1
|
Lee H, Diao J, Tian Y, Guleria R, Lee E, Smith A, Savage M, Yeh D, Roberson L, Blenner M, Tang YJ, Moon TS. Developing an alternative medium for in-space biomanufacturing. Nat Commun 2025; 16:728. [PMID: 39819985 PMCID: PMC11739595 DOI: 10.1038/s41467-025-56088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
In-space biomanufacturing provides a sustainable solution to facilitate long-term, self-sufficient human habitation in extraterrestrial environments. However, its dependence on Earth-supplied feedstocks renders in-space biomanufacturing economically nonviable. Here, we develop a process termed alternative feedstock-driven in-situ biomanufacturing (AF-ISM) to alleviate dependence on Earth-based resupply of feedstocks. Specifically, we investigate three alternative feedstocks (AF)-Martian and Lunar regolith, post-consumer polyethylene terephthalate, and fecal waste-to develop an alternative medium for lycopene production using Rhodococcus jostii PET strain S6 (RPET S6). Our results show that RPET S6 could directly utilize regolith simulant particles as mineral replacements, while the addition of anaerobically pretreated fecal waste synergistically supported its cell growth. Additionally, lycopene production using AF under microgravity conditions achieved levels comparable to those on Earth. Furthermore, an economic analysis shows significant lycopene production cost reductions using AF-ISM versus conventional methods. Overall, this work highlights the viability of AF-ISM for in-space biomanufacturing.
Collapse
Affiliation(s)
- Hakyung Lee
- Washington University in St. Louis, Saint Louis, MO, USA
| | - Jinjin Diao
- Washington University in St. Louis, Saint Louis, MO, USA.
| | - Yuxin Tian
- Washington University in St. Louis, Saint Louis, MO, USA
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, USA
| | | | - Eunseo Lee
- Washington University in St. Louis, Saint Louis, MO, USA
| | | | - Millie Savage
- Lincoln University of Missouri, Jefferson City, MO, USA
| | - Daniel Yeh
- University of South Florida, Tampa, FL, USA
| | - Luke Roberson
- National Aeronautics and Space Administration, John F. Kennedy Space Center, Merritt Island, FL, USA
| | | | - Yinjie J Tang
- Washington University in St. Louis, Saint Louis, MO, USA.
| | - Tae Seok Moon
- Washington University in St. Louis, Saint Louis, MO, USA.
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Mo W, Wang H, Wang J, Wang Y, Liu Y, Luo Y, He M, Cheng S, Mei H, He J, Su J. Advances in Research on Bacterial Oxidation of Mn(II): A Visualized Bibliometric Analysis Based on CiteSpace. Microorganisms 2024; 12:1611. [PMID: 39203453 PMCID: PMC11356483 DOI: 10.3390/microorganisms12081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Manganese (Mn) pollution poses a serious threat to the health of animals, plants, and humans. The microbial-mediated Mn(II) removal method has received widespread attention because of its rapid growth, high efficiency, and economy. Mn(II)-oxidizing bacteria can oxidize toxic soluble Mn(II) into non-toxic Mn(III/IV) oxides, which can further participate in the transformation of other heavy metals and organic pollutants, playing a crucial role in environmental remediation. This study aims to conduct a bibliometric analysis of research papers on bacterial Mn(II) oxidation using CiteSpace, and to explore the research hotspots and developmental trends within this field between 2008 and 2023. A series of visualized knowledge map analyses were conducted with 469 screened SCI research papers regarding annual publication quantity, author groups and their countries and regions, journal categories, publishing institutions, and keywords. China, the USA, and Japan published the most significant number of research papers on the research of bacterial Mn(II) oxidation. Research hotspots of bacterial Mn(II) oxidation mainly focused on the species and distributions of Mn(II)-oxidizing bacteria, the influencing factors of Mn(II) oxidation, the mechanisms of Mn(II) oxidation, and their applications in environment. This bibliometric analysis provides a comprehensive visualized knowledge map to quickly understand the current advancements, research hotspots, and academic frontiers in bacterial Mn(II) oxidation.
