1
|
Le Y, Sun J. CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:1-30. [PMID: 35461662 DOI: 10.1016/bs.aambs.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Thermophiles, offering an attractive and unique platform for a broad range of applications in biofuels and environment protections, have received a significant attention and growing interest from academy and industry. However, the exploration and exploitation of thermophilic organisms have been hampered by the lack of a powerful genome manipulation tool to improve production efficiency. At current, the clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR associated (Cas) system has been successfully exploited as a competent, simplistic, and powerful tool for genome engineering both in eukaryotes and prokaryotes. Indeed, with the significant efforts made in recent years, some thermostable Cas9 proteins have been well identified and characterized and further, some thermostable Cas9-based editing tools have been successfully established in some representative obligate thermophiles. In this regard, we reviewed the current status and its progress in CRISPR/Cas-based genome editing system towards a variety of thermophilic organisms. Despite the potentials of these progresses, multiple factors/barriers still have to be overcome and optimized for improving its editing efficiency in thermophiles. Some insights into the roles of thermostable CRISPR/Cas technologies for the metabolic engineering of thermophiles as a thermophilic microbial cell factory were also fully analyzed and discussed.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| | - Jianzhong Sun
- Biofuels institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
2
|
Ikeda T. Bacterial biosilicification: a new insight into the global silicon cycle. Biosci Biotechnol Biochem 2021; 85:1324-1331. [PMID: 33877302 DOI: 10.1093/bbb/zbab069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022]
Abstract
Biosilicification is the process by which organisms incorporate soluble, monomeric silicic acid, Si(OH)4, in the form of polymerized insoluble silica, SiO2. Biosilicifying eukaryotes, including diatoms, siliceous sponges, and higher plants, have been the targets of intense research to study the molecular mechanisms underlying biosilicification. By contrast, prokaryotic biosilicification has been less well studied, partly because the biosilicifying capability of well-known bacteria was not recognized until recently. This review summarizes recent findings on bacterial extracellular and intracellular biosilicification, the latter of which has been demonstrated only recently in bacteria. The topics discussed herein include bacterial (and archaeal) extracellular biosilicification in geothermal environments, encapsulation of Bacillus spores within a silica layer, and silicon accumulation in marine cyanobacteria. The possible contribution of bacterial biosilicification to the global silicon cycle is also discussed.
Collapse
Affiliation(s)
- Takeshi Ikeda
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
3
|
Fujino Y, Goda S, Suematsu Y, Doi K. Development of a new gene expression vector for Thermus thermophilus using a silica-inducible promoter. Microb Cell Fact 2020; 19:126. [PMID: 32513169 PMCID: PMC7282064 DOI: 10.1186/s12934-020-01385-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/01/2020] [Indexed: 01/30/2023] Open
Abstract
Background Thermostable enzymes are commonly produced in mesophilic hosts for research and bioengineering purposes. However, these hosts do not overexpress the active forms of some biologically functional thermoenzymes. Therefore, an efficient thermophilic expression system is needed. Thermus thermophilus contains an easily manipulable genome and is therefore among the best candidate microbes for a “hot” expression system. We previously identified a strong and inducible promoter that was active in T. thermophilus under supersaturated silica conditions. Here, we report a new heterologous gene expression system based on a silica-inducible promoter in T. thermophilus. Results A Thermus sp. A4 gene encoding thermostable β-galactosidase was cloned as a reporter gene into the expression vector pSix1, which contains a selection marker that confers thermostable resistance to hygromycin and a 600 bp DNA region containing a putative silica-inducible promoter. β-galactosidase activity was 11-fold higher in the presence than in the absence of 10 mM silicic acid. SDS-PAGE revealed a prominent band corresponding to 73 kDa of β-galactosidase, and this enzyme was expressed as an active and soluble protein (yield: 27 mg/L) in Thermus but as an inclusion body in Escherichia coli. Truncation of the putative silica-inducible promoter region in Thermus expression vector improved the yield of the target protein, possibly by avoiding plasmid instability due to homologous recombination. Finally, we developed an expression vector containing the pSix1 backbone and a 100 bp DNA region corresponding to the silica-inducible promoter. We used this vector to successfully express the active form of glutamate dehydrogenase from Pyrobaculum islandicum (PisGDH) without additional treatment (yield: 9.5 mg/L), whereas the expression of active PisGDH in E. coli required heat treatment. Conclusion We successfully expressed the thermostable β-galactosidase and PisGDH in T. thermophilus as active and soluble forms and achieved with our system the highest known protein expression levels in this species. These thermoenzymes were expressed in active and soluble forms. Our results validate the use of our silica-inducible expression system as a novel strategy for the intracellular overexpression of thermostable proteins.
