1
|
Dudley EG. The E. coli CRISPR-Cas conundrum: are they functional immune systems or genomic singularities? EcoSal Plus 2025:eesp00402020. [PMID: 40202350 DOI: 10.1128/ecosalplus.esp-0040-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025]
Abstract
The discovery and subsequent characterization and applications of CRISPR-Cas is one of the most fascinating scientific stories from the past two decades. While first identified in Escherichia coli, this microbial workhorse often took a back seat to other bacteria during the early race to detail CRISPR-Cas function as an adaptive immune system. This was not a deliberate slight, but the result of early observations that the CRISPR-Cas systems found in E. coli were not robust phage defense systems as first described in Streptococcus thermophilus. This apparent lack of activity was discovered to result from transcriptional repression by the nucleoid protein H-NS. Despite extensive evidence arguing against such roles, some studies still present E. coli CRISPR-Cas systems in the context of anti-phage and/or anti-plasmid activities. Here, the studies that led to our understanding of its cryptic nature are highlighted, along with ongoing research to uncover potential alternative functions in E. coli.
Collapse
Affiliation(s)
- Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Penn State E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Brandl MT, Hua SST, Sarreal SBL. Association of Escherichia coli O157:H7 Density Change with Hydrogen Peroxide but Not Carbohydrate Concentration in the Leaf Content of Different Lettuce Types and Spinach. Foods 2025; 14:709. [PMID: 40002152 PMCID: PMC11854576 DOI: 10.3390/foods14040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Leafy greens injuries occur from farm to table, causing leakage of cellular contents that promote the multiplication of foodborne pathogens and impose oxidative stress. Fresh beverages made from blended uncooked fruit and vegetables have become a popular food. The effect of cellular contents of different leafy greens on the multiplication of the important pathogen Escherichia coli O157:H7 (EcO157) under temperature abuse was investigated. Leafy greens consisted of spinach and different lettuce types (romaine, iceberg, butterhead, green leaf, and red leaf). Fructose, glucose, and sucrose concentrations in the leaves were quantified by HPLC. H2O2 concentration was measured via a peroxidase-based assay. Young leaves of iceberg, romaine, and green leaf lettuce held significantly greater total amounts of the three carbohydrates than middle-aged leaves. Except for iceberg and red leaf lettuce, all middle-aged leaves contained greater H2O2 than young leaves. EcO157 density change in leaf contents over 5 h incubation related neither to individual nor total carbohydrate concentration but was negatively associated with H2O2 concentration (regression analysis; p < 0.05). Given the common use of antioxidants to maintain the organoleptic aspects of homogenized produce beverages and certain fresh-cut produce, the antimicrobial effect of reactive oxygen species may be important to preserve in ensuring their microbial safety.
Collapse
Affiliation(s)
- Maria T. Brandl
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA
| | - Sui S. T. Hua
- Foodborne Toxin Detection and Protection Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA; (S.S.T.H.); (S.B.L.S.)
| | - Siov B. L. Sarreal
- Foodborne Toxin Detection and Protection Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA; (S.S.T.H.); (S.B.L.S.)
| |
Collapse
|
3
|
Cottam C, White RT, Beck LC, Stewart CJ, Beatson SA, Lowe EC, Grinter R, Connolly JPR. Metabolism of L-arabinose converges with virulence regulation to promote enteric pathogen fitness. Nat Commun 2024; 15:4462. [PMID: 38796512 PMCID: PMC11127945 DOI: 10.1038/s41467-024-48933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Virulence and metabolism are often interlinked to control the expression of essential colonisation factors in response to host-associated signals. Here, we identified an uncharacterised transporter of the dietary monosaccharide ʟ-arabinose that is widely encoded by the zoonotic pathogen enterohaemorrhagic Escherichia coli (EHEC), required for full competitive fitness in the mouse gut and highly expressed during human infection. Discovery of this transporter suggested that EHEC strains have an enhanced ability to scavenge ʟ-arabinose and therefore prompted us to investigate the impact of this nutrient on pathogenesis. Accordingly, we discovered that ʟ-arabinose enhances expression of the EHEC type 3 secretion system, increasing its ability to colonise host cells, and that the underlying mechanism is dependent on products of its catabolism rather than the sensing of ʟ-arabinose as a signal. Furthermore, using the murine pathogen Citrobacter rodentium, we show that ʟ-arabinose metabolism provides a fitness benefit during infection via virulence factor regulation, as opposed to supporting pathogen growth. Finally, we show that this mechanism is not restricted to ʟ-arabinose and extends to other pentose sugars with a similar metabolic fate. This work highlights the importance integrating central metabolism with virulence regulation in order to maximise competitive fitness of enteric pathogens within the host-niche.
Collapse
Affiliation(s)
- Curtis Cottam
- Newcastle University Biosciences Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Rhys T White
- Institute of Environmental Science and Research, Wellington, New Zealand
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren C Beck
- Newcastle University Translation and Clinical Research Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Christopher J Stewart
- Newcastle University Translation and Clinical Research Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Elisabeth C Lowe
- Newcastle University Biosciences Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James P R Connolly
- Newcastle University Biosciences Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK.
| |
Collapse
|
4
|
Poimenidou SV, Caccia N, Paramithiotis S, Hébraud M, Nychas GJ, Skandamis PN. Influence of temperature on regulation of key virulence and stress response genes in Listeria monocytogenes biofilms. Food Microbiol 2023; 111:104190. [PMID: 36681396 DOI: 10.1016/j.fm.2022.104190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Temperature is a major determinant of Listeria (L.) monocytogenes adherence and biofilm formation on abiotic surfaces. However, its role on gene regulation of L. monocytogenes mature biofilms has not been investigated. In the present study, we aimed to evaluate the impact of temperature up- and down-shift on L. monocytogenes biofilms gene transcription. L. monocytogenes strain EGD-e biofilms were first developed on stainless steel surfaces in Brain Heart Infusion broth at 20 °C for 48 h. Then, nutrient broth was renewed, and mature biofilms were exposed to 10 °C, 20 °C or 37 °C for 24 h. Biofilm cells were harvested and RNA levels of plcA, prfA, hly, mpl, plcB, sigB, bapL, fbpA, fbpB, lmo2178, lmo0880, lmo0160, lmo1115, lmo 2089, lmo2576, lmo0159 and lmo0627 were evaluated by quantitative RT-PCR. The results revealed an over-expression of all genes tested in biofilm cells compared to planktonic cells. When biofilms were further allowed to proliferate at 20 °C for 24 h, the transcription levels of key virulence, stress response and putative binding proteins genes plcA, sigB, fbpA, fbpB, lmo1115, lmo0880 and lmo2089 decreased. A temperature-dependent transcription for sigB, plcA, hly, and lmo2089 genes was observed after biofilm proliferation at 10 °C or 37 °C. Our findings suggest that temperature differentially affects gene regulation of L. monocytogenes mature biofilms, thus modulating attributes such as virulence, stress response and pathogenesis.
Collapse
Affiliation(s)
- Sofia V Poimenidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene. Iera Odos 75, 11855, Athens, Greece
| | - Nelly Caccia
- University Clermont Auvergne (UCA), Institut National de Recherche pour L'Agriculture, L'alimentation et L'environnement (INRAE), UMR Microbiologie, Environnement Digestif et Santé (MEDiS), Site de Theix, F-63122 Saint-Genès Champanelle, France
| | - Spiros Paramithiotis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene. Iera Odos 75, 11855, Athens, Greece; Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Process Engineering. Iera Odos 75, 11855, Athens, Greece
| | - Michel Hébraud
- University Clermont Auvergne (UCA), Institut National de Recherche pour L'Agriculture, L'alimentation et L'environnement (INRAE), UMR Microbiologie, Environnement Digestif et Santé (MEDiS), Site de Theix, F-63122 Saint-Genès Champanelle, France
| | - George-John Nychas
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Microbiology and Biotechnology. Iera Odos 75, 11855, Athens, Greece
| | - Panagiotis N Skandamis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene. Iera Odos 75, 11855, Athens, Greece.
| |
Collapse
|
5
|
Esmael A, Al-Hindi RR, Albiheyri RS, Alharbi MG, Filimban AAR, Alseghayer MS, Almaneea AM, Alhadlaq MA, Ayubu J, Teklemariam AD. Fresh Produce as a Potential Vector and Reservoir for Human Bacterial Pathogens: Revealing the Ambiguity of Interaction and Transmission. Microorganisms 2023; 11:microorganisms11030753. [PMID: 36985326 PMCID: PMC10056104 DOI: 10.3390/microorganisms11030753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The consumer demand for fresh produce (vegetables and fruits) has considerably increased since the 1980s for more nutritious foods and healthier life practices, particularly in developed countries. Currently, several foodborne outbreaks have been linked to fresh produce. The global rise in fresh produce associated with human infections may be due to the use of wastewater or any contaminated water for the cultivation of fruits and vegetables, the firm attachment of the foodborne pathogens on the plant surface, and the internalization of these agents deep inside the tissue of the plant, poor disinfection practices and human consumption of raw fresh produce. Several investigations have been established related to the human microbial pathogens (HMPs) interaction, their internalization, and survival on/within plant tissue. Previous studies have displayed that HMPs are comprised of several cellular constituents to attach and adapt to the plant’s intracellular niches. In addition, there are several plant-associated factors, such as surface morphology, nutrient content, and plant–HMP interactions, that determine the internalization and subsequent transmission to humans. Based on documented findings, the internalized HMPs are not susceptible to sanitation or decontaminants applied on the surface of the fresh produce. Therefore, the contamination of fresh produce by HMPs could pose significant food safety hazards. This review provides a comprehensive overview of the interaction between fresh produce and HMPs and reveals the ambiguity of interaction and transmission of the agents to humans.
