1
|
Li D, Liang H, Yi R, Xiao Q, Zhu Y, Chang Q, Zhou L, Liu B, He J, Liu T, Fan Z, Cheng W, Wang W, Zhang Y, Pan P. Clinical characteristics and prognosis of patient with leptospirosis: A multicenter retrospective analysis in south of China. Front Cell Infect Microbiol 2022; 12:1014530. [PMID: 36325463 PMCID: PMC9618720 DOI: 10.3389/fcimb.2022.1014530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023] Open
Abstract
Purpose Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of the genus Leptospira. However, there is currently no consensual definition or diagnostic criteria for severe and different forms of leptospirosis. Therefore, more insight on clinical manifestations, risk factors, and outcomes of leptospirosis is warranted. The identification of leptospirosis with distinct clinical manifestations and prognosis in our population. Methods Multiple correspondence analysis and hierarchical classification on principal components were presented to identify different clinical types of leptospirosis. The outcomes were clinical phenotypes, laboratory and imaging findings, and prognosis. Results The 95 enrolled patients had median values of 54.0 years (39.0-65.0) for age, 9.0 (7.0-14.0) for total hospital stay lengths, of whom 86.3% was male and 40.0% was transferred to ICU. Three clinical types were distinguished: mild leptospirosis (n=43, 45.3%) with less organ dysfunction and shorter hospital stays; respiratory leptospirosis (n=28, 29.5%) with hemoptysis, and respiratory and circulatory failure; and hepato-renal leptospirosis (n=24, 25.3%) with worst liver and kidney dysfunction. Total hospital mortality was 15.8% and was associated with dyspnea and high levels of neutrophil counts. Conclusions The identification of leptospirosis with distinct clinical manifestations and prognosis in our population may assist clinicians to distinguish leptospirosis-like disease. Moreover, dyspnea and neutrophil count were found to be independent risk factors for severe leptospirosis progression.
Collapse
Affiliation(s)
- Dianwu Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Huaying Liang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Rong Yi
- Department of Pulmonary and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, China
| | - Qian Xiao
- Department of Anaesthesiology, Hunan Provincial People’s Hospital, Changsha, China
| | - Yiqun Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qinyu Chang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Lihua Zhou
- Department of Respiratory Medicine, Changsha Central Hospital, Changsha, China
| | - Bin Liu
- Department of Emergency, Xiangtan Central Hospital, Xiangtan, China
| | - Junjun He
- Department of General Surgery, Shaoyang Central Hospital, Shaoyang, China
| | - Tianxing Liu
- Department of Orthopaedic Surgery, Yongzhou Central Hospital, Yongzhou, China
| | - Zhijun Fan
- Department of Cardiothoracic Surgery, Liuyang People’s Hospital, Liuyang, China
| | - Wei Cheng
- Department of Respiratory, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weizhong Wang
- Department of Respiratory, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Pinhua Pan, ; Yan Zhang,
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Pinhua Pan, ; Yan Zhang,
| |
Collapse
|
2
|
Lu J, Hu J, Yu S, Li L. Next Generation Sequencing for Diagnosis of Leptospirosis Combined With Multiple Organ Failure: A Case Report and Literature Review. Front Med (Lausanne) 2022; 8:756592. [PMID: 35145972 PMCID: PMC8821090 DOI: 10.3389/fmed.2021.756592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction Leptospirosis poses a major threat to human life. The disease spectrum ranges from a nearly undetectable presentation to severe multi-organ dysfunction and death. Leptospirosis is difficult to diagnose by traditional antibody and culture tests. We here present a case of multiple organ failure associated with leptospirosis. Material and Methods A 64-year-old woman presented with fatigue and arthralgia, which developed rapidly into multiple organ injuries, and she eventually died of cerebral hemorrhage. Serum antibody test and cultures of blood, sputum, urine, and feces samples were all negative. The patient was diagnosed with leptospirosis by the next-generation sequencing (NGS). Conclusion We conclude that leptospirosis is a neglected zoonosis caused by pathogenic Leptospira species. New techniques such as NGS are highlighted for early diagnosis. Surveillance for pathogens during diagnosis can provide guidance for clinical treatment and improves prognosis.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Intensive Care Unit, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shanshan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Lanjuan Li
| |
Collapse
|
3
|
Comparative genomic identification and characterization of npcRNA homologs in Proteus vulgaris. J Biosci 2021. [DOI: 10.1007/s12038-021-00230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Gaultney RA, Vincent AT, Lorioux C, Coppée JY, Sismeiro O, Varet H, Legendre R, Cockram CA, Veyrier F, Picardeau M. 4-Methylcytosine DNA modification is critical for global epigenetic regulation and virulence in the human pathogen Leptospira interrogans. Nucleic Acids Res 2020; 48:12102-12115. [PMID: 33301041 PMCID: PMC7708080 DOI: 10.1093/nar/gkaa966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
In bacteria, DNA methylation can be facilitated by 'orphan' DNA methyltransferases lacking cognate restriction endonucleases, but whether and how these enzymes control key cellular processes are poorly understood. The effects of a specific modification, 4-methylcytosine (4mC), are even less clear, as this epigenetic marker is unique to bacteria and archaea, whereas the bulk of epigenetic research is currently performed on eukaryotes. Here, we characterize a 4mC methyltransferase from the understudied pathogen Leptospira spp. Inactivating this enzyme resulted in complete abrogation of CTAG motif methylation, leading to genome-wide dysregulation of gene expression. Mutants exhibited growth defects, decreased adhesion to host cells, higher susceptibility to LPS-targeting antibiotics, and, importantly, were no longer virulent in an acute infection model. Further investigation resulted in the discovery of at least one gene, that of an ECF sigma factor, whose transcription was altered in the methylase mutant and, subsequently, by mutation of the CTAG motifs in the promoter of the gene. The genes that comprise the regulon of this sigma factor were, accordingly, dysregulated in the methylase mutant and in a strain overexpressing the sigma factor. Our results highlight the importance of 4mC in Leptospira physiology, and suggest the same of other understudied species.
