOW TO CITE THIS ARTICLE Syed M, Chopra R, Shrivastava V, Sachdev V. Comparative evaluation of 0.2% Chlorhexidine Mouthwash, Xylitol Chewing Gum, and Combination of 0.2% Chlorhexidine Mouthwash and Xylitol Chewing Gum on Salivary Streptococcus mutans and Biofilm Levels in 8- to 12-Year-Old Children. Int J Clin Pediatr Dent 2016;9(4):313-319.
Collapse
Affiliation(s)
- Meena Syed
- Postgraduate Student, Department of Pedodontics and Preventive Dentistry, ITS Centre for Dental Studies and Research, Ghaziabad, Uttar Pradesh, India
| | - Radhika Chopra
- Reader, Department of Pedodontics, ITS Centre for Dental Studies and Research, Ghaziabad, Uttar Pradesh, India
| | - Vandana Shrivastava
- Associate Professor, Department of Microbiology, ITS Centre for Dental Studies and Research, Ghaziabad, Uttar Pradesh, India
| | - Vinod Sachdev
- Professor,Department of Pedodontics, ITS Centre for Dental Studies and Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
5
|
Churton NWV, Misra RV, Howlin RP, Allan RN, Jefferies J, Faust SN, Gharbia SE, Edwards RJ, Clarke SC, Webb JS. Parallel Evolution in Streptococcus pneumoniae Biofilms. Genome Biol Evol 2016; 8:1316-26. [PMID: 27190203 PMCID: PMC4898793 DOI: 10.1093/gbe/evw072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus pneumoniae is a commensal human pathogen and the causative agent of various invasive and noninvasive diseases. Carriage of the pneumococcus in the nasopharynx is thought to be mediated by biofilm formation, an environment where isogenic populations frequently give rise to morphological colony variants, including small colony variant (SCV) phenotypes. We employed metabolic characterization and whole-genome sequencing of biofilm-derived S. pneumoniae serotype 22F pneumococcal SCVs to investigate diversification during biofilm formation. Phenotypic profiling revealed that SCVs exhibit reduced growth rates, reduced capsule expression, altered metabolic profiles, and increased biofilm formation compared to the ancestral strain. Whole-genome sequencing of 12 SCVs from independent biofilm experiments revealed that all SCVs studied had mutations within the DNA-directed RNA polymerase delta subunit (RpoE). Mutations included four large-scale deletions ranging from 51 to 264 bp, one insertion resulting in a coding frameshift, and seven nonsense single-nucleotide substitutions that result in a truncated gene product. This work links mutations in the rpoE gene to SCV formation and enhanced biofilm development in S. pneumoniae and therefore may have important implications for colonization, carriage, and persistence of the organism. Furthermore, recurrent mutation of the pneumococcal rpoE gene presents an unprecedented level of parallel evolution in pneumococcal biofilm development.
Collapse
Affiliation(s)
- Nicholas W V Churton
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom Institute for Life Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Raju V Misra
- Genomics Research Unit, Microbiology Services, Public Health England, Colindale, United Kingdom
| | - Robert P Howlin
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom Institute for Life Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Raymond N Allan
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom Institute for Life Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Johanna Jefferies
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom Institute for Life Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Saul N Faust
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Saheer E Gharbia
- Genomics Research Unit, Microbiology Services, Public Health England, Colindale, United Kingdom
| | - Richard J Edwards
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom Institute for Life Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stuart C Clarke
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom Institute for Life Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom Public Health England, Southampton, United Kingdom
| | - Jeremy S Webb
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom Institute for Life Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom
| |
Collapse
|
6
|
Ionescu A, Brambilla E, Travan A, Marsich E, Donati I, Gobbi P, Turco G, Di Lenarda R, Cadenaro M, Paoletti S, Breschi L. Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro. J Dent 2015; 43:1483-90. [DOI: 10.1016/j.jdent.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022] Open
|
7
|
Brambilla E, Ionescu AC, Cazzaniga G, Ottobelli M, Samaranayake LP. Levorotatory carbohydrates and xylitol subdueStreptococcus mutansandCandida albicansadhesion and biofilm formation. J Basic Microbiol 2015; 56:480-92. [DOI: 10.1002/jobm.201500329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 09/13/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Eugenio Brambilla
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute; University of Milan; Milan Italy
| | - Andrei C. Ionescu
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute; University of Milan; Milan Italy
| | - Gloria Cazzaniga
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute; University of Milan; Milan Italy
| | - Marco Ottobelli
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute; University of Milan; Milan Italy
| | | |
Collapse
|
8
|
Olsen I, Tribble GD, Fiehn NE, Wang BY. Bacterial sex in dental plaque. J Oral Microbiol 2013; 5:20736. [PMID: 23741559 PMCID: PMC3672468 DOI: 10.3402/jom.v5i0.20736] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 11/14/2022] Open
Abstract
Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.
