1
|
Guliy OI, Evstigneeva SS. Bacteria- and Phage-Derived Proteins in Phage Infection. FRONT BIOSCI-LANDMRK 2025; 30:24478. [PMID: 40018916 DOI: 10.31083/fbl24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 03/01/2025]
Abstract
Phages have exerted severe evolutionary pressure on prokaryotes over billions of years, resulting in major rearrangements. Without every enzyme involved in the phage-bacterium interaction being examined; bacteriophages cannot be used in practical applications. Numerous studies conducted in the past few years have uncovered a huge variety of bacterial antiphage defense systems; nevertheless, the mechanisms of most of these systems are not fully understood. Understanding the interactions between bacteriophage and bacterial proteins is important for efficient host cell infection. Phage proteins involved in these bacteriophage-host interactions often arise immediately after infection. Here, we review the main groups of phage enzymes involved in the first stage of viral infection and responsible for the degradation of the bacterial membrane. These include polysaccharide depolymerases (endosialidases, endorhamnosidases, alginate lyases, and hyaluronate lyases), and peptidoglycan hydrolases (ectolysins and endolysins). Host target proteins are inhibited, activated, or functionally redirected by the phage protein. These interactions determine the phage infection of bacteria. Proteins of interest are holins, endolysins, and spanins, which are responsible for the release of progeny during the phage lytic cycle. This review describes the main bacterial and phage enzymes involved in phage infection and analyzes the therapeutic potential of bacteriophage-derived proteins.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
2
|
Maroniche GA, Puente ML, García JE, Mongiardini E, Coniglio A, Nievas S, Labarthe MM, Wisniewski-Dyé F, Rodriguez Cáceres E, Díaz-Zorita M, Cassán F. Phenogenetic profile and agronomic contribution of Azospirillum argentinense Az39 T, a reference strain for the South American inoculant industry. Microbiol Res 2024; 283:127650. [PMID: 38452553 DOI: 10.1016/j.micres.2024.127650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Azospirillum sp. is a plant growth-promoting rhizobacteria largely recognized for its potential to increase the yield of different important crops. In this work, we present a thorough genomic and phenotypic analysis of A. argentinense Az39T to provide new insights into the beneficial mechanisms of this microorganism. Phenotypic analyses revealed the following in vitro abilities: growth at 20-38 °C (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 6.8), and in the presence of 1% (w/v) NaCl; production of variable amounts of PHB as intracellular granules; nitrogen fixation under microaerophilic conditions; IAA synthesis in the presence of L-tryptophan. Through biochemical (API 20NE) and carbon utilization profiling (Biolog) assays, we proved that A. argentinense Az39T is able to use 15 substrates and metabolize 19 different carbon substrates. Lipid composition indicated a predominance of medium and long-chain saturated fatty acids. A total of 6 replicons classified as one main chromosome, three chromids, and two plasmids, according to their tRNA and core essential genes contents, were identified. Az39T genome includes genes associated with multiple plant growth-promoting (PGP) traits such as nitrogen fixation and production of auxins, cytokinin, abscisic acid, ethylene, and polyamines. In addition, Az39T genome harbor genetic elements associated with physiological features that facilitate its survival in the soil and competence for rhizospheric colonization; this includes motility, secretion system, and quorum sensing genetic determinants. A metadata analysis of Az39T agronomic performance in the pampas region, Argentina, demonstrated significant grain yield increases in wheat and maize, proving its potential to provide better growth conditions for dryland cereals. In conclusion, our data provide a detailed insight into the metabolic profile of A. argentinense Az39T, the strain most widely used to formulate non-legume inoculants in Argentina, and allow a better understanding of the mechanisms behind its field performance.