Collapse
Affiliation(s)
- Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (A.E.); (R.R.A.)
| | - Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.E.); (R.R.A.)
| | - Raed S. Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani A. R. Filimban
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mazen S. Alseghayer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Abdulaziz M. Almaneea
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Meshari Ahmed Alhadlaq
- Molecular Biology Section, Reference Laboratory for Microbiology Department, Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Jumaa Ayubu
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Serratia marcescens DUF1471-Containing Protein SrfN Is Needed for Adaptation to Acid and Oxidative Stresses. mSphere 2022; 7:e0021222. [PMID: 36218346 PMCID: PMC9769812 DOI: 10.1128/msphere.00212-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bacteria can quickly adapt to constantly changing environments through a number of mechanisms, including secretion of secondary metabolites, peptides, and proteins. Serratia marcescens, an emerging pathogen with growing clinical importance due to its intrinsic resistance to several classes of antibiotics, can cause an array of infections in immunocompromised individuals. To better control the spread of S. marcescens infections, it is critical to identify additional targets for bacterial growth inhibition. We found that extracellular metabolites produced by the wild-type organism in response to peroxide exposure had a protective effect on an otherwise-H2O2-sensitive ΔmacAB indicator strain. Detailed analysis of the conditioned medium demonstrated that the protective effect was associated with a low-molecular-weight heat-sensitive and proteinase K-sensitive metabolite. Furthermore, liquid chromatography-tandem mass spectrometry analysis of the low-molecular-weight proteins present in the conditioned medium led to identification of the previously uncharacterized DUF1471-containing protein TBU67220 (SrfN). We found that loss of the srfN gene did not have an impact on the production of extracellular enzymes. However, the S. marcescens mutant lacking SrfN was significantly more sensitive to growth in medium with a low pH and to exposure to oxidative stress. Both defects were fully rescued by complementation. Thus, our results indicate that SrfN, a low-molecular-weight DUF1471-containing protein, is involved in S. marcescens SM6 adaptation to adverse environmental conditions. IMPORTANCE Serratia marcescens is ubiquitous in the environment and can survive in water, soil, plants, insects, and animals, and it can also cause infections in humans. In the face of disturbances such as oxidative or low-pH stress, bacteria adapt, survive, and recover through several mechanisms, including changes in their secretome. We show that a hydrogen peroxide-exposed S. marcescens milieu contains a small previously uncharacterized DUF1471-containing protein similar to the SrfN protein in Salmonella enterica serovar Typhimurium, and we illustrate the role of this protein in bacterial survival during acid and oxidative stresses.
Collapse
|
7
|
Zhao X, Sun Y, Ma Y, Xu Y, Guan H, Wang D. Research advances on the contamination of vegetables by Enterohemorrhagic Escherichia coli: pathways, processes and interaction. Crit Rev Food Sci Nutr 2022; 64:4833-4847. [PMID: 36377729 DOI: 10.1080/10408398.2022.2146045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterohemorrhagic Escherichia coli is considered one of the primary bacterial pathogens that cause foodborne diseases because it can survive in meat, vegetables and so on. Understanding of the effect of vegetable characteristics on the adhesion and proliferation process of EHEC is necessary to develop control measures. In this review, the amount and methods of adhesion, the internalization pathway and proliferation process of EHEC have been described during the vegetable contamination. Types, cultivars, tissue characteristics, leaf age, and damage degree can affect EHEC adhesion on vegetables. EHEC cells contaminate the root surface of vegetables through soil and further internalize. It can also contaminate the stem scar tissue of vegetables by rain or irrigation water and internalize the vertical axis, as well as the stomata, necrotic lesions and damaged tissues of vegetable leaves. After EHEC adhered to the vegetables, they may further proliferate and form biofilms. Leaf and fruit tissues were more sensitive to biofilm formation, and shedding rate of biofilms on epidermis tissue was faster. Insights into the mechanisms of vegetable contamination by EHEC, including the role of exopolysaccharides and proteins responsible for movement, adhesion and oxidative stress response could reveal the molecular mechanism by which EHEC contaminates vegetables.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yeting Sun
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yujia Xu
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongyang Guan
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
8
|
Leonard SR, Simko I, Mammel MK, Richter TKS, Brandl MT. Seasonality, shelf life and storage atmosphere are main drivers of the microbiome and E. coli O157:H7 colonization of post-harvest lettuce cultivated in a major production area in California. ENVIRONMENTAL MICROBIOME 2021; 16:25. [PMID: 34930479 PMCID: PMC8686551 DOI: 10.1186/s40793-021-00393-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/30/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lettuce is linked to recurrent outbreaks of Shiga toxin-producing Escherichia coli (STEC) infections, the seasonality of which remains unresolved. Infections have occurred largely from processed lettuce, which undergoes substantial physiological changes during storage. We investigated the microbiome and STEC O157:H7 (EcO157) colonization of fresh-cut lettuce of two cultivars with long and short shelf life harvested in the spring and fall in California and stored in modified atmosphere packaging (MAP) at cold and warm temperatures. RESULTS Inoculated EcO157 declined significantly less on the cold-stored cultivar with short shelf life, while multiplying rapidly at 24 °C independently of cultivar. Metagenomic sequencing of the lettuce microbiome revealed that the pre-storage bacterial community was variable but dominated by species in the Erwiniaceae and Pseudomonadaceae. After cold storage, the microbiome composition differed between cultivars, with a greater relative abundance (RA) of Erwiniaceae and Yersiniaceae on the cultivar with short shelf life. Storage at 24 °C shifted the microbiome to higher RAs of Erwiniaceae and Enterobacteriaceae and lower RA of Pseudomonadaceae compared with 6 °C. Fall harvest followed by lettuce deterioration were identified by recursive partitioning as important factors associated with high EcO157 survival at 6 °C, whereas elevated package CO2 levels correlated with high EcO157 multiplication at 24 °C. EcO157 population change correlated with the lettuce microbiome during 6 °C storage, with fall microbiomes supporting the greatest EcO157 survival on both cultivars. Fall and spring microbiomes differed before and during storage at both temperatures. High representation of Pantoea agglomerans was a predictor of fall microbiomes, lettuce deterioration, and enhanced EcO157 survival at 6 °C. In contrast, higher RAs of Erwinia persicina, Rahnella aquatilis, and Serratia liquefaciens were biomarkers of spring microbiomes and lower EcO157 survival. CONCLUSIONS The microbiome of processed MAP lettuce evolves extensively during storage. Under temperature abuse, high CO2 promotes a lettuce microbiome enriched in taxa with anaerobic capability and EcO157 multiplication. In cold storage, our results strongly support a role for season and lettuce deterioration in EcO157 survival and microbiome composition, suggesting that the physiology and microbiomes of fall- and spring-harvested lettuce may contribute to the seasonality of STEC outbreaks associated with lettuce grown in coastal California.
Collapse
Affiliation(s)
- Susan R Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Ivan Simko
- Crop Improvement and Protection Research Unit, US Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Mark K Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Taylor K S Richter
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Maria T Brandl
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Albany, CA, USA.
| |
Collapse
|
9
|
Jacob C, Velásquez AC, Josh NA, Settles M, He SY, Melotto M. Dual transcriptomic analysis reveals metabolic changes associated with differential persistence of human pathogenic bacteria in leaves of Arabidopsis and lettuce. G3 (BETHESDA, MD.) 2021; 11:jkab331. [PMID: 34550367 PMCID: PMC8664426 DOI: 10.1093/g3journal/jkab331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/09/2021] [Indexed: 11/14/2022]
Abstract
Understanding the molecular determinants underlying the interaction between the leaf and human pathogenic bacteria is key to provide the foundation to develop science-based strategies to prevent or decrease the pathogen contamination of leafy greens. In this study, we conducted a dual RNA-sequencing analysis to simultaneously define changes in the transcriptomic profiles of the plant and the bacterium when they come in contact. We used an economically relevant vegetable crop, lettuce (Lactuca sativa L. cultivar Salinas), and a model plant, Arabidopsis thaliana Col-0, as well as two pathogenic bacterial strains that cause disease outbreaks associated with fresh produce, Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium 14028s (STm 14028s). We observed commonalities and specificities in the modulation of biological processes between Arabidopsis and lettuce and between O157:H7 and STm 14028s during early stages of the interaction. We detected a larger alteration of gene expression at the whole transcriptome level in lettuce and Arabidopsis at 24 h post inoculation with STm 14028s compared to that with O157:H7. In addition, bacterial transcriptomic adjustments were substantially larger in Arabidopsis than in lettuce. Bacterial transcriptome was affected at a larger extent in the first 4 h compared to the subsequent 20 h after inoculation. Overall, we gained valuable knowledge about the responses and counter-responses of both bacterial pathogen and plant host when these bacteria are residing in the leaf intercellular space. These findings and the public genomic resources generated in this study are valuable for additional data mining.
Collapse
Affiliation(s)
- Cristián Jacob
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Sciences, Horticulture and Agronomy Graduate Group, University of California, Davis, Davis, CA 95616, USA
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - André C Velásquez
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Nikhil A Josh
- Bioinformatics Core Facility in the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Matthew Settles
- Bioinformatics Core Facility in the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Sheng Yang He
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
George AS, Brandl MT. Plant Bioactive Compounds as an Intrinsic and Sustainable Tool to Enhance the Microbial Safety of Crops. Microorganisms 2021; 9:2485. [PMID: 34946087 PMCID: PMC8704493 DOI: 10.3390/microorganisms9122485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022] Open
Abstract
Outbreaks of produce-associated foodborne illness continue to pose a threat to human health worldwide. New approaches are necessary to improve produce safety. Plant innate immunity has potential as a host-based strategy for the deactivation of enteric pathogens. In response to various biotic and abiotic threats, plants mount defense responses that are governed by signaling pathways. Once activated, these result in the release of reactive oxygen and nitrogen species in addition to secondary metabolites that aim at tempering microbial infection and pest attack. These phytochemicals have been investigated as alternatives to chemical sanitization, as many are effective antimicrobial compounds in vitro. Their antagonistic activity toward enteric pathogens may also provide an intrinsic hurdle to their viability and multiplication in planta. Plants can detect and mount basal defenses against enteric pathogens. Evidence supports the role of plant bioactive compounds in the physiology of Salmonella enterica, Escherichia coli, and Listeria monocytogenes as well as their fitness on plants. Here, we review the current state of knowledge of the effect of phytochemicals on enteric pathogens and their colonization of plants. Further understanding of the interplay between foodborne pathogens and the chemical environment on/in host plants may have lasting impacts on crop management for enhanced microbial safety through translational applications in plant breeding, editing technologies, and defense priming.