Collapse
Affiliation(s)
- Ingar Olsen
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Gena D. Tribble
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nils-Erik Fiehn
- Faculty of Health Sciences, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bing-Yan Wang
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
9
|
Five questions about Streptococcus mutans: theoretical study of its transmission and colonisation. Arch Oral Biol 2012; 57:1498-511. [PMID: 22541733 DOI: 10.1016/j.archoralbio.2012.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/01/2012] [Accepted: 03/29/2012] [Indexed: 11/23/2022]
Abstract
PURPOSE This theoretical study aimed to identify the decisive (and controllable) factors involved in Streptococcus mutans (Sm) infection through addressing questions about (i) the time and prevalence pattern (including the raison d'etre of the discrete period for the infection or WI) of initial Sm colonisation and (ii) the infant's selection of bacterial types and their diversity, which are not yet definitely answered by empirical works. METHOD A model of Sm infection (within-host type) was developed. For questions (i): using the basic model, stochastic simulation was performed to reproduce longitudinal observations of the initial colonisation time. A symmetrical or right-skewed gamma distribution was assumed for the maximum colonisable area (K(max)) and transmission rate (mx). Additionally, 3 or 4 developmental modes of colonisable area [K(t)] were assigned based on the K(max) value. For (ii): by extending the basic model to the two-bacterial type model, intraspecific competition analysis focusing on the differences in mx (received by the infancy) and colonisation ability (θD) was performed. RESULTS The basic model simulation showed that mx and K(t) played a pivotal role in determining the individual time of initial colonisation and their variations among infants in forming its prevalence patterns (with or without WI). The competition model simulation showed that higher mx could be more advantageous in competitive colonisation than higher θD under repeated invasions. Accordingly, it played a decisive role in infant's selection of initially, persistently and transiently colonising bacterial types, and thus in their diversity. CONCLUSIONS (i) The mx is the primary and controllable (risk) factor that extensively affects various aspects of the Sm infection process. (ii) Also, the growing carrying capacity, i.e., K(t) is another important factor when considering how to effectively delay the onset of the colonisation. (iii) Thus, currently, the most feasible and effective control measure for the infection should be microbiological interventions in the primary host with concurrent oral hygiene and dietary control in the exposed child.
Collapse
|
10
|
van der Veen S, Abee T. Generation of variants in Listeria monocytogenes continuous-flow biofilms is dependent on radical-induced DNA damage and RecA-mediated repair. PLoS One 2011; 6:e28590. [PMID: 22163039 PMCID: PMC3230620 DOI: 10.1371/journal.pone.0028590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/11/2011] [Indexed: 12/31/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes is a Gram-positive microaerophilic facultative anaerobic rod and the causative agent of the devastating disease listeriosis. L. monocytogenes is able to form biofilms in the food processing environment. Since biofilms are generally hard to eradicate, they can function as a source for food contamination. In several occasions biofilms have been identified as a source for genetic variability, which potentially can result in adaptation of strains to food processing or clinical conditions. However, nothing is known about mutagenesis in L. monocytogenes biofilms and the possible mechanisms involved. In this study, we showed that the generation of genetic variants was specifically induced in continuous-flow biofilms of L. monocytogenes, but not in static biofilms. Using specific dyes and radical inhibitors, we showed that the formation of superoxide and hydroxyl radicals was induced in continuous-flow biofilms, which was accompanied with in an increase in DNA damage. Promoter reporter studies showed that recA, which is an important component in DNA repair and the activator of the SOS response, is activated in continuous-flow biofilms and that activation was dependent on radical-induced DNA damage. Furthermore, continuous-flow biofilm experiments using an in-frame recA deletion mutant verified that RecA is required for induced generation of genetic variants. Therefore, we can conclude that generation of genetic variants in L. monocytogenes continuous-flow biofilms results from radical-induced DNA damage and RecA-mediated mutagenic repair of the damaged DNA.