Collapse
Affiliation(s)
- G A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), CONICET, Balcarce, Buenos Aires, Argentina
| | - M L Puente
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - J E García
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - E Mongiardini
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, La Plata, Buenos Aires, Argentina
| | - A Coniglio
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
| | - S Nievas
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina
| | - M M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), CONICET, Balcarce, Buenos Aires, Argentina
| | - F Wisniewski-Dyé
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne 69622, France
| | | | - M Díaz-Zorita
- Facultad de Agronomía, Universidad Nacional de La Pampa (UNLPam), CONICET, Santa Rosa, La Pampa, Argentina
| | - F Cassán
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
3
|
Boyer M, Wisniewski-Dyé F, Combrisson J, Bally R, Duponnois R, Costechareyre D. Nettle manure: an unsuspected source of bacteriophages active against various phytopathogenic bacteria. Arch Virol 2022; 167:1099-1110. [DOI: 10.1007/s00705-022-05391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
|
4
|
Chua KO, See-Too WS, Ee R, Lim YL, Yin WF, Chan KG. In silico Analysis Reveals Distribution of Quorum Sensing Genes and Consistent Presence of LuxR Solos in the Pandoraea Species. Front Microbiol 2019; 10:1758. [PMID: 31447806 PMCID: PMC6691176 DOI: 10.3389/fmicb.2019.01758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
The most common quorum sensing (QS) system in Gram-negative bacteria consists of signaling molecules called N-acyl-homoserine lactones (AHLs), which are synthesized by an enzyme AHL synthase (LuxI) and detected by a transcriptional regulator (LuxR) that are usually located in close proximity. However, many recent studies have also evidenced the presence of LuxR solos that are LuxR-related proteins in Proteobacteria that are devoid of a cognate LuxI AHL synthase. Pandoraea species are opportunistic pathogens frequently isolated from sputum specimens of cystic fibrosis (CF) patients. We have previously shown that P. pnomenusa strains possess QS activity. In this study, we examined the presence of QS activity in all type strains of Pandoraea species and acquired their complete genome sequences for holistic bioinformatics analyses of QS-related genes. Only four out of nine type strains (P. pnomenusa, P. sputorum, P. oxalativorans, and P. vervacti) showed QS activity, and C8-HSL was the only AHL detected. A total of 10 canonical luxIs with adjacent luxRs were predicted by bioinformatics from the complete genomes of aforementioned species and publicly available Pandoraea genomes. No orphan luxI was identified in any of the genomes. However, genes for two LuxR solos (LuxR2 and LuxR3 solos) were identified in all Pandoraea genomes (except two draft genomes with one LuxR solo gene), and P. thiooxydans was the only species that harbored no QS-related activity and genes. Except the canonical LuxR genes, LuxIs and LuxR solos of Pandoraea species were distantly related to the other well-characterized QS genes based on phylogenetic clustering. LuxR2 and LuxR3 solos might represent two novel evolutionary branches of LuxR system as they were found exclusively only in the genus. As a few luxR solos were located in close proximity with prophage sequence regions in the genomes, we thus postulated that these luxR solos could be transmitted into genus Pandoraea by transduction process mediated by bacteriophage. The bioinformatics approach developed in this study forms the basis for further characterization of closely related species. Overall, our findings improve the current understanding of QS in Pandoraea species, which is a potential pharmacological target in battling Pandoraea infections in CF patients.
Collapse
Affiliation(s)
- Kah-Ooi Chua
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wah-Seng See-Too
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Jang J, Sakai Y, Senoo K, Ishii S. Potentially Mobile Denitrification Genes Identified in Azospirillum sp. Strain TSH58. Appl Environ Microbiol 2019; 85:e02474-18. [PMID: 30413471 PMCID: PMC6328785 DOI: 10.1128/aem.02474-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022] Open
Abstract
Denitrification ability is sporadically distributed among diverse bacteria, archaea, and fungi. In addition, disagreement has been found between denitrification gene phylogenies and the 16S rRNA gene phylogeny. These facts have suggested potential occurrences of horizontal gene transfer (HGT) for the denitrification genes. However, evidence of HGT has not been clearly presented thus far. In this study, we identified the sequences and the localization of the nitrite reductase genes in the genomes of 41 denitrifying Azospirillum sp. strains and searched for mobile genetic elements that contain denitrification genes. All Azospirillum sp. strains examined in this study possessed multiple replicons (4 to 11 replicons), with their sizes ranging from 7 to 1,031 kbp. Among those, the nitrite reductase gene nirK was located on large replicons (549 to 941 kbp). Genome sequencing showed that Azospirillum strains that had similar nirK sequences also shared similar nir-nor gene arrangements, especially between the TSH58, Sp7T, and Sp245 strains. In addition to the high similarity between nir-nor gene clusters among the three Azospirillum strains, a composite transposon structure was identified in the genome of strain TSH58, which contains the nir-nor gene cluster and the novel IS6 family insertion sequences (ISAz581 and ISAz582). The nirK gene within the composite transposon system was actively transcribed under denitrification-inducing conditions. Although not experimentally verified in this study, the composite transposon system containing the nir-nor gene cluster could be transferred to other cells if it is moved to a prophage region and the phage becomes activated and released outside the cells. Taken together, strain TSH58 most likely acquired its denitrification ability by HGT from closely related Azospirillum sp. denitrifiers.IMPORTANCE The evolutionary history of denitrification is complex. While the occurrence of horizontal gene transfer has been suggested for denitrification genes, most studies report circumstantial evidences, such as disagreement between denitrification gene phylogenies and the 16S rRNA gene phylogeny. Based on the comparative genome analyses of Azospirillum sp. denitrifiers, we identified denitrification genes, including nirK and norCBQD, located on a mobile genetic element in the genome of Azospirillum sp. strain TSH58. The nirK was actively transcribed under denitrification-inducing conditions. Since this gene was the sole nitrite reductase gene in strain TSH58, this strain most likely benefitted by acquiring denitrification genes via horizontal gene transfer. This finding will significantly advance our scientific knowledge regarding the ecology and evolution of denitrification.