Collapse
Affiliation(s)
- Wentao Mo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Hang Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Jianghan Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Yue Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Yunfei Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Yi Luo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Minghui He
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Shuang Cheng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Huiting Mei
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430062, China;
| | - Jianmei Su
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| |
Collapse
|
3
|
Voloshyna IM, Netiaha YM, Nechaiuk YV, Khomenko VG, Shkotova LV. The influence of metal nanoparticles on plants. BIOPOLYMERS AND CELL 2024; 40:83-95. [DOI: 10.7124/bc.000aaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | | | | | | | - L. V. Shkotova
- 'Institute of Molecular Biology and Genetics, NAS of Ukraine'
| |
Collapse
|
4
|
Marques Mendonca R, Fulton T, Blackwood C, Costello D. Sublethal nickel toxicity shuts off manganese oxidation and pellicle biofilm formation in Pseudomonas putida GB-1. Environ Microbiol 2023; 25:3639-3654. [PMID: 37875338 DOI: 10.1111/1462-2920.16529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
In sediments, the bioavailability and toxicity of Ni are strongly influenced by its sorption to manganese (Mn) oxides, which largely originate from the redox metabolism of microbes. However, microbes are concurrently susceptible to the toxic effects of Ni, which establishes complex interactions between toxicity and redox processes. This study measured the effect of Ni on growth, pellicle biofilm formation and oxidation of the Mn-oxidizing bacteria Pseudomonas putida GB-1. In liquid media, Ni exposure decreased the intrinsic growth rate but allowed growth to the stationary phase in all intermediate treatments. Manganese oxidation was 67% less than control for bacteria exposed to 5 μM Ni and completely ceased in all treatments above 50 μM. Pellicle biofilm development decreased exponentially with Ni concentration (maximum 92% reduction) and was replaced by planktonic growth in higher Ni treatments. In solid media assays, growth was unaffected by Ni exposure, but Mn oxidation completely ceased in treatments above 10 μM of Ni. Our results show that sublethal Ni concentrations substantially alter Mn oxidation rates and pellicle biofilm development in P. putida GB-1, which has implications for toxic metal bioavailability to the entire benthic community and the environmental consequences of metal contamination.
Collapse
Affiliation(s)
| | - Taylor Fulton
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
- Department of Food, Agricultural and Biological Engineering, Ohio State University, Columbus, Ohio, USA
| | - Christopher Blackwood
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - David Costello
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
5
|
Li H, Wu Y, Tang Y, Fang B, Luo P, Yang L, Jiang Q. A manganese-oxidizing bacterium-Enterobacter hormaechei strain DS02Eh01: Capabilities of Mn(II) immobilization, plant growth promotion and biofilm formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119775. [PMID: 35843452 DOI: 10.1016/j.envpol.2022.119775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
While biogenic Mn oxides (BioMnOx) generated by Mn(II)-oxidizing bacteria (MOB) have attracted increasing attention, a MOB strain isolated from Mn-polluted sediments was identified and assigned as Enterobacter hormaechei DS02Eh01. Its Mn(II) immobilization activity, plant growth-promoting traits, and biofilm formation capability were investigated. The results showed that strain DS02Eh01 was found to be able to tolerate Mn(II) up to 122 mM. The strain immobilized Mn(II) in aquatic media mainly through extracellular adsorption, bio-oxidation and pH-induced precipitation as well as manganese oxidation. DS02Eh01-derived BioMnOx are negatively charged and have a larger specific surface area (86.70 m2/g) compared to the previously reported BioMnOx. The strain can immobilize Mn(II) at extreme levels, for instance, when it was exposed to 20 mM Mn(II), about 59% of Mn(II) were found immobilized and 17% of Mn(II) were converted to MnOx. The SEM and TEM observation revealed that the DS02Eh01-derived BioMnOx were aggregates doped with granules and microbial pellets. The precipitated Mn(II) and the Mn(III)/Mn(IV) oxides co-existed in BioMnOx, in which Mn(II) and Mn(IV) were found dominant with Mn(II) accounting for 49.6% and Mn(IV) accounting for 41.3%. DS02Eh01 possesses plant growth-promoting traits and biofilm formation capacity even under Mn(II) exposure. Mn(II) exposure at 5 mM was found to stimulate strain DS02Eh01 to form biofilms, from which, the extracted EPS was mainly composed of aromatic proteins. This study reveals that E. hormaechei strain DS02Eh01 possesses the potential in environmental ecoremediation via coupling processes of macrophytes extraction, biochemical immobilization and biosorption.