Collapse
Affiliation(s)
- Stijn van der Veen
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Tjakko Abee
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University and Research Centre, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
11
|
Competence-dependent endogenous DNA rearrangement and uptake of extracellular DNA give a natural variant of Streptococcus mutans without biofilm formation. J Bacteriol 2011; 193:5147-54. [PMID: 21804005 DOI: 10.1128/jb.05240-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of water-insoluble glucan (WIG) enables Streptococcus mutans to survive and persist in the oral niche. WIG is produced from sucrose by glucosyltransferase encoded tandemly by the highly homologous gtfB and gtfC genes. Conversely, a single hybrid gene from the endogenous recombination of gtfB and gtfC is easily generated using RecA, resulting in S. mutans UA159 WIG- (rate of ∼1.0×10(-3)). The pneumococcus recA gene is regulated as a late competence gene. comX gene mutations did not lead to the appearance of WIG- cells. The biofilm collected from the flow cell had more WIG- cells than among the planktonic cells. Among the planktonic cells, WIG- cells appeared after 16 h and increased ∼10-fold after 32 h of cultivation, suggesting an increase in planktonic WIG- cells after longer culture. The strain may be derived from the biofilm environment. In coculture with donor WIG+ and recipient WIG- cells, the recipient cells reverted to WIG+ and acquired an intact gtfBC region from the environment, indicating that the uptake of extracellular DNA resulted in the phenotypic change. Here we demonstrate that endogenous DNA rearrangement and uptake of extracellular DNA generate WIG- cells and that both are induced by the same signal transducer, the com system. Our findings may help in understanding how S. mutans can adapt to the oral environment and may explain the evolution of S. mutans.
Collapse
|
12
|
Yoo S, Murata RM, Duarte S. Antimicrobial traits of tea- and cranberry-derived polyphenols against Streptococcus mutans. Caries Res 2011; 45:327-35. [PMID: 21720161 PMCID: PMC3130978 DOI: 10.1159/000329181] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 05/07/2011] [Indexed: 11/26/2022] Open
Abstract
There are over 750 species of bacteria that inhabit the human oral cavity, but only a small fraction of those are attributed to causing plaque-related diseases such as caries. Streptococcus mutans is accepted as the main cariogenic agent and there is substantial knowledge regarding the specific virulence factors that render the organism a pathogen. There has been rising interest in alternative, target-specific treatment options as opposed to nonspecific mechanical plaque removal or application of broad-spectrum antibacterials that are currently in use. The impact of diet on oral health is undeniable, and this is directly observable in populations that consume high quantities of polyphenol-rich foods or beverages. Such populations have low caries incidence and better overall oral health. Camellia sinensis, the plant from which various forms of tea are derived, and Vaccinium macrocarpon (American cranberry fruit) have received notable attention both for their prevalence in the human diet as well as for their unique composition of polyphenols. The biologically active constituents of these plants have demonstrated potent enzyme-inhibitory properties without being bactericidal, a key quality that is important in developing therapies that will not cause microorganisms to develop resistance. The aim of this review is to consider studies that have investigated the feasibility of tea, cranberry, and other select plant derivatives as a potential basis for alternative therapeutic agents against Streptococcus mutans and to evaluate their current and future clinical relevance.
Collapse
Affiliation(s)
- S Yoo
- Department of Basic Sciences, College of Dentistry, New York University, New York, NY 10010, USA
| | | | | |
Collapse
|
13
|
Bacterial SOS response: a food safety perspective. Curr Opin Biotechnol 2011; 22:136-42. [DOI: 10.1016/j.copbio.2010.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/17/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022]
|
14
|
Paula VAC, Modesto A, Santos KRN, Gleiser R. Antimicrobial effects of the combination of chlorhexidine and xylitol. Br Dent J 2010; 209:E19. [DOI: 10.1038/sj.bdj.2010.887] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2009] [Indexed: 11/09/2022]
|
15
|
Plakunov VK, Strelkova EA, Zhurina MV. Persistence and adaptive mutagenesis in biofilms. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710040028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
|