Collapse
Affiliation(s)
- Jeonghwan Jang
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Yoriko Sakai
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
6
|
Jacquiod S, Nunes I, Brejnrod A, Hansen MA, Holm PE, Johansen A, Brandt KK, Priemé A, Sørensen SJ. Long-term soil metal exposure impaired temporal variation in microbial metatranscriptomes and enriched active phages. MICROBIOME 2018; 6:223. [PMID: 30545417 PMCID: PMC6292020 DOI: 10.1186/s40168-018-0606-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/25/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND It remains unclear whether adaptation and changes in diversity associated to a long-term perturbation are sufficient to ensure functional resilience of soil microbial communities. We used RNA-based approaches (16S rRNA gene transcript amplicon coupled to shotgun mRNA sequencing) to study the legacy effects of a century-long soil copper (Cu) pollution on microbial activity and composition, as well as its effect on the capacity of the microbial community to react to temporal fluctuations. RESULTS Despite evidence of microbial adaptation (e.g., iron homeostasis and avoidance/resistance strategies), increased heterogeneity and richness loss in transcribed gene pools were observed with increasing soil Cu, together with an unexpected predominance of phage mRNA signatures. Apparently, phage activation was either triggered directly by Cu, or indirectly via enhanced expression of DNA repair/SOS response systems in Cu-exposed bacteria. Even though total soil carbon and nitrogen had accumulated with increasing Cu, a reduction in temporally induced mRNA functions was observed. Microbial temporal response groups (TRGs, groups of microbes with a specific temporal response) were heavily affected by Cu, both in abundance and phylogenetic composition. CONCLUSION Altogether, results point toward a Cu-mediated "decoupling" between environmental fluctuations and microbial activity, where Cu-exposed microbes stopped fulfilling their expected contributions to soil functioning relative to the control. Nevertheless, some functions remained active in February despite Cu, concomitant with an increase in phage mRNA signatures, highlighting that somehow, microbial activity is still happening under these adverse conditions.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Agroécologie, AgroSup Dijon, INRA, Univ Bourgogne Franche-Comté, 17 rue Sully, 21000, Dijon, France
| | - Inês Nunes
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Present address: Microbe Technology Department, Novozymes A/S, Krogshoejvej 36, 2880, Bagsværd, Denmark
| | - Asker Brejnrod
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Present address: Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Martin A Hansen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Peter E Holm
- Present address: Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Kristian K Brandt
- Present address: Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Anders Priemé
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
7
|
Carlos C, Pereira LB, Ottoboni LMM. Comparative genomics of Paracoccus sp. SM22M-07 isolated from coral mucus: insights into bacteria-host interactions. Curr Genet 2016; 63:509-518. [PMID: 27796486 DOI: 10.1007/s00294-016-0658-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
One of the main goals of coral microbiology is to understand the ways in which coral-bacteria associations are established and maintained. This work describes the sequencing of the genome of Paracoccus sp. SM22M-07 isolated from the mucus of the endemic Brazilian coral species Mussismilia hispida. Comparative analysis was used to identify unique genomic features of SM22M-07 that might be involved in its adaptation to the marine ecosystem and the nutrient-rich environment provided by coral mucus, as well as in the establishment and strengthening of the interaction with the host. These features included genes related to the type IV protein secretion system, erythritol catabolism, and succinoglycan biosynthesis. We experimentally confirmed the production of succinoglycan by Paracoccus sp. SM22M-07 and we hypothesize that it may be involved in the association of the bacterium with coral surfaces.