Collapse
Affiliation(s)
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA;
| |
Collapse
|
11
|
Yang L, Guan D, Valls M, Ding W. Sustainable natural bioresources in crop protection: antimicrobial hydroxycoumarins induce membrane depolarization-associated changes in the transcriptome of Ralstonia solanacearum. PEST MANAGEMENT SCIENCE 2021; 77:5170-5185. [PMID: 34255407 DOI: 10.1002/ps.6557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ralstonia solanacearum is one of the most devastating pathogens affecting crop production worldwide. The hydroxycoumarins (umbelliferone, esculetin and daphnetin) represent sustainable natural bioresources on controlling plant bacterial wilt. However, the antibacterial mechanism of hydroxycoumarins against plant pathogens still remains poorly understood. RESULTS Here we characterized the effect of three hydroxycoumarins on the transcriptome of R. solanacearum. All three hydroxycoumarins were able to kill R. solanacearum, but their antibacterial activity impacted differently the bacterial transcriptome, indicating that their modes of action might be different. Treatment of R. solanacearum cultures with hydroxycoumarins resulted in a large number of differentially expressed genes (DEGs), involved in basic cellular functions and metabolic process, such as down-regulation of genes involved in fatty acid synthesis, lipopolysaccharides biosynthesis, RNA modification, ribosomal submits, oxidative phosphorylation and electrontransport, as well as up-regulation of genes involved in transcriptional regulators, drug efflux, and oxidative stress responses. Future studies based on in vitro experiments are proposed to investigate lipopolysaccharides biosynthesis pathway leading to R. solanacearum cell death caused by hydroxycoumarins. Deletion of lpxB substantially inhibited the growth of R. solanacearum, and reduced virulence of pathogen on tobacco plants. CONCULSION Our transcriptomic analyses show that specific hydroxycoumarins suppressed gene expression involved in fatty acid synthesis, RNA modification, ribosomal submits, oxidative phosphorylation and electrontransport. These findings provide evidence that hydroxycoumarins inhibit R. solanacearum growth through multi-target effect. Hydroxycoumarins could serve as sustainable natural bioresources against plant bacterial wilt through membrane destruction targeting the lipopolysaccharides biosynthesis pathway.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Genetics Section, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Kocer K, Klein S, Hildebrand D, Krall J, Heeg K, Boutin S, Nurjadi D. Pitfalls in genotypic antimicrobial susceptibility testing caused by low expression of blaKPC in Escherichia coli. J Antimicrob Chemother 2021; 76:2795-2801. [PMID: 34324652 DOI: 10.1093/jac/dkab267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is a growing interest in the rapid genotypic identification of antimicrobial resistance (AMR). In routine diagnostics, we detected multiple KPC-positive Escherichia coli (KPC-Ec) with discordant phenotypic meropenem susceptibility from a single patient's blood cultures, which prompted a more thorough investigation. OBJECTIVES We investigated the potential clinical relevance of, and the mechanism behind, discordant phenotypic and genotypic meropenem susceptibility in KPC-Ec. METHODS WGS was used to perform a comparative analysis of the isolates' genetic characteristics and their blaKPC-2 locus. Expression of blaKPC-2 was determined by quantitative PCR and the potency of meropenem hydrolysis was determined using a semi-quantitative carbapenem inactivation method. An in vivo infection assay using Galleria mellonella was performed to assess the potential clinical relevance of KPC expression in E. coli. RESULTS Despite the presence of blaKPC-2, three of five isolates were susceptible to meropenem (MICVITEK2 ≤ 0.25 mg/L), while two isolates were resistant (MICVITEK2 ≥ 16 mg/L). The isolates with high MICs had significantly higher blaKPC-2 expression, which corresponds to phenotypic meropenem inactivation. The genetic environment of blaKPC-2, which may impact KPC production, was identical in all isolates. In vivo infection assay with G. mellonella suggested that meropenem was effective in reducing mortality following infection with low-expressing KPC-Ec. CONCLUSIONS Our findings clearly highlight a limitation of genotypic AMR prediction for blaKPC. For the time being, genotypic AMR prediction requires additional analysis for accurate antibiotic therapy decision-making.
Collapse
Affiliation(s)
- Kaan Kocer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sabrina Klein
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Johannes Krall
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Abstract
Production of the biosurfactant syringafactin by the plant pathogen Pseudomonas syringae B728a is a surface contact-dependent trait. Expression of syfA, as measured using a gfp reporter gene fusion was low in planktonic cells in liquid cultures but over 4-fold higher in cells immobilized on surfaces as varied as glass, plastic, paper, parafilm, agar, membrane filters, and leaves. Induction of syfA as measured by GFP fluorescence was rapid, occurring within two hours after immobilization of cells on surfaces. Comparison of the global transcriptome by RNA sequencing of planktonic cells in a nutrient medium with that of cells immobilized for 2 hours on filters placed on this solidified medium revealed that, in addition to syfA, 3156 other genes were differentially expressed. Genes repressed in immobilized cells included those involved in quaternary ammonium compound (QAC) metabolism and transport, compatible solute production, carbohydrate metabolism and transport, organic acid metabolism and transport, phytotoxin synthesis and transport, amino acid metabolism and transport, and secondary metabolism. Genes induced in immobilized cells included syfA plus those involved in translation, siderophore synthesis and transport, nucleotide metabolism and transport, flagellar synthesis and motility, lipopolysaccharide (LPS) synthesis and transport, energy generation, transcription, chemosensing and chemotaxis, replication and DNA repair, iron-sulfur proteins, peptidoglycan/cell wall polymers, terpenoid backbone synthesis, iron metabolism and transport, and cell division. That many genes are rapidly differentially expressed upon transfer of cells from a planktonic to an immobilized state suggests that cells experience the two environments differently. It seems possible that surface contact initiates anticipatory changes in P. syringae gene expression, which enables rapid and appropriate physiological responses to the different environmental conditions such as might occur in a biofilm. Such responses could help cells survive transitions from aquatic habitats fostering planktonic traits to attachment on surfaces, conditions that alternatively occur on leaves.
Collapse
|
14
|
Taxonomic and Functional Shifts in the Sprout Spent Irrigation Water Microbiome in Response to Salmonella Contamination of Alfalfa Seeds. Appl Environ Microbiol 2021; 87:AEM.01811-20. [PMID: 33218999 DOI: 10.1128/aem.01811-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
Despite recent advances in Salmonella-sprout research, little is known about the relationship between Salmonella and the sprout microbiome during sprouting. Sprout spent irrigation water (SSIW) provides an informative representation of the total microbiome of this primarily aquaponic crop. This study was designed to characterize the function and taxonomy of the most actively transcribed genes in SSIW from Salmonella enterica serovar Cubana-contaminated alfalfa seeds throughout the sprouting process. Genomic DNA and total RNA from SSIW was collected at regular intervals and sequenced using Illumina MiSeq and NextSeq platforms. Nucleic acid data were annotated using four different pipelines. Both metagenomic and metatranscriptomic analyses revealed a diverse and highly dynamic SSIW microbiome. A "core" SSIW microbiome comprised Klebsiella, Enterobacter, Pantoea, and Cronobacter The impact, however, of Salmonella contamination on alfalfa seeds influenced SSIW microbial community dynamics not only structurally but also functionally. Changes in genes associated with metabolism, genetic information processing, environmental information processing, and cellular processes were abundant and time dependent. At time points of 24 h, 48 h, and 96 h, totals of 541, 723, and 424 S Cubana genes, respectively, were transcribed at either higher or lower levels than at 0 h in SSIW during sprouting. An array of S Cubana genes (107) were induced at all three time points, including genes involved in biofilm formation and modulation, stress responses, and virulence and tolerance to antimicrobials. Taken together, these findings expand our understanding of the effect of Salmonella seed contamination on the sprout crop microbiome and metabolome.IMPORTANCE Interactions of human enteric pathogens like Salmonella with plants and plant microbiomes remain to be elucidated. The rapid development of next-generation sequencing technologies provides powerful tools enabling investigation of such interactions from broader and deeper perspectives. Using metagenomic and metatranscriptomic approaches, this study identified not only changes in microbiome structure of SSIW associated with sprouting but also changes in the gene expression patterns related to the sprouting process in response to Salmonella contamination of alfalfa seeds. This study advances our knowledge on Salmonella-plant (i.e., sprout) interaction.
Collapse
|
15
|
George AS, Rehfuss MYM, Parker CT, Brandl MT. The transcriptome of Escherichia coli O157: H7 reveals a role for oxidative stress resistance in its survival from predation by Tetrahymena. FEMS Microbiol Ecol 2020; 96:5721237. [PMID: 32009174 DOI: 10.1093/femsec/fiaa014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 11/14/2022] Open
Abstract
Pathogenic E. coli remains undigested upon phagocytosis by Tetrahymena and is egested from the ciliate as viable cells in its fecal pellets. Factors that are involved in the survival of Shiga toxin-producing E. coli serovar O157: H7 (EcO157) from digestion by Tetrahymena were identified by microarray analysis of its transcriptome in the protozoan phagosome. Numerous genes belonging to anaerobic metabolism and various stress responses were upregulated significantly ≥ 2-fold in EcO157 cells in the food vacuoles compared with in planktonic cells that remained uningested by the protist. Among these were the oxidative stress response genes, ahpF and katG. Fluorescence microscopy and staining with CellROX® Orange confirmed the presence of reactive oxygen species in food vacuoles containing EcO157 cells. Frequency distribution analysis of the percentage of EcO157 viable cells in Tetrahymena fecal pellets revealed that the ΔahpCF and ΔahpCFΔkatG mutants were less fit than the wild type strain and ΔkatG mutant after passage through the protist. Given the broad use of oxidants as sanitizers in the food industry, our observation of the oxidative stress response in EcO157 during its interaction with Tetrahymena emphasizes the importance of furthering our knowledge of the physiology of this human pathogen in environments relevant to its ecology and to food safety.