Collapse
Affiliation(s)
- Yasuhiro Fujino
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shuichiro Goda
- Graduate School of Science and Engineering, Soka University, 1-236, Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan
| | - Yuri Suematsu
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Katsumi Doi
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Alkaliphiles: The Emerging Biological Tools Enhancing Concrete Durability. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:293-342. [PMID: 31041481 DOI: 10.1007/10_2019_94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Concrete is one of the most commonly used building materials ever used. Despite it is a very important and common construction material, concrete is very sensitive to crack formation and requires repair. A variety of chemical-based techniques and materials have been developed to repair concrete cracks. Although the use of these chemical-based repair systems are the best commercially available choices, there have also been concerns related to their use. These repair agents suffer from inefficiency and unsustainability. Most of the products are expensive and susceptible to degradation, exhibit poor bonding to the cracked concrete surfaces, and are characterized by different physical properties such as thermal expansion coefficients which are different to that of concrete. Moreover, many of these repair agents contain chemicals that pose environmental and health hazards. Thus, there has been interest in developing concrete crack repair agents that are efficient, long lasting, safe, and benign to the environment and exhibit physical properties which resemble that of the concrete. The search initiated by these desires brought the use of biomineralization processes as tools in mending concrete cracks. Among biomineralization processes, microbially initiated calcite precipitation has emerged as an interesting alternative to the existing chemical-based concrete crack repairing system. Indeed, results of several studies on the use of microbial-based concrete repair agents revealed the remarkable potential of this approach in the fight against concrete deterioration. In addition to repairing existing concrete cracks, microorganisms have also been considered to make protective surface coating (biodeposition) on concrete structures and in making self-healing concrete.Even though a wide variety of microorganisms can precipitate calcite, the nature of concrete determines their applicability. One of the important factors that determine the applicability of microbes in concrete is pH. Concrete is highly alkaline in nature, and hence the microbes envisioned for this application are alkaliphilic or alkali-tolerant. This work reviews the available information on applications of microbes in concrete: repairing existing cracks, biodeposition, and self-healing. Moreover, an effort is made to discuss biomineralization processes that are relevant to extend the durability of concrete structures. Graphical Abstract.
Collapse
|
5
|
Gaboyer F, Le Milbeau C, Bohmeier M, Schwendner P, Vannier P, Beblo-Vranesevic K, Rabbow E, Foucher F, Gautret P, Guégan R, Richard A, Sauldubois A, Richmann P, Perras AK, Moissl-Eichinger C, Cockell CS, Rettberg P, Marteinsson, Monaghan E, Ehrenfreund P, Garcia-Descalzo L, Gomez F, Malki M, Amils R, Cabezas P, Walter N, Westall F. Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment. Sci Rep 2017; 7:8775. [PMID: 28821776 PMCID: PMC5562696 DOI: 10.1038/s41598-017-08929-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found on Mars and Early-Earth, silica and gypsum, for 6 months. Samples were analyzed using microbiological (survival rates), morphological (electron microscopy), biochemical (GC-MS, Microarray immunoassay, Rock-Eval) and spectroscopic (EDX, FTIR, RAMAN spectroscopy) methods. We also investigated the impact of physiological status on mineralization and long-term fossilisation by exposing cells or not to Mars-related stresses (desiccation and radiation). Bacterial populations remained viable after 6 months although the kinetics of mineralization and cell-mineral interactions depended on the nature of minerals. Detection of biosignatures strongly depended on analytical methods, successful with FTIR and EDX but not with RAMAN and immunoassays. Neither influence of stress exposure, nor qualitative and quantitative changes of detected molecules were observed as a function of mineralization time and matrix. Rock-Eval analysis suggests that potential for preservation on geological times may be possible only with moderate diagenetic and metamorphic conditions. The implications of our results for microfossil preservation in the geological record of Earth as well as on Mars are discussed.