Collapse
Affiliation(s)
- Camila Carlos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53703, USA.
| | - Letícia Bianca Pereira
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), C. P. 6010, Campinas, SP, 13083-875, Brazil
| | - Laura Maria Mariscal Ottoboni
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), C. P. 6010, Campinas, SP, 13083-875, Brazil
| |
Collapse
|
8
|
Katsy EI, Petrova LP. Genome rearrangements in Azospirillum brasilense Sp7 with the involvement of the plasmid pRhico and the prophage ΦAb-Cd. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415110095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Guliy OI, Karavaeva OA, Pavliy SA, Sokolov OI, Bunin VD, Ignatov OV. Determination of Azospirillum brasilense cells with bacteriophages by electrooptical analysis of microbial suspensions. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815030084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Hargreaves KR, Kropinski AM, Clokie MRJ. What does the talking?: quorum sensing signalling genes discovered in a bacteriophage genome. PLoS One 2014; 9:e85131. [PMID: 24475037 PMCID: PMC3901668 DOI: 10.1371/journal.pone.0085131] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022] Open
Abstract
The transfer of novel genetic material into the genomes of bacterial viruses (phages) has been widely documented in several host-phage systems. Bacterial genes are incorporated into the phage genome and, if retained, subsequently evolve within them. The expression of these phage genes can subvert or bolster bacterial processes, including altering bacterial pathogenicity. The phage phiCDHM1 infects Clostridium difficile, a pathogenic bacterium that causes nosocomial infections and is associated with antibiotic treatment. Genome sequencing and annotation of phiCDHM1 shows that despite being closely related to other C. difficile myoviruses, it has several genes that have not been previously reported in any phage genomes. Notably, these include three homologs of bacterial genes from the accessory gene regulator (agr) quorum sensing (QS) system. These are; a pre-peptide (AgrD) of an autoinducing peptide (AIP), an enzyme which processes the pre-peptide (AgrB) and a histidine kinase (AgrC) that detects the AIP to activate a response regulator. Phylogenetic analysis of the phage and C. difficile agr genes revealed that there are three types of agr loci in this species. We propose that the phage genes belonging to a third type, agr3, and have been horizontally transferred from the host. AgrB and AgrC are transcribed during the infection of two different strains. In addition, the phage agrC appears not to be confined to the phiCDHM1 genome as it was detected in genetically distinct C. difficile strains. The discovery of QS gene homologs in a phage genome presents a novel way in which phages could influence their bacterial hosts, or neighbouring bacterial populations. This is the first time that these QS genes have been reported in a phage genome and their distribution both in C. difficile and phage genomes suggests that the agr3 locus undergoes horizontal gene transfer within this species.
Collapse
Affiliation(s)
- Katherine R. Hargreaves
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, Leicestershire, United Kingdom
| | - Andrew M. Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, West Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Martha R. J. Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, Leicestershire, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Wisniewski-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, Rouy Z, Barbe V, Herrera AM, González V, Mavingui P. Genome Sequence of Azospirillum brasilense CBG497 and Comparative Analyses of Azospirillum Core and Accessory Genomes provide Insight into Niche Adaptation. Genes (Basel) 2012; 3:576-602. [PMID: 24705077 PMCID: PMC3899980 DOI: 10.3390/genes3040576] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/24/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022] Open
Abstract
Bacteria of the genus Azospirillum colonize roots of important cereals and grasses, and promote plant growth by several mechanisms, notably phytohormone synthesis. The genomes of several Azospirillum strains belonging to different species, isolated from various host plants and locations, were recently sequenced and published. In this study, an additional genome of an A. brasilense strain, isolated from maize grown on an alkaline soil in the northeast of Mexico, strain CBG497, was obtained. Comparative genomic analyses were performed on this new genome and three other genomes (A. brasilense Sp245, A. lipoferum 4B and Azospirillum sp. B510). The Azospirillum core genome was established and consists of 2,328 proteins, representing between 30% to 38% of the total encoded proteins within a genome. It is mainly chromosomally-encoded and contains 74% of genes of ancestral origin shared with some aquatic relatives. The non-ancestral part of the core genome is enriched in genes involved in signal transduction, in transport and in metabolism of carbohydrates and amino-acids, and in surface properties features linked to adaptation in fluctuating environments, such as soil and rhizosphere. Many genes involved in colonization of plant roots, plant-growth promotion (such as those involved in phytohormone biosynthesis), and properties involved in rhizosphere adaptation (such as catabolism of phenolic compounds, uptake of iron) are restricted to a particular strain and/or species, strongly suggesting niche-specific adaptation.