Collapse
Affiliation(s)
- Andree Sherlon George
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Marc Yi Ming Rehfuss
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Craig Thomas Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Maria Theresa Brandl
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| |
Collapse
|
16
|
Holmes A, Pritchard L, Hedley P, Morris J, McAteer SP, Gally DL, Holden NJ. A high-throughput genomic screen identifies a role for the plasmid-borne type II secretion system of Escherichia coli O157:H7 (Sakai) in plant-microbe interactions. Genomics 2020; 112:4242-4253. [PMID: 32663607 DOI: 10.1016/j.ygeno.2020.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 01/16/2023]
Abstract
Shiga-toxigenic Escherichia coli (STEC) is often transmitted into food via fresh produce plants, where it can cause disease. To identify early interaction factors for STEC on spinach, a high-throughput positive-selection system was used. A bacterial artificial chromosome (BAC) clone library for isolate Sakai was screened in four successive rounds of short-term (2 h) interaction with spinach roots, and enriched loci identified by microarray. A Bayesian hierarchical model produced 115 CDS credible candidates, comprising seven contiguous genomic regions. Of the two candidate regions selected for functional assessment, the pO157 plasmid-encoded type two secretion system (T2SS) promoted interactions, while a chaperone-usher fimbrial gene cluster (loc6) did not. The T2SS promoted bacterial binding to spinach and appeared to involve the EtpD secretin protein. Furthermore, the T2SS genes, etpD and etpC, were expressed at a plant-relevant temperature of 18 °C, and etpD was expressed in planta by E. coli Sakai on spinach plants.
Collapse
Affiliation(s)
- Ashleigh Holmes
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Leighton Pritchard
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, UK.; Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Peter Hedley
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Jenny Morris
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Sean P McAteer
- The Roslin Institute, Division of Infection and Immunity, University of Edinburgh, R(D)SVS, The Roslin Institute Building, Easter Bush, EH25 9RG, UK
| | - David L Gally
- The Roslin Institute, Division of Infection and Immunity, University of Edinburgh, R(D)SVS, The Roslin Institute Building, Easter Bush, EH25 9RG, UK
| | - Nicola J Holden
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, UK.; SRUC, Northern Faculty, Aberdeen, AB21 9YA, UK..
| |
Collapse
|
17
|
Disayathanoowat T, Li H, Supapimon N, Suwannarach N, Lumyong S, Chantawannakul P, Guo J. Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms 2020; 8:microorganisms8020264. [PMID: 32075309 PMCID: PMC7074699 DOI: 10.3390/microorganisms8020264] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study investigated both bacterial and fungal communities in corbicular pollen and hive-stored bee bread of two commercial honey bees, Apis mellifera and Apis cerana, in China. Although both honey bees favor different main floral sources, the dynamics of each microbial community is similar. During pH reduction in hive-stored bee bread, results from conventional culturable methods and next-generation sequencing showed a declining bacterial population but a stable fungal population. Different honey bee species and floral sources might not affect the core microbial community structure but could change the number of bacteria. Corbicular pollen was colonized by the Enterobacteriaceae bacterium (Escherichia-Shiga, Panteoa, Pseudomonas) group; however, the number of bacteria significantly decreased in hive-stored bee bread in less than 72 h. In contrast, Acinetobacter was highly abundant and could utilize protein sources. In terms of the fungal community, the genus Cladosporium remained abundant in both corbicular pollen and hive-stored bee bread. This filamentous fungus might encourage honey bees to reserve pollen by releasing organic acids. Furthermore, several filamentous fungi had the potential to inhibit both commensal/contaminant bacteria and the growth of pathogens. Filamentous fungi, in particular, the genus Cladosporium, could support pollen preservation of both honey bee species.
Collapse
Affiliation(s)
- Terd Disayathanoowat
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (T.D.); (J.G.)
| | - HuanYuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Natapon Supapimon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Correspondence: (T.D.); (J.G.)
| |
Collapse
|
18
|
Thao S, Brandl MT, Carter MQ. Enhanced formation of shiga toxin-producing Escherichia coli persister variants in environments relevant to leafy greens production. Food Microbiol 2019; 84:103241. [DOI: 10.1016/j.fm.2019.103241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023]
|
19
|
The Role of Pathogenic E. coli in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures. Int J Microbiol 2019; 2019:2894328. [PMID: 31885595 PMCID: PMC6899298 DOI: 10.1155/2019/2894328] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
Many raw vegetables, such as tomato, chili, onion, lettuce, arugula, spinach, and cilantro, are incorporated into fresh dishes including ready-to-eat salads and sauces. The consumption of these foods confers a high nutritional value to the human diet. However, the number of foodborne outbreaks associated with fresh produce has been increasing, with Escherichia coli being the most common pathogen associated with them. In humans, pathogenic E. coli strains cause diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, and other indications. Vegetables can be contaminated with E. coli at any point from pre- to postharvest. This bacterium is able to survive in many environmental conditions due to a variety of mechanisms, such as adhesion to surfaces and internalization in fresh products, thereby limiting the usefulness of conventional processing and chemical sanitizing methods used by the food industry. The aim of this review is to provide a general description of the behavior and importance of pathogenic E. coli in ready-to-eat vegetable dishes. This information can contribute to the development of effective control measures for enhancing food safety.
Collapse
|
20
|
Tyagi D, Kraft AL, Levadney Smith S, Roof SE, Sherwood JS, Wiedmann M, Bergholz TM. Pre-Harvest Survival and Post-Harvest Chlorine Tolerance of Enterohemorrhagic Escherichia coli on Lettuce. Toxins (Basel) 2019; 11:E675. [PMID: 31752303 PMCID: PMC6891304 DOI: 10.3390/toxins11110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
In the field, foodborne pathogens such as enterohemorrhagic Escherichia coli (EHEC) are capable of surviving on produce over time, yet little is known about how these pathogens adapt to this environment. To assess the impact of pre-harvest environmental conditions on EHEC survival, we quantified survival on romaine lettuce under two relative humidity (75% and 45%) and seasonal conditions (March and June). Greenhouse-grown lettuce was spray-inoculated with EHEC and placed in a growth chamber, mimicking conditions typical for June and March in Salinas Valley, California. Bacteria were enumerated on days 0, 1, 3, and 5 post-inoculation. Overall, we found that the effect of relative humidity on EHEC survival depended on the seasonal conditions. Under June seasonal conditions, higher relative humidity led to lower survival, and lower relative humidity led to greater survival, five days post-inoculation. Under March seasonal conditions, the impact of relative humidity on EHEC survival was minimal over the five days. The bacteria were also tested for their ability to survive a chlorine decontamination wash. Inoculated lettuce was incubated under the June 75% relative humidity conditions and then washed with a 50 ppm sodium hypochlorite solution (40 ppm free chlorine). When incubated under June seasonal conditions for three to five days, EHEC strains showed increased tolerance to chlorine (adj. p < 0.05) compared to chlorine tolerance upon inoculation onto lettuce. This indicated that longer incubation on lettuce led to greater EHEC survival upon exposure to chlorine. Subsequent transcriptome analysis identified the upregulation of osmotic and oxidative stress response genes by EHEC after three and five days of incubation on pre-harvest lettuce. Assessing the physiological changes in EHEC that occur during association with pre-harvest lettuce is important for understanding how changing tolerance to post-harvest control measures may occur.
Collapse
Affiliation(s)
- Deepti Tyagi
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Autumn L Kraft
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Sara Levadney Smith
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Sherry E Roof
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Julie S Sherwood
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Teresa M Bergholz
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
21
|
Bufe T, Hennig A, Klumpp J, Weiss A, Nieselt K, Schmidt H. Differential transcriptome analysis of enterohemorrhagic Escherichia coli strains reveals differences in response to plant-derived compounds. BMC Microbiol 2019; 19:212. [PMID: 31488056 PMCID: PMC6729007 DOI: 10.1186/s12866-019-1578-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/25/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Several serious vegetable-associated outbreaks of enterohemorrhagic Escherichia coli (EHEC) infections have occurred during the last decades. In this context, vegetables have been suggested to function as secondary reservoirs for EHEC strains. Increased knowledge about the interaction of EHEC with plants including gene expression patterns in response to plant-derived compounds is required. In the current study, EHEC O157:H7 strain Sakai, EHEC O157:H- strain 3072/96, and the EHEC/enteroaggregative E. coli (EAEC) hybrid O104:H4 strain C227-11φcu were grown in lamb's lettuce medium and in M9 minimal medium to study the differential transcriptional response of these strains to plant-derived compounds with RNA-Seq technology. RESULTS Many genes involved in carbohydrate degradation and peptide utilization were similarly upregulated in all three strains, suggesting that the lamb's lettuce medium provides sufficient nutrients for proliferation. In particular, the genes galET and rbsAC involved in galactose metabolism and D-ribose catabolism, respectively, were uniformly upregulated in the investigated strains. The most prominent differences in shared genome transcript levels were observed for genes involved in the expression of flagella. Transcripts of all three classes of the flagellar hierarchy were highly abundant in strain C227-11φcu. Strain Sakai expressed only genes encoding the basal flagellar structure. In addition, both strains showed increased motility in presence of lamb's lettuce extract. Moreover, strain 3072/96 showed increased transcription activity for genes encoding the type III secretion system (T3SS) including effectors, and was identified as a powerful biofilm-producer in M9 minimal medium. CONCLUSION The current study provides clear evidence that EHEC and EHEC/EAEC strains are able to adjust their gene expression patterns towards metabolization of plant-derived compounds, demonstrating that they may proliferate well in a plant-associated environment. Moreover, we propose that flagella and other surface structures play a fundamental role in the interaction of EHEC and EHEC/EAEC with plants.
Collapse
Affiliation(s)
- Thorsten Bufe
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - André Hennig
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Agnes Weiss
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| |
Collapse
|
22
|
Na H, Kim Y, Kim D, Yoon H, Ryu S. Transcriptomic Analysis of Shiga Toxin-Producing Escherichia coli FORC_035 Reveals the Essential Role of Iron Acquisition for Survival in Canola Sprouts and Water Dropwort. Front Microbiol 2018; 9:2397. [PMID: 30349522 PMCID: PMC6186786 DOI: 10.3389/fmicb.2018.02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/19/2018] [Indexed: 12/03/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that poses a serious threat to humans. Although EHEC is problematic mainly in food products containing meat, recent studies have revealed that many EHEC-associated foodborne outbreaks were attributable to spoiled produce such as sprouts and green leafy vegetables. To understand how EHEC adapts to the environment in fresh produce, we exposed the EHEC isolate FORC_035 to canola spouts (Brassica napus) and water dropwort (Oenanthe javanica) and profiled the transcriptome of this pathogen at 1 and 3 h after incubation with the plant materials. Transcriptome analysis revealed that the expression of genes associated with iron uptake were down-regulated during adaptation to plant tissues. A mutant strain lacking entB, presumably defective in enterobactin biosynthesis, had growth defects in co-culture with water dropwort, and the defective phenotype was complemented by the addition of ferric ion. Furthermore, gallium treatment to block iron uptake inhibited bacterial growth on water dropwort and also hampered biofilm formation. Taken together, these results indicate that iron uptake is essential for the fitness of EHEC in plants and that gallium can be used to prevent the growth of this pathogen in fresh produce.