Collapse
Affiliation(s)
| | - Antony T Vincent
- Bacterial Symbionts Evolution, INRS-Centre Armand-Frappier, Laval, Quebec, Canada
| | - Céline Lorioux
- Unité Biologie des Spirochètes, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | | | - Frédéric J Veyrier
- Bacterial Symbionts Evolution, INRS-Centre Armand-Frappier, Laval, Quebec, Canada
| | | |
Collapse
|
5
|
Kędzierska-Mieszkowska S, Potrykus K, Arent Z, Krajewska J. Identification of σ E-Dependent Promoter Upstream of clpB from the Pathogenic Spirochaete Leptospira interrogans by Applying an E. coli Two-Plasmid System. Int J Mol Sci 2019; 20:ijms20246325. [PMID: 31847479 PMCID: PMC6941012 DOI: 10.3390/ijms20246325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
There is limited information on gene expression in the pathogenic spirochaete Leptospira interrogans and genetic mechanisms controlling its virulence. Transcription is the first step in gene expression that is often determined by environmental effects, including infection-induced stresses. Alterations in the environment result in significant changes in the transcription of many genes, allowing effective adaptation of Leptospira to mammalian hosts. Thus, promoter and transcriptional start site identification are crucial for determining gene expression regulation and for the understanding of genetic regulatory mechanisms existing in Leptospira. Here, we characterized the promoter region of the L. interrogans clpB gene (clpBLi) encoding an AAA+ molecular chaperone ClpB essential for the survival of this spirochaete under thermal and oxidative stresses, and also during infection of the host. Primer extension analysis demonstrated that transcription of clpB in L. interrogans initiates at a cytidine located 41 bp upstream of the ATG initiation codon, and, to a lesser extent, at an adenine located 2 bp downstream of the identified site. Transcription of both transcripts was heat-inducible. Determination of clpBLi transcription start site, combined with promoter transcriptional activity assays using a modified two-plasmid system in E. coli, revealed that clpBLi transcription is controlled by the ECF σE factor. Of the ten L. interrogans ECF σ factors, the factor encoded by LIC_12757 (LA0876) is most likely to be the key regulator of clpB gene expression in Leptospira cells, especially under thermal stress. Furthermore, clpB expression may be mediated by ppGpp in Leptospira.
Collapse
Affiliation(s)
- Sabina Kędzierska-Mieszkowska
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, 80-308 Gdańsk, Poland;
- Correspondence: ; Tel./Fax: +48-58-523-6064
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Zbigniew Arent
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| | - Joanna Krajewska
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, 80-308 Gdańsk, Poland;
| |
Collapse
|
6
|
Hillman C, Stewart PE, Strnad M, Stone H, Starr T, Carmody A, Evans TJ, Carracoi V, Wachter J, Rosa PA. Visualization of Spirochetes by Labeling Membrane Proteins With Fluorescent Biarsenical Dyes. Front Cell Infect Microbiol 2019; 9:287. [PMID: 31482073 PMCID: PMC6710359 DOI: 10.3389/fcimb.2019.00287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/24/2019] [Indexed: 01/06/2023] Open
Abstract
Numerous methods exist for fluorescently labeling proteins either as direct fusion proteins (GFP, RFP, YFP, etc.—attached to the protein of interest) or utilizing accessory proteins to produce fluorescence (SNAP-tag, CLIP-tag), but the significant increase in size that these accompanying proteins add may hinder or impede proper protein folding, cellular localization, or oligomerization. Fluorescently labeling proteins with biarsenical dyes, like FlAsH, circumvents this issue by using a short 6-amino acid tetracysteine motif that binds the membrane-permeable dye and allows visualization of living cells. Here, we report the successful adaptation of FlAsH dye for live-cell imaging of two genera of spirochetes, Leptospira and Borrelia, by labeling inner or outer membrane proteins tagged with tetracysteine motifs. Visualization of labeled spirochetes was possible by fluorescence microscopy and flow cytometry. A subsequent increase in fluorescent signal intensity, including prolonged detection, was achieved by concatenating two copies of the 6-amino acid motif. Overall, we demonstrate several positive attributes of the biarsenical dye system in that the technique is broadly applicable across spirochete genera, the tetracysteine motif is stably retained and does not interfere with protein function throughout the B. burgdorferi infectious cycle, and the membrane-permeable nature of the dyes permits fluorescent detection of proteins in different cellular locations without the need for fixation or permeabilization. Using this method, new avenues of investigation into spirochete morphology and motility, previously inaccessible with large fluorescent proteins, can now be explored.
Collapse
Affiliation(s)
- Chadwick Hillman
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Philip E Stewart
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Martin Strnad
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Hunter Stone
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Tregei Starr
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Aaron Carmody
- Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Tyler J Evans
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Valentina Carracoi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|