Collapse
Affiliation(s)
- F Gaboyer
- Centre de Biophysique Moléculaire, CNRS, Orléans, France.
| | - C Le Milbeau
- Institut des Sciences de la Terre d'Orléans, UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans Cedex 2, France
| | - M Bohmeier
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - P Schwendner
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - P Vannier
- MATIS - Prokaria, Reykjavík, Iceland
| | - K Beblo-Vranesevic
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - E Rabbow
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - F Foucher
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - P Gautret
- Institut des Sciences de la Terre d'Orléans, UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans Cedex 2, France
| | - R Guégan
- Institut des Sciences de la Terre d'Orléans, UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans Cedex 2, France
| | - A Richard
- Centre de Microscopie Electronique, Université d'Orléans, Orléans, France
| | - A Sauldubois
- Centre de Microscopie Electronique, Université d'Orléans, Orléans, France
| | - P Richmann
- Institut des Sciences de la Terre d'Orléans, UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans Cedex 2, France
| | - A K Perras
- University Regensburg, Department of Microbiology, Regensburg, Germany.,Medical University of Graz, Department of Internal Medicine, Graz, Austria
| | | | - C S Cockell
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - P Rettberg
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | | | - E Monaghan
- Leiden Observatory, Universiteit Leiden, Leiden, Netherlands
| | - P Ehrenfreund
- Leiden Observatory, Universiteit Leiden, Leiden, Netherlands
| | - L Garcia-Descalzo
- Instituto Nacional de Técnica Aeroespacial - Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - F Gomez
- Instituto Nacional de Técnica Aeroespacial - Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - M Malki
- Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - R Amils
- Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - P Cabezas
- European Science Foundation (ESF), Strasbourg, France
| | - N Walter
- European Science Foundation (ESF), Strasbourg, France
| | - F Westall
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| |
Collapse
|
6
|
The Influence of Silicon Oxide Nanoparticles on Morphometric Parameters of Monocotyledons and Dicotyledons in Soil and Climatic Conditions of Western Siberia, as well as on Microbiological Soil Properties. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0419-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Complete Genome Sequence of Thermus thermophilus TMY, Isolated from a Geothermal Power Plant. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01596-16. [PMID: 28153912 PMCID: PMC5289698 DOI: 10.1128/genomea.01596-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thermus thermophilus TMY (JCM 10668) was isolated from silica scale formed at a geothermal power plant in Japan. Here, we report the complete genome sequence for this strain, which contains a chromosomal DNA of 2,121,526 bp with 2,500 predicted genes and a pTMY plasmid of 19,139 bp, with 28 predicted genes.
Collapse
|
8
|
Silica-Induced Protein (Sip) in Thermophilic Bacterium Thermus thermophilus Responds to Low Iron Availability. Appl Environ Microbiol 2016; 82:3198-3207. [PMID: 26994077 DOI: 10.1128/aem.04027-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Thermus thermophilus HB8 expresses silica-induced protein (Sip) when cultured in medium containing supersaturated silicic acids. Using genomic information, Sip was identified as a Fe(3+)-binding ABC transporter. Detection of a 1-kb hybridized band in Northern analysis revealed that sip transcription is monocistronic and that sip has its own terminator and promoter. The sequence of the sip promoter showed homology with that of the σ(A)-dependent promoter, which is known as a housekeeping promoter in HB8. Considering that sip is transcribed when supersaturated silicic acids are added, the existence of a repressor is presumed. DNA microarray analysis suggested that supersaturated silicic acids and iron deficiency affect Thermus cells similarly, and enhanced sip transcription was detected under both conditions. This suggested that sip transcription was initiated by iron deficiency and that the ferric uptake regulator (Fur) controlled the transcription. Three Fur gene homologues (TTHA0255, TTHA0344, and TTHA1292) have been annotated in the HB8 genome, and electrophoretic mobility shift assays revealed that the TTHA0344 product interacts with the sip promoter region. In medium containing supersaturated silicic acids, free Fe(3+) levels were decreased due to Fe(3+) immobilization on colloidal silica. This suggests that, because Fe(3+) ions are captured by colloidal silica in geothermal water, Thermus cells are continuously exposed to the risk of iron deficiency. Considering that Sip is involved in iron acquisition, Sip production may be a strategy to survive under conditions of low iron availability in geothermal water. IMPORTANCE The thermophilic bacterium Thermus thermophilus HB8 produces silica-induced protein (Sip) in the presence of supersaturated silicic acids. Sip has homology with iron-binding ABC transporter; however, the mechanism by which Sip expression is induced by silicic acids remains unexplained. We demonstrate that Sip captures iron and its transcription is regulated by the repressor ferric uptake regulator (Fur). This implies that Sip is expressed with iron deficiency. In addition, it is suggested that negatively charged colloidal silica in supersaturated solution absorbs Fe(3+) ions and decreases iron availability. Considering that geothermal water contains ample silicic acids, it is suggested that thermophilic bacteria are always facing iron starvation. Sip production may be a strategy for surviving under conditions of low iron availability in geothermal water.