Collapse
Affiliation(s)
- Hongjun Na
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yeonkyung Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Dajeong Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
23
|
Xue R, Feng J, Ma L, Liu C, Xian M, Konkel ME, Wang S, Lu X. Whole Transcriptome Sequencing Analysis of the Synergistic Antimicrobial Effect of Metal Oxide Nanoparticles and Ajoene on Campylobacter jejuni. Front Microbiol 2018; 9:2074. [PMID: 30233546 PMCID: PMC6127312 DOI: 10.3389/fmicb.2018.02074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022] Open
Abstract
Two metal oxide (i.e., Al2O3 and TiO2) nanoparticles and ajoene, a garlic-derived organosulfur compound, were identified to be effective antimicrobials against Campylobacter jejuni, a leading cause of human gastrointestinal diseases worldwide. A significant synergistic antimicrobial effect was observed using ajoene and Al2O3/TiO2 nanoparticles in a combined manner to cause at least 8 log10 CFU/mL reduction of C. jejuni cells. Whole transcriptome sequencing (RNA-seq) and confocal micro-Raman spectroscopic analyses revealed the antimicrobial mechanism and identified the roles of ajoene and metal oxide nanoparticles in the synergistic treatment. Ajoene and metal oxide nanoparticles mediated a two-phase antimicrobial mechanism. Ajoene served as the inducing factor at the first phase that caused injury of cell membranes and increased the susceptibility of C. jejuni to stress. Metal oxide nanoparticles served as the active factor at the second phase that targeted sensitive cells and physically disrupted cell structure. This synergistic antimicrobial treatment demonstrates a potential to reduce the prevalence of C. jejuni and other pathogens on food contact surfaces and in the food chain.
Collapse
Affiliation(s)
- Rui Xue
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China.,Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Jinsong Feng
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Lina Ma
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Chunrong Liu
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaonan Lu
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Mogren L, Windstam S, Boqvist S, Vågsholm I, Söderqvist K, Rosberg AK, Lindén J, Mulaosmanovic E, Karlsson M, Uhlig E, Håkansson Å, Alsanius B. The Hurdle Approach-A Holistic Concept for Controlling Food Safety Risks Associated With Pathogenic Bacterial Contamination of Leafy Green Vegetables. A Review. Front Microbiol 2018; 9:1965. [PMID: 30197634 PMCID: PMC6117429 DOI: 10.3389/fmicb.2018.01965] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023] Open
Abstract
Consumers appreciate leafy green vegetables such as baby leaves for their convenience and wholesomeness and for adding a variety of tastes and colors to their plate. In Western cuisine, leafy green vegetables are usually eaten fresh and raw, with no step in the long chain from seed to consumption where potentially harmful microorganisms could be completely eliminated, e.g., through heating. A concerning trend in recent years is disease outbreaks caused by various leafy vegetable crops and one of the most important foodborne pathogens in this context is Shiga toxin-producing Escherichia coli (STEC). Other pathogens such as Salmonella, Shigella, Yersinia enterocolitica and Listeria monocytogenes should also be considered in disease risk analysis, as they have been implicated in outbreaks associated with leafy greens. These pathogens may enter the horticultural value network during primary production in field or greenhouse via irrigation, at harvest, during processing and distribution or in the home kitchen/restaurant. The hurdle approach involves combining several mitigating approaches, each of which is insufficient on its own, to control or even eliminate pathogens in food products. Since the food chain system for leafy green vegetables contains no absolute kill step for pathogens, use of hurdles at critical points could enable control of pathogens that pose a human health risk. Hurdles should be combined so as to decrease the risk due to pathogenic microbes and also to improve microbial stability, shelf-life, nutritional properties and sensory quality of leafy vegetables. The hurdle toolbox includes different options, such as physical, physiochemical and microbial hurdles. The goal for leafy green vegetables is multi-target preservation through intelligently applied hurdles. This review describes hurdles that could be used for leafy green vegetables and their biological basis, and identifies prospective hurdles that need attention in future research.
Collapse
Affiliation(s)
- Lars Mogren
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sofia Windstam
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Department of Biological Sciences, SUNY Oswego, Oswego, NY, United States
| | - Sofia Boqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ivar Vågsholm
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Karin Söderqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anna K. Rosberg
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Julia Lindén
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Emina Mulaosmanovic
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Maria Karlsson
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Elisabeth Uhlig
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Åsa Håkansson
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Beatrix Alsanius
- Microbial Horticulture, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
25
|
Kennedy CA, Walsh C, Karczmarczyk M, O'Brien S, Akasheh N, Quirke M, Farrell-Ward S, Buckley T, Fogherty U, Kavanagh K, Parker CT, Sweeney T, Fanning S. Multi-drug resistant Escherichia coli in diarrhoeagenic foals: Pulsotyping, phylotyping, serotyping, antibiotic resistance and virulence profiling. Vet Microbiol 2018; 223:144-152. [PMID: 30173740 DOI: 10.1016/j.vetmic.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 01/20/2023]
Abstract
Extraintestinal pathogenic E. coli (ExPEC) possess the ability to cause extraintestinal infections such as urinary tract infections, neonatal meningitis and sepsis. While information is readily available describing pathogenic E. coli populations in food-producing animals, studies in companion/sports animals such as horses are limited. In addition, many antimicrobial agents used in the treatment of equine infections are also utilised in human medicine, potentially contributing to the spread of antibiotic resistance determinants among pathogenic strains. The aim of this study was to phenotypically and genotypically characterise the multidrug resistance and virulence associated with 83 equine E. coli isolates recovered from foals with diarrhoeal disease. Serotyping was performed by both PCR and sequencing. Antibiotic resistance was assessed by disc diffusion. Phylogenetic groups, virulence genes, antibiotic resistance genes and integrons were determined by PCR. Thirty-nine (46%) of the isolates were classified as ExPEC and hence considered to be potentially pathogenic to humans and animals. Identified serogroups O1, O19a, O40, O101 and O153 are among previously reported human clinical ExPEC isolates. Over a quarter of the E. coli were assigned to pathogenic phylogroups B2 (6%) and D (23%). Class 1 and class 2 integrons were detected in 85% of E. coli, revealing their potential to transfer MDR to other pathogenic and non-pathogenic bacteria. With 65% of potentially pathogenic isolates harbouring one or more TEM, SHV and CTX-M-2 group β-lactamases, in addition to the high levels of resistance to fluoroquinolones observed, our findings signal the need for increased attention to companion/sport animal reservoirs as public health threats.
Collapse
Affiliation(s)
- C A Kennedy
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - C Walsh
- School of Food Science and Environmental Health, DIT, Cathal Brugha Street, Dublin, D01 HV58, Ireland; UCD-Center for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - M Karczmarczyk
- UCD-Center for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - S O'Brien
- UCD-Center for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - N Akasheh
- Medical Directorate, St. James's Hospital, Dublin 8, Ireland
| | - M Quirke
- School of Food Science and Environmental Health, DIT, Cathal Brugha Street, Dublin, D01 HV58, Ireland
| | - S Farrell-Ward
- UCD-Center for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - T Buckley
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - U Fogherty
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - K Kavanagh
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93, Ireland
| | - C T Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA, 94710, USA
| | - T Sweeney
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - S Fanning
- UCD-Center for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland.
| |
Collapse
|
26
|
Oladeinde A, Lipp E, Chen CY, Muirhead R, Glenn T, Cook K, Molina M. Transcriptome Changes of Escherichia coli, Enterococcus faecalis, and Escherichia coli O157:H7 Laboratory Strains in Response to Photo-Degraded DOM. Front Microbiol 2018; 9:882. [PMID: 29867797 PMCID: PMC5953345 DOI: 10.3389/fmicb.2018.00882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/17/2018] [Indexed: 11/26/2022] Open
Abstract
In this study, we investigated gene expression changes in three bacterial strains (Escherichia coli C3000, Escherichia coli O157:H7 B6914, and Enterococcus faecalis ATCC 29212), commonly used as indicators of water quality and as control strains in clinical, food, and water microbiology laboratories. Bacterial transcriptome responses from pure cultures were monitored in microcosms containing water amended with manure-derived dissolved organic matter (DOM), previously exposed to simulated sunlight for 12 h. We used RNA sequencing (RNA-seq) and quantitative real-time reverse transcriptase (qRT-PCR) to compare differentially expressed temporal transcripts between bacteria incubated in microcosms containing sunlight irradiated and non-irradiated DOM, for up to 24 h. In addition, we used whole genome sequencing simultaneously with RNA-seq to identify single nucleotide variants (SNV) acquired in bacterial populations during incubation. These results indicate that E. coli and E. faecalis have different mechanisms for removal of reactive oxygen species (ROS) produced from irradiated DOM. They are also able to produce micromolar concentrations of H2O2 from non-irradiated DOM, that should be detrimental to other bacteria present in the environment. Notably, this study provides an assessment of the role of two conjugative plasmids carried by the E. faecalis and highlights the differences in the overall survival dynamics of environmentally-relevant bacteria in the presence of naturally-produced ROS.