Collapse
Affiliation(s)
- Florence Wisniewski-Dyé
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| | - Luis Lozano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos 62210, México.
| | - Erika Acosta-Cruz
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| | - Stéphanie Borland
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| | - Benoît Drogue
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| | - Claire Prigent-Combaret
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| | - Zoé Rouy
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme CNRS UMR8030, France.
| | - Valérie Barbe
- Institut de Génomique, CEA, Génoscope, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - Alberto Mendoza Herrera
- Centro de Biotecnología Genómica, Instituto politécnico Nacional, 88710 Reynosa, Tamaulipas, México.
| | - Victor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos 62210, México.
| | - Patrick Mavingui
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| |
Collapse
|
12
|
Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 2011; 7:e1002430. [PMID: 22216014 PMCID: PMC3245306 DOI: 10.1371/journal.pgen.1002430] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/02/2011] [Indexed: 12/20/2022] Open
Abstract
Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land. Genome sequencing and analysis of plant-associated beneficial soil bacteria Azospirillum spp. reveals that these organisms transitioned from aquatic to terrestrial environments significantly later than the suggested major Precambrian divergence of aquatic and terrestrial bacteria. Separation of Azospirillum from their close aquatic relatives coincided with the emergence of vascular plants on land. Nearly half of the Azospirillum genome has been acquired horizontally, from distantly related terrestrial bacteria. The majority of horizontally acquired genes encode functions that are critical for adaptation to the rhizosphere and interaction with host plants.
Collapse
|
13
|
Fogg PC, Hynes AP, Digby E, Lang AS, Beatty JT. Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. Virology 2011; 421:211-21. [DOI: 10.1016/j.virol.2011.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/25/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
|
14
|
Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S. Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 2010; 17:37-50. [PMID: 20047946 PMCID: PMC2818188 DOI: 10.1093/dnares/dsp026] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We determined the nucleotide sequence of the entire genome of a diazotrophic endophyte, Azospirillum sp. B510. Strain B510 is an endophytic bacterium isolated from stems of rice plants (Oryza sativa cv. Nipponbare). The genome of B510 consisted of a single chromosome (3 311 395 bp) and six plasmids, designated as pAB510a (1 455 109 bp), pAB510b (723 779 bp), pAB510c (681 723 bp), pAB510d (628 837 bp), pAB510e (537 299 bp), and pAB510f (261 596 bp). The chromosome bears 2893 potential protein-encoding genes, two sets of rRNA gene clusters (rrns), and 45 tRNA genes representing 37 tRNA species. The genomes of the six plasmids contained a total of 3416 protein-encoding genes, seven sets of rrns, and 34 tRNAs representing 19 tRNA species. Eight genes for plasmid-specific tRNA species are located on either pAB510a or pAB510d. Two out of eight genomic islands are inserted in the plasmids, pAB510b and pAB510e, and one of the islands is inserted into trnfM-CAU in the rrn located on pAB510e. Genes other than the nif gene cluster that are involved in N2 fixation and are homologues of Bradyrhizobium japonicum USDA110 include fixABCX, fixNOQP, fixHIS, fixG, and fixLJK. Three putative plant hormone-related genes encoding tryptophan 2-monooxytenase (iaaM) and indole-3-acetaldehyde hydrolase (iaaH), which are involved in IAA biosynthesis, and ACC deaminase (acdS), which reduces ethylene levels, were identified. Multiple gene-clusters for tripartite ATP-independent periplasmic-transport systems and a diverse set of malic enzymes were identified, suggesting that B510 utilizes C4-dicarboxylate during its symbiotic relationship with the host plant.
Collapse
|
15
|
Abstract
Prophages are common in many bacterial genomes. Distinguishing putatively viable prophages from nonviable sequences can be a challenge, since some prophages are remnants of once-functional prophages that have been rendered inactive by mutational changes. In some cases, a putative prophage may be missed due to the lack of recognizable prophage loci. The genome of a marine roseobacter, Roseovarius nubinhibens ISM (hereinafter referred to as ISM), was recently sequenced and was reported to contain no intact prophage based on customary bioinformatic analysis. However, prophage induction experiments performed with this organism led to a different conclusion. In the laboratory, virus-like particles in the ISM culture increased more than 3 orders of magnitude following induction with mitomycin C. After careful examination of the ISM genome sequence, a putative prophage (ISM-pro1) was identified. Although this prophage contains only minimal phage-like genes, we demonstrated that this "hidden" prophage is inducible. Genomic analysis and reannotation showed that most of the ISM-pro1 open reading frames (ORFs) display the highest sequence similarity with Rhodobacterales bacterial genes and some ORFs are only distantly related to genes of other known phages or prophages. Comparative genomic analyses indicated that ISM-pro1-like prophages or prophage remnants are also present in other Rhodobacterales genomes. In addition, the lysis of ISM by this previously unrecognized prophage appeared to increase the production of gene transfer agents (GTAs). Our study suggests that a combination of in silico genomic analyses and experimental laboratory work is needed to fully understand the lysogenic features of a given bacterium.
Collapse
|