Collapse
Affiliation(s)
- Huilan Li
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Yu Wu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Yankui Tang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China.
| | - Bo Fang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Penghong Luo
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Luling Yang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Qiming Jiang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| |
Collapse
|
6
|
Johnson CGM, Fletcher AG, Soyer OS. ChemChaste: Simulating spatially inhomogeneous biochemical reaction-diffusion systems for modeling cell-environment feedbacks. Gigascience 2022; 11:giac051. [PMID: 35715874 PMCID: PMC9205757 DOI: 10.1093/gigascience/giac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Spatial organization plays an important role in the function of many biological systems, from cell fate specification in animal development to multistep metabolic conversions in microbial communities. The study of such systems benefits from the use of spatially explicit computational models that combine a discrete description of cells with a continuum description of one or more chemicals diffusing within a surrounding bulk medium. These models allow the in silico testing and refinement of mechanistic hypotheses. However, most existing models of this type do not account for concurrent bulk and intracellular biochemical reactions and their possible coupling. CONCLUSIONS Here, we describe ChemChaste, an extension for the open-source C++ computational biology library Chaste. ChemChaste enables the spatial simulation of both multicellular and bulk biochemistry by expanding on Chaste's existing capabilities. In particular, ChemChaste enables (i) simulation of an arbitrary number of spatially diffusing chemicals, (ii) spatially heterogeneous chemical diffusion coefficients, and (iii) inclusion of both bulk and intracellular biochemical reactions and their coupling. ChemChaste also introduces a file-based interface that allows users to define the parameters relating to these functional features without the need to interact directly with Chaste's core C++ code. We describe ChemChaste and demonstrate its functionality using a selection of chemical and biochemical exemplars, with a focus on demonstrating increased ability in modeling bulk chemical reactions and their coupling with intracellular reactions. AVAILABILITY AND IMPLEMENTATION ChemChaste version 1.0 is a free, open-source C++ library, available via GitHub at https://github.com/OSS-Lab/ChemChaste under the BSD license, on the Zenodo archive at zendodo doi, as well as on BioTools (biotools:chemchaste) and SciCrunch (RRID:SCR022208) databases.
Collapse
Affiliation(s)
- Connah G M Johnson
- Mathematics of Real-World Systems Doctoral Training Centre, University of Warwick, Coventry, CV35 9EF, UK
- School of Life Sciences, University of Warwick, Coventry, CV35 9EF, UK
| | - Alexander G Fletcher
- School of Mathematics & Statistics, University of Sheffield, Sheffield, S3 7RH, UK
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, UK
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, CV35 9EF, UK
| |
Collapse
|
7
|
Zhang HC, Zhang R, Shi H. The effect of manganese and iron on mediating resuscitation of lactic acid-injured Escherichia coli. Lett Appl Microbiol 2022; 75:161-170. [PMID: 35395105 DOI: 10.1111/lam.13715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/05/2023]
Abstract
Lactic acid can induce sublethal injury of E. coli through oxidative stress. In this study, we investigated changes in SOD activity, CAT activity, GSH production and ROS production during sublethal injury and resuscitation of E. coli. Then, the effect of manganese and iron during resuscitation were studied. Both cations (≥1 mmol l-1 ) significantly promoted the resuscitation of sublethally injured E. coli induced by lactic acid and shortened the repair time (P < 0·05). Conversely, addition of N,N,N',N'-tetrakis (2-pyridylmethyl) which is a metal chelator extended the repair time. Compared with minA, manganese and iron significantly improved SOD activity at 40, 80 and 120 min and decreased ROS production at 40 and 80 min, thereby recovering injured E. coli quickly (P < 0·05). The deletion of sodA encoding Mn-SOD, sodB encoding Fe-SOD or gshA/gshB encoding GSH significantly strengthened sublethal injury and extended the repair time (P < 0·05). It meant these genes-related oxidative stress played important roles in the acid resistance of E. coli and recovery of sublethal injury. Therefore, manganese and iron can promote the recovery of lactic-injured E. coli by the way of increasing SOD activity, scavenging ROS, and relieving oxidative stress.