Collapse
Affiliation(s)
- Adelumola Oladeinde
- National Exposure Research Laboratory, Student Volunteer, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States.,Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Erin Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Chia-Ying Chen
- National Exposure Research Laboratory, National Research Council Associate, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States
| | | | - Travis Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Kimberly Cook
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Marirosa Molina
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States
| |
Collapse
|
27
|
Conditional Function of Autoaggregative Protein Cah and Common cah Mutations in Shiga Toxin-Producing Escherichia coli. Appl Environ Microbiol 2017; 84:AEM.01739-17. [PMID: 29054868 DOI: 10.1128/aem.01739-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
Cah is a calcium-binding autotransporter protein involved in autoaggregation and biofilm formation. Although cah is widespread in Shiga toxin-producing Escherichia coli (STEC), we detected mutations in cah at a frequency of 31.3% in this pathogen. In STEC O157:H7 supershedder strain SS17, a large deletion results in a smaller coding sequence, encoding a protein lacking the C-terminal 71 amino acids compared with Cah in STEC O157:H7 strain EDL933. We examined the function of Cah in biofilm formation and host colonization to better understand the selective pressures for cah mutations. EDL933-Cah played a conditional role in biofilm formation in vitro: it enhanced E. coli DH5α biofilm formation on glass surfaces under agitated culture conditions that prevented autoaggregation but inhibited biofilm formation under hydrostatic conditions that facilitated autoaggregation. This function appeared to be strain dependent since Cah-mediated biofilm formation was diminished when an EDL933 cah gene was expressed in SS17. Deletion of cah in EDL933 enhanced bacterial attachment to spinach leaves and altered the adherence pattern of EDL933 to bovine recto-anal junction squamous epithelial (RSE) cells. In contrast, in trans expression of EDL933 cah in SS17 increased its attachment to leaf surfaces, and in DH5α, it enhanced its adherence to RSE cells. Hence, the ecological function of Cah appears to be modulated by environmental conditions and other bacterial strain-specific properties. Considering the prevalence of cah in STEC and its role in attachment and biofilm formation, cah mutations might be selected in ecological niches in which inactivation of Cah would result in an increased fitness in STEC during colonization of plants or animal hosts.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) harbors genes encoding diverse adhesins, and many of these are known to play an important role in bacterial attachment and host colonization. We demonstrated here that the autotransporter protein Cah confers on E. coli DH5α cells a strong autoaggregative phenotype that is inversely correlated with its ability to form biofilms and plays a strain-specific role in plant and animal colonization by STEC. Although cah is widespread in the STEC population, we detected a mutation rate of 31.3% in cah, which is similar to that reported for rpoS and fimH The formation of cell aggregates due to increased bacterium-to-bacterium interactions may be disadvantageous to bacterial populations under conditions that favor a planktonic state in STEC. Therefore, a loss-of-function mutation in cah is likely a selective trait in STEC when autoaggregative properties become detrimental to bacterial cells and may contribute to the adaptability of STEC to fluctuating environments.
Collapse
|
28
|
Scott RA, Thilmony R, Harden LA, Zhou Y, Brandl MT. Escherichia coli O157:H7 Converts Plant-Derived Choline to Glycine Betaine for Osmoprotection during Pre- and Post-harvest Colonization of Injured Lettuce Leaves. Front Microbiol 2017; 8:2436. [PMID: 29276506 PMCID: PMC5727454 DOI: 10.3389/fmicb.2017.02436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/23/2017] [Indexed: 11/26/2022] Open
Abstract
Plant injury is inherent to the production and processing of fruit and vegetables. The opportunistic colonization of damaged plant tissue by human enteric pathogens may contribute to the occurrence of outbreaks of foodborne illness linked to produce. Escherichia coli O157:H7 (EcO157) responds to physicochemical stresses in cut lettuce and lettuce lysates by upregulation of several stress response pathways. We investigated the tolerance of EcO157 to osmotic stress imposed by the leakage of osmolytes from injured lettuce leaf tissue. LC-MS analysis of bacterial osmoprotectants in lettuce leaf lysates and wound washes indicated an abundant natural pool of choline, but sparse quantities of glycine betaine and proline. Glycine betaine was a more effective osmoprotectant than choline in EcO157 under osmotic stress conditions in vitro. An EcO157 mutant with a deletion of the betTIBA genes, which are required for biosynthesis of glycine betaine from imported choline, achieved population sizes twofold lower than those of the parental strain (P < 0.05) over the first hour of colonization of cut lettuce in modified atmosphere packaging (MAP). The cell concentrations of the betTIBA mutant also were 12-fold lower than those of the parental strain (P < 0.01) when grown in hypertonic lettuce lysate, indicating that lettuce leaf cellular contents provide choline for osmoprotection of EcO157. To demonstrate the utilization of available choline by EcO157 for osmoadaptation in injured leaf tissue, deuterated (D-9) choline was introduced to wound sites in MAP lettuce; LC-MS analysis revealed the conversion of D9-choline to D-9 glycine betaine in the parental strain, but no significant amounts were observed in the betTIBA mutant. The EcO157 ΔbetTIBA-ΔotsBA double mutant, which is additionally deficient in de novo synthesis of the compatible solute trehalose, was significantly less fit than the parental strain after their co-inoculation onto injured lettuce leaves and MAP cut lettuce. However, its competitive fitness followed a different time-dependent trend in MAP lettuce, likely due to differences in O2 content, which modulates betTIBA expression. Our study demonstrates that damaged lettuce leaf tissue does not merely supply EcO157 with substrates for proliferation, but also provides the pathogen with choline for its survival to osmotic stress experienced at the site of injury.
Collapse
Affiliation(s)
- Russell A. Scott
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Roger Thilmony
- Crop Improvement and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Leslie A. Harden
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Yaguang Zhou
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| |
Collapse
|
29
|
Cook KL, Givan EC, Mayton HM, Parekh RR, Taylor R, Walker SL. Using the agricultural environment to select better surrogates for foodborne pathogens associated with fresh produce. Int J Food Microbiol 2017; 262:80-88. [PMID: 28968533 DOI: 10.1016/j.ijfoodmicro.2017.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/25/2017] [Accepted: 09/24/2017] [Indexed: 01/26/2023]
Abstract
Despite continuing efforts to reduce foodborne pathogen contamination of fresh produce, significant outbreaks continue to occur. Identification of appropriate surrogates for foodborne pathogens facilitates relevant research to identify reservoirs and amplifiers of these contaminants in production and processing environments. Therefore, the objective of this study was to identify environmental Escherichia coli isolates from manures (poultry, swine and dairy) and surface water sources with properties similar to those of the produce associated foodborne pathogens E. coli O157:H7 and Salmonella enterica serotype Typhimurium. The most similar environmental E. coli isolates were from poultry (n=3) and surface water (n=1) sources. The best environmental E. coli surrogates had cell surface characteristics (zeta potential, hydrophobicity and exopolysaccharide composition) that were similar (i.e., within 15%) to those of S. Typhimurium and/or formed biofilms more often when grown in low nutrient media prepared from lettuce lysates (24%) than when grown on high nutrient broth (7%). The rate of attachment of environmental isolates to lettuce leaves was also similar to that of S. Typhimurium. In contrast, E. coli O157:H7, a commonly used E. coli quality control strain and swine isolates behaved similarly; all were in the lowest 10% of isolates for biofilm formation and leaf attachment. These data suggest that the environment may provide a valuable resource for selection of surrogates for foodborne pathogens.
Collapse
Affiliation(s)
- Kimberly L Cook
- USDA-ARS, Food Animal Environmental Systems Research Unit, Bowling Green, KY, USA.
| | - Ethan C Givan
- Western Kentucky University, Department of Public Health, Bowling Green, KY, USA.
| | - Holly M Mayton
- University of California, Bourns College of Engineering, Riverside, CA, USA.
| | - Rohan R Parekh
- USDA-ARS, Food Animal Environmental Systems Research Unit, Bowling Green, KY, USA.
| | - Ritchie Taylor
- Western Kentucky University, Department of Public Health, Bowling Green, KY, USA.
| | - Sharon L Walker
- University of California, Bourns College of Engineering, Riverside, CA, USA.
| |
Collapse
|
30
|
Francisco CAI, Araújo Naves EA, Ferreira DC, Rosário DKAD, Cunha MF, Bernardes PC. Synergistic effect of sodium hypochlorite and ultrasound bath in the decontamination of fresh arugulas. J Food Saf 2017. [DOI: 10.1111/jfs.12391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Deusmaque Carneiro Ferreira
- Instituto de Ciências Tecnológicas e Exatas, Universidade Federal do Triângulo Mineiro, Uberaba Minas Gerais Brazil
| | | | - Márcio Ferraz Cunha
- Instituto de Ciências Tecnológicas e Exatas, Universidade Federal do Triângulo Mineiro, Uberaba Minas Gerais Brazil
| | - Patrícia Campos Bernardes
- Departamento de Engenharia de AlimentosUniversidade Federal do Espírito Santo, Alegre Espírito Santo Brazil
| |
Collapse
|
31
|
Hartmann R, Fricke A, Stützel H, Mansourian S, Dekker T, Wohanka W, Alsanius B. Internalization of Escherichia coli O157:H7 gfp+ in rocket and Swiss chard baby leaves as affected by abiotic and biotic damage. Lett Appl Microbiol 2017; 65:35-41. [PMID: 28397273 DOI: 10.1111/lam.12742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 11/29/2022]
Abstract
Internalization of human pathogens in edible parts of vegetables eaten raw is a major concern, since once internalized they are protected from sanitizing treatments. In this study, we examined the invasion of gfp-labelled Escherichia coli O157:H7 into intact and biotically (infection with Xanthomonas campestris/Pseudomonas syringae) and abiotically (grating with silicon carbide) damaged leaves of wild rocket (Diplotaxis tenuifolia) and Swiss chard (Beta vulgaris subsp. cicla) using laser scanning confocal microscopy. Bacterial cells were found in internal locations of the tissue, irrespective of tissue health status. Contaminated leaf sections of biotically and abiotically damaged wild rocket leaves showed higher susceptibility to microbial invasion, while the pathogen was internalized in greater numbers into intact Swiss chard leaf sections when abiotically, but not biotically, damaged. The greatest differences were observed between the plant species; after surface sanitization, E. coli O157:H7 was still detected in wild rocket leaves, but not in Swiss chard leaves. SIGNIFICANCE AND IMPACT OF THE STUDY Contamination of leafy vegetables with Escherichia coli O157:H7 is a growing problem, as reported outbreaks are increasing. However, establishment of this human pathogen in the phyllosphere is not completely understood. Using laser scanning confocal microscopy, we demonstrated that E. coli O157:H7gfp+ can invade plant tissue of Swiss chard and wild rocket leaves and that the bacterium is more sensitive to surface sanitization of Swiss chard leaves. Damage to leaf tissue promoted leaf invasion, but the nature of the damage (abiotic or biotic) and plant species had an impact.