Collapse
|
9
|
Fujino Y, Tanoue R, Yokoyama T, Doi K. A tightly regulated expression system for E. coli using supersaturated silicic acid. Biotechnol Lett 2016; 38:1381-7. [PMID: 27146211 DOI: 10.1007/s10529-016-2118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 04/30/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To develop a new expression system regulated by a ferric uptake regulator in which silicic acid is used as an inducer. RESULTS Fur box (binding site for Fur) was substituted for the lac operator to regulate the expression of GFP with the lac promoter. Since the addition of supersaturated silicic acid invokes iron deficiency, supersaturated silicic acids were used as an inducer. GFP expression was dependent on silica concentration, and the expression level without silica was negligible. Basal expression level of this lac-Fur system was extremely low and, hence, lytic enzyme gene E from bacteriophage ϕX174 could be retained in this system. Furthermore, the expression of genes of interest was spontaneously initiated as the cell density increased and the costs of the inducer are considerably less than IPTG. CONCLUSION The combination of lac promoter and Ferric uptake repressor allowed the protein expression by supersaturated silicic acid as an inducer in an easy and cost-effective way.
Collapse
Affiliation(s)
- Yasuhiro Fujino
- Faculty of Art and Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Ryo Tanoue
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Takushi Yokoyama
- Department of Chemistry, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Katsumi Doi
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| |
Collapse
|
10
|
Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Prabu P, Kannan N. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol 2013; 7:70-7. [PMID: 24028804 DOI: 10.1049/iet-nbt.2012.0048] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The study was aimed at evaluating the effect of nanosilica and different sources of silicon on soil properties, total bacterial population and maize seed germination. Nanosilica was synthesised using rice husk and characterised. Silica powder was amorphous (50 nm) with >99.9% purity. Sodium silicate treated soil inhibited plant growth promoting rhizobacteria in contrast to nanosilica and other bulk sources. Surface property and effect of soil nutrient content of nanosilica treatment were improved. Colony forming unit (CFU) was doubled in the presence of nanosilica from 4 × 105 CFU (control) to 8 × 105 CFU per gram of soil. The silica and protein content of bacterial biomass clearly showed an increase in uptake of silica with an increase in nanosilica concentration. Nanosilica promoted seed germination percentage (100%) in maize than conventional Si sources. These studies show that nanosilica has favourable effect on beneficial bacterial population and nutrient value of soil.
Collapse
|
11
|
Hirajima T, Aiba Y, Farahat M, Okibe N, Sasaki K, Tsuruta T, Doi K. Effect of microorganisms on flocculation of quartz. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.minpro.2011.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Iwai S, Doi K, Fujino Y, Nakazono T, Fukuda K, Motomura Y, Ogata S. Silica deposition and phenotypic changes to Thermus thermophilus cultivated in the presence of supersaturated silicia. ISME JOURNAL 2010; 4:809-16. [DOI: 10.1038/ismej.2010.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Farahat M, Hirajima T, Sasaki K, Doi K. Adhesion of Escherichia coli onto quartz, hematite and corundum: extended DLVO theory and flotation behavior. Colloids Surf B Biointerfaces 2009; 74:140-9. [PMID: 19665879 DOI: 10.1016/j.colsurfb.2009.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/09/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
The adhesion of Escherichia coli onto quartz, hematite and corundum was experimentally investigated. A strain of E. coli was used that had the genes for expressing protein for silica precipitation. The maximum cell adhesion was observed at pH <4.3 for quartz and at pH 4.5-8.5 for corundum. For hematite, cell adhesion remained low at all pH values. The microbe-mineral adhesion was assessed by the extended DLVO theory approach. The essential parameters for calculation of microbe-mineral interaction energy (Hamaker constants and acid-base components) were experimentally determined. The extended DLVO approach could be used to explain the results of the adhesion experiments. The effect of E. coli on the floatability of three oxide minerals was determined and the results showed that E. coli can act as a selective collector for quartz at acidic pH values, with 90% of the quartz floated at 1.5 x 10(9)cells/ml. However, only 9% hematite and 30% corundum could be floated under similar conditions. By using E. coli and no reagents, it was possible to separate quartz from a hematite-quartz mixture with Newton's efficiency of 0.70. Removal of quartz from the corundum mixture was achieved by E. coli with Newton's efficiency of 0.62.
Collapse
Affiliation(s)
- Mohsen Farahat
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| | | | | | | |
Collapse
|