Collapse
Affiliation(s)
- H C Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - R Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - H Shi
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Wu Y, Li H, Li Y. Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms 2021; 9:2396. [PMID: 34835521 PMCID: PMC8621315 DOI: 10.3390/microorganisms9112396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Biomineralization has emerged as a novel and eco-friendly technology for artificial mineral formation utilizing the metabolism of organisms. Due to its highly efficient urea degradation ability, Sporosarcina pasteurii(S. pasteurii) is arguably the most widely investigated organism in ureolytic biomineralization studies, with wide potential application in construction and environmental protection. In emerging, large-scale commercial engineering applications, attention was also paid to practical challenges and issues. In this review, we summarize the features of S. pasteurii cells contributing to the biomineralization reaction, aiming to reveal the mechanism of artificial mineral formation catalyzed by bacterial cells. Progress in the application of this technology in construction and environmental protection is discussed separately. Furthermore, the urgent challenges and issues in large-scale application are also discussed, along with potential solutions. We aim to offer new ideas to researchers working on the mechanisms, applications and challenges of biomineralization.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (H.L.); (Y.L.)
| | | | | |
Collapse
|
9
|
Ehrlich H, Bailey E, Wysokowski M, Jesionowski T. Forced Biomineralization: A Review. Biomimetics (Basel) 2021; 6:46. [PMID: 34287234 PMCID: PMC8293141 DOI: 10.3390/biomimetics6030046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022] Open
Abstract
Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers today, which have evolved to inhabit a variety of industrial aqueous environments with elevated metal concentrations. As an example of extreme biomineralization, we introduce the category of "forced biomineralization", which we use to refer to the biologically mediated sequestration of dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environments with very high or toxic metal ion concentrations. While much additional work lies ahead to characterize the various pathways by which these biominerals form, forced biomineralization has been shown to provide insights for the progression of extreme biomimetics, allowing for promising new forays into creating the next generation of composites using organic-templating approaches under biologically extreme laboratory conditions relevant to a wide range of industrial conditions.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada
- ICUBE-University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Elizabeth Bailey
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA;
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
10
|
Martínez-Ruiz EB, Cooper M, Barrero-Canosa J, Haryono MAS, Bessarab I, Williams RBH, Szewzyk U. Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation. BMC Genomics 2021; 22:464. [PMID: 34157973 PMCID: PMC8218464 DOI: 10.1186/s12864-021-07766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Myriel Cooper
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Jimena Barrero-Canosa
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ulrich Szewzyk
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
11
|
Moura HM, Unterlass MM. Biogenic Metal Oxides. Biomimetics (Basel) 2020; 5:E29. [PMID: 32585892 PMCID: PMC7345149 DOI: 10.3390/biomimetics5020029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Biogenic metal oxides (MxOy) feature structures as highly functional and unique as the organisms generating them. They have caught the attention of scientists for the development of novel materials by biomimicry. In order to understand how biogenic MxOy could inspire novel technologies, we have reviewed examples of all biogenic MxOy, as well as the current state of understanding of the interactions between the inorganic MxOy and the biological matter they originate from and are connected to. In this review, we first summarize the origins of the precursors that living nature converts into MxOy. From the point-of-view of our materials chemists, we present an overview of the biogenesis of silica, iron and manganese oxides, as the only reported biogenic MxOy to date. These MxOy are found across all five kingdoms (bacteria, protoctista, fungi, plants and animals). We discuss the key molecules involved in the biosynthesis of MxOy, the functionality of the MxOy structures, and the techniques by which the biogenic MxOy can be studied. We close by outlining the biomimetic approaches inspired by biogenic MxOy materials and their challenges, and we point at promising directions for future organic-inorganic materials and their synthesis.
Collapse
Affiliation(s)
- Hipassia M. Moura
- Institute of Materials Chemistry, Vienna University of Technology, 1060 Vienna, Austria;
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | - Miriam M. Unterlass
- Institute of Materials Chemistry, Vienna University of Technology, 1060 Vienna, Austria;
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|