Collapse
Affiliation(s)
- R Hartmann
- Department of Biosystems and Technology, Microbial Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität, Hannover, Germany
| | - A Fricke
- Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität, Hannover, Germany
| | - H Stützel
- Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität, Hannover, Germany
| | - S Mansourian
- Chemical Ecology Group, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - T Dekker
- Chemical Ecology Group, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - W Wohanka
- Department of Pomology, Geisenheim University, Geisenheim, Germany
| | - B Alsanius
- Department of Biosystems and Technology, Microbial Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
32
|
Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, Jackson RW, Holden NJ. Corrigendum: Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts. Front Microbiol 2016; 7:1506. [PMID: 27660629 PMCID: PMC5030229 DOI: 10.3389/fmicb.2016.01506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Louise Crozier
- Cell and Molecular Sciences, The James Hutton Institute Dundee, UK
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute Dundee, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute Dundee, UK
| | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, The University of Reading Reading, UK
| | - Simon C Andrews
- School of Biological Sciences, The University of Reading Reading, UK
| | - Ian Toth
- Cell and Molecular Sciences, The James Hutton Institute Dundee, UK
| | - Robert W Jackson
- School of Biological Sciences, The University of Reading Reading, UK
| | - Nicola J Holden
- Cell and Molecular Sciences, The James Hutton Institute Dundee, UK
| |
Collapse
|
33
|
Carter MQ, Louie JW, Feng D, Zhong W, Brandl MT. Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation. Food Microbiol 2016; 57:81-9. [DOI: 10.1016/j.fm.2016.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/21/2015] [Accepted: 01/21/2016] [Indexed: 01/10/2023]
|
34
|
Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, Jackson RW, Holden NJ. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts. Front Microbiol 2016; 7:1088. [PMID: 27462311 PMCID: PMC4940412 DOI: 10.3389/fmicb.2016.01088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 'Sakai,' to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant-microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai.
Collapse
Affiliation(s)
- Louise Crozier
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, The University of ReadingReading, UK
| | - Simon C. Andrews
- School of Biological Sciences, The University of ReadingReading, UK
| | - Ian Toth
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | - Nicola J. Holden
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
35
|
Kennedy NM, Mukherjee N, Banerjee P. Escherichia coli O157:H7 Cells Exposed to Lettuce Leaf Lysate in Refrigerated Conditions Exhibit Differential Expression of Selected Virulence and Adhesion-Related Genes with Altered Mammalian Cell Adherence. J Food Prot 2016; 79:1259-65. [PMID: 27357048 DOI: 10.4315/0362-028x.jfp-15-504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contamination by and persistence of pathogenic bacteria in ready-to-eat produce have emerged as significant food safety and public health concerns. Viable produceborne pathogens cope with several stresses (e.g., temperature fluctuations and lowtemperature storage) during production and storage of the commodities. In this study, we investigated the impact of transient cold shock on Escherichia coli O157:H7 (EcO157) cells in a produce matrix (romaine lettuce leaf lysate). EcO157 cells were exposed to 25°C for 1 h, 4°C for 1 h, and 4°C for 10 min in lettuce lysate. The expression of selected genes coding for virulence, stress response, and heat and cold shock proteins was quantified by real-time quantitative reverse transcription PCR assay. Treated EcO157 cells adhered to MAC-T mammalian cells were enumerated by in vitro bioassay. Expression of the Shiga toxin 1 gene (stx1a) was upregulated significantly (P < 0.05) upon cold shock treatments, but virulence genes related to EcO157 attachment (eaeA, lpfA, and hcpA) were down-regulated. Two key members of the cold shock regulon, cold shock protein (cspA) and gyrA, were significantly induced (P < 0.05) at the refrigeration temperature (4°C). Significant upregulation of an SOS response gene, recA, was also observed. E. coli heat shock regulon member grpE was induced, but a universal stress protein (uspA) was downregulated at the refrigeration temperatures in lettuce lysate. The adhesion assay revealed a temperature-dependent reduction in the attachment of cold-shocked EcO157 cells. The results of the current study indicate a reduction in the attachment of cold-shocked EcO157 to epithelial cells and higher levels of Shiga toxin gene expression at the molecular level.
Collapse
Affiliation(s)
- Nicole M Kennedy
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA
| | - Nabanita Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA
| | - Pratik Banerjee
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA; Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA.
| |
Collapse
|
36
|
Mack JD, Yehualaeshet T, Park M, Tameru B, Samuel T, Chin BA. Phage‐Based Biosensor and Optimization of Surface Blocking Agents to Detect
Salmonella
Typhimurium on Romaine Lettuce. J Food Saf 2016. [DOI: 10.1111/jfs.12299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jacqueline D. Mack
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied HealthTuskegee UniversityTuskegee AL36088
| | - Teshome Yehualaeshet
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied HealthTuskegee UniversityTuskegee AL36088
| | - Mi‐Kyung Park
- Kyungpook National UniversitySchool of Food Science and BiotechnologyDaegu Korea
| | - Berhanu Tameru
- Department of Pathobiology, Center for Computational EpidemiologyBioinformatics and Risk Analysis and Biomedical Information Management Systems, Tuskegee UniversityTuskegee AL36088
| | - Temesgen Samuel
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied HealthTuskegee UniversityTuskegee AL36088
| | - Bryan A. Chin
- Department of Materials Engineering, Material Research and Education CenterAuburn UniversityAuburn AL36832
| |
Collapse
|
37
|
Nagar V, Bandekar JR, Shashidhar R. Expression of virulence and stress response genes in Aeromonas hydrophila under various stress conditions. J Basic Microbiol 2016; 56:1132-1137. [PMID: 27163835 DOI: 10.1002/jobm.201600107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 11/10/2022]
Abstract
Aeromonas hydrophila has emerged as an important human pathogen as it causes gastroenteritis and extra-intestinal infections. Information regarding the influence of environmental stresses on gene expression profile of A. hydrophila is lacking. The impact of nutrient replenishment, nutrient deprivation, acid stress, and cold shock on housekeeping, general stress-response, and virulence genes was studied using quantitative real-time PCR in two A. hydrophila strains, CECT 839T , and A331. These sub-lethal stresses invoked significant changes in the expression of these genes in a strain-dependent manner. Overall, nutrient replenishment and deprivation significantly induced the expression of housekeeping (rpoD), general stress regulators (uspA and rpoS), and virulence (aer) genes, indicating their importance in regulating the survival and virulence of A. hydrophila under these stress conditions. rpoS gene was significantly induced under cold shock; whereas, acid stress significantly induced the expression of uspA gene. This is the first study to investigate the effect of environmental parameters on the expression of stress-response and virulence genes in A. hydrophila strains.
Collapse
Affiliation(s)
- Vandan Nagar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India.
| | - Jayant R Bandekar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | |
Collapse
|
38
|
Gonzales-Siles L, Sjöling Å. The different ecological niches of enterotoxigenic Escherichia coli. Environ Microbiol 2015; 18:741-51. [PMID: 26522129 PMCID: PMC4982042 DOI: 10.1111/1462-2920.13106] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/30/2015] [Accepted: 10/26/2015] [Indexed: 12/17/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a water and food-borne pathogen that infects the small intestine of the human gut and causes diarrhoea. Enterotoxigenic E. coli adheres to the epithelium by means of colonization factors and secretes two enterotoxins, the heat labile toxin and/or the heat stable toxin that both deregulate ion channels and cause secretory diarrhoea. Enterotoxigenic E. coli as all E. coli, is a versatile organism able to survive and grow in different environments. During transmission and infection, ETEC is exposed to various environmental cues that have an impact on survivability and virulence. The ability to cope with exposure to different stressful habitats is probably shaping the pool of virulent ETEC strains that cause both endemic and epidemic infections. This review will focus on the ecology of ETEC in its different habitats and interactions with other organisms as well as abiotic factors.
Collapse
Affiliation(s)
- Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Tang S, Orsi RH, den Bakker HC, Wiedmann M, Boor KJ, Bergholz TM. Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Growth on Vacuum-Packed Cold Smoked Salmon. Appl Environ Microbiol 2015; 81:6812-24. [PMID: 26209664 PMCID: PMC4561693 DOI: 10.1128/aem.01752-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/16/2015] [Indexed: 01/26/2023] Open
Abstract
The foodborne pathogen Listeria monocytogenes is able to survive and grow in ready-to-eat foods, in which it is likely to experience a number of environmental stresses due to refrigerated storage and the physicochemical properties of the food. Little is known about the specific molecular mechanisms underlying survival and growth of L. monocytogenes under different complex conditions on/in specific food matrices. Transcriptome sequencing (RNA-seq) was used to understand the transcriptional landscape of L. monocytogenes strain H7858 grown on cold smoked salmon (CSS; water phase salt, 4.65%; pH 6.1) relative to that in modified brain heart infusion broth (MBHIB; water phase salt, 4.65%; pH 6.1) at 7°C. Significant differential transcription of 149 genes was observed (false-discovery rate [FDR], <0.05; fold change, ≥2.5), and 88 and 61 genes were up- and downregulated, respectively, in H7858 grown on CSS relative to the genes in H7858 grown in MBHIB. In spite of these differences in transcriptomes under these two conditions, growth parameters for L. monocytogenes were not significantly different between CSS and MBHIB, indicating that the transcriptomic differences reflect how L. monocytogenes is able to facilitate growth under these different conditions. Differential expression analysis and Gene Ontology enrichment analysis indicated that genes encoding proteins involved in cobalamin biosynthesis as well as ethanolamine and 1,2-propanediol utilization have significantly higher transcript levels in H7858 grown on CSS than in that grown in MBHIB. Our data identify specific transcriptional profiles of L. monocytogenes growing on vacuum-packaged CSS, which may provide targets for the development of novel and improved strategies to control L. monocytogenes growth on this ready-to-eat food.
Collapse
Affiliation(s)
- Silin Tang
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Renato H Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Henk C den Bakker
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Kathryn J Boor
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Teresa M Bergholz
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
40
|
Simko I, Zhou Y, Brandl MT. Downy mildew disease promotes the colonization of romaine lettuce by Escherichia coli O157:H7 and Salmonella enterica. BMC Microbiol 2015; 15:19. [PMID: 25648408 PMCID: PMC4334606 DOI: 10.1186/s12866-015-0360-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Downy mildew, a plant disease caused by the oomycete Bremia lactucae, is endemic in many lettuce-growing regions of the world. Invasion by plant pathogens may create new portals and opportunities for microbial colonization of plants. The occurrence of outbreaks of Escherichia coli O157:H7 (EcO157) and Salmonella enterica Typhimurium (S. Typhimurium) infections linked to lettuce prompted us to investigate the role of downy mildew in the colonization of romaine lettuce by these human pathogens under controlled laboratory conditions. RESULTS Whereas both EcO157 and S. Typhimurium population sizes increased 10(2)-fold on healthy leaf tissue under conditions of warm temperature and free water on the leaves, they increased by 10(5)-fold in necrotic lesions caused by B. lactucae. Confocal microscopy of GFP-EcO157 in the necrotic tissue confirmed its massive population density and association with the oomycete hyphae. Multiplication of EcO157 in the diseased tissue was significantly lower in the RH08-0464 lettuce line, which has a high level of resistance to downy mildew than in the more susceptible cultivar Triple Threat. qRT-PCR quantification of expression of the plant basal immunity gene PR-1, revealed that this gene had greater transcriptional activity in line RH08-0464 than in cultivar Triple Threat, indicating that it may be one of the factors involved in the differential growth of the human pathogen in B. lactucae lesions between the two lettuce accessions. Additionally, downy mildew disease had a significant effect on the colonization of EcO157 at high relative humidity (RH 90-100%) and on its persistence at lower RH (65-75%). The latter conditions, which promoted overall dryness of the lettuce leaf surface, allowed for only 0.0011% and 0.0028% EcO157 cell survival in healthy and chlorotic tissue, respectively, whereas 1.58% of the cells survived in necrotic tissue. CONCLUSIONS Our results indicate that downy mildew significantly alters the behavior of enteric pathogens in the lettuce phyllosphere and that breeding for resistance to B. lactucae may lower the increased risk of microbial contamination caused by this plant pathogen.
Collapse
Affiliation(s)
- Ivan Simko
- Crop Improvement and Protection Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA.
| | - Yaguang Zhou
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Albany, CA, 94563, USA.
| | - Maria T Brandl
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Albany, CA, 94563, USA.
| |
Collapse
|
41
|
Hollister EB, Brooks JP, Gentry TJ. Bioinformation and ’Omic Approaches for Characterization of Environmental Microorganisms. Environ Microbiol 2015. [DOI: 10.1016/b978-0-12-394626-3.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Webb CC, Erickson MC, Davey LE, Payton AS, Doyle MP. Construction and characterization of outbreak Escherichia coli O157:H7 surrogate strains for use in field studies. Foodborne Pathog Dis 2014; 11:893-9. [PMID: 25268966 DOI: 10.1089/fpd.2014.1798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli O157:H7 has been the causative agent of many outbreaks associated with leafy green produce consumption. Elucidating the mechanism by which contamination occurs requires monitoring interactions between the pathogen and the plant under typical production conditions. Intentional introduction of virulent strains into fields is not an acceptable practice. As an alternative, attenuated strains of natural isolates have been used as surrogates of the virulent strains; however, the attachment properties and environmental stabilities of these attenuated isolates may differ from the unattenuated outbreak strains. In this study, the Shiga toxin (stx1, stx2, and/or stx2c) genes as well as the eae gene encoding intimin of two E. coli O157:H7 outbreak isolates, F4546 (1997 alfalfa sprout) and K4492 (2006 lettuce), were deleted. Individual gene deletions were confirmed by polymerase chain reaction (PCR) and DNA sequencing. The mutant strains did not produce Shiga toxin. The growth kinetics of these mutant strains under nutrient-rich and minimal conditions were identical to those of their wild-type strains. Attachment to the surface of lettuce leaves was comparable between wild-type/mutant pairs F4546/MD46 and K4492/MD47. Adherence to soil particles was also comparable between the virulent and surrogate pairs, although the F4546/MD46 pair exhibited statistically greater attachment than the K4492/MD47 pair (p≤0.05). Wild-type and mutant pairs F4546/MD46 and K4492/MD47 inoculated into wet or dry soils had statistically similar survival rates over the 7-day storage period at 20°C. A plasmid, pGFPuv, containing green fluorescent protein was transformed into each of the mutant strains, allowing for ease of identification and detection of surrogate strains on plant material or soil. These pGFPuv-containing surrogate strains will enable the investigation of pathogen interaction with plants and soil in the farm production environment where the virulent pathogen cannot be used.
Collapse
Affiliation(s)
- Cathy C Webb
- Center for Food Safety, Department of Food Science and Technology, University of Georgia , Griffin, Georgia
| | | | | | | | | |
Collapse
|
43
|
Zhang Y, Nandakumar R, Bartelt-Hunt SL, Snow DD, Hodges L, Li X. Quantitative proteomic analysis of the Salmonella-lettuce interaction. Microb Biotechnol 2014; 7:630-7. [PMID: 24512637 PMCID: PMC4265081 DOI: 10.1111/1751-7915.12114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 11/29/2022] Open
Abstract
Human pathogens can internalize food crops through root and surface uptake and persist inside crop plants. The goal of the study was to elucidate the global modulation of bacteria and plant protein expression after Salmonella internalizes lettuce. A quantitative proteomic approach was used to analyse the protein expression of Salmonella enterica serovar Infantis and lettuce cultivar Green Salad Bowl 24 h after infiltrating S. Infantis into lettuce leaves. Among the 50 differentially expressed proteins identified by comparing internalized S. Infantis against S. Infantis grown in Luria Broth, proteins involved in glycolysis were down-regulated, while one protein involved in ascorbate uptake was up-regulated. Stress response proteins, especially antioxidant proteins, were up-regulated. The modulation in protein expression suggested that internalized S. Infantis might utilize ascorbate as a carbon source and require multiple stress response proteins to cope with stresses encountered in plants. On the other hand, among the 20 differentially expressed lettuce proteins, proteins involved in defense response to bacteria were up-regulated. Moreover, the secreted effector PipB2 of S. Infantis and R proteins of lettuce were induced after bacterial internalization into lettuce leaves, indicating human pathogen S. Infantis triggered the defense mechanisms of lettuce, which normally responds to plant pathogens.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Civil Engineering, University of Nebraska-LincolnLincoln, NE, 68588, USA
| | - Renu Nandakumar
- Proteomics and Metabolomics Core Facility, Redox Biology Center, Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, 68588, USA
| | | | - Daniel D Snow
- School of Natural Resources, University of Nebraska-LincolnLincoln, NE, 68588, USA
| | - Laurie Hodges
- Deptartment of Agronomy & Horticulture, University of Nebraska-LincolnLincoln, NE, 68588, USA
| | - Xu Li
- Department of Civil Engineering, University of Nebraska-LincolnLincoln, NE, 68588, USA
| |
Collapse
|
44
|
Dublan MDLA, Ortiz-Marquez JCF, Lett L, Curatti L. Plant-adapted Escherichia coli show increased lettuce colonizing ability, resistance to oxidative stress and chemotactic response. PLoS One 2014; 9:e110416. [PMID: 25313845 PMCID: PMC4196987 DOI: 10.1371/journal.pone.0110416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety. METHODS/PRINCIPAL FINDINGS This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency. CONCLUSION/SIGNIFICANCE These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues.
Collapse
Affiliation(s)
- Maria de los Angeles Dublan
- Instituto de Investigaciones en Biodiversidad y Biotecnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina
- Fundación para Investigaciones Biológicas Aplicadas, Mar del Plata, Buenos Aires, Argentina
- Laboratorio Integrado de Microbiología Agrícola y de Alimentos, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Azul, Buenos Aires, Argentina
| | - Juan Cesar Federico Ortiz-Marquez
- Instituto de Investigaciones en Biodiversidad y Biotecnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina
- Fundación para Investigaciones Biológicas Aplicadas, Mar del Plata, Buenos Aires, Argentina
| | - Lina Lett
- Laboratorio Integrado de Microbiología Agrícola y de Alimentos, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Azul, Buenos Aires, Argentina
| | - Leonardo Curatti
- Instituto de Investigaciones en Biodiversidad y Biotecnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina
- Fundación para Investigaciones Biológicas Aplicadas, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
45
|
Structural and functional characterization of DUF1471 domains of Salmonella proteins SrfN, YdgH/SssB, and YahO. PLoS One 2014; 9:e101787. [PMID: 25010333 PMCID: PMC4092069 DOI: 10.1371/journal.pone.0101787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 11/20/2022] Open
Abstract
Bacterial species in the Enterobacteriaceae typically contain multiple paralogues of a small domain of unknown function (DUF1471) from a family of conserved proteins also known as YhcN or BhsA/McbA. Proteins containing DUF1471 may have a single or three copies of this domain. Representatives of this family have been demonstrated to play roles in several cellular processes including stress response, biofilm formation, and pathogenesis. We have conducted NMR and X-ray crystallographic studies of four DUF1471 domains from Salmonella representing three different paralogous DUF1471 subfamilies: SrfN, YahO, and SssB/YdgH (two of its three DUF1471 domains: the N-terminal domain I (residues 21–91), and the C-terminal domain III (residues 244–314)). Notably, SrfN has been shown to have a role in intracellular infection by Salmonella Typhimurium. These domains share less than 35% pairwise sequence identity. Structures of all four domains show a mixed α+β fold that is most similar to that of bacterial lipoprotein RcsF. However, all four DUF1471 sequences lack the redox sensitive cysteine residues essential for RcsF activity in a phospho-relay pathway, suggesting that DUF1471 domains perform a different function(s). SrfN forms a dimer in contrast to YahO and SssB domains I and III, which are monomers in solution. A putative binding site for oxyanions such as phosphate and sulfate was identified in SrfN, and an interaction between the SrfN dimer and sulfated polysaccharides was demonstrated, suggesting a direct role for this DUF1471 domain at the host-pathogen interface.
Collapse
|
46
|
Ravva SV, Cooley MB, Sarreal CZ, Mandrell RE. Fitness of Outbreak and Environmental Strains of Escherichia coli O157:H7 in Aerosolizable Soil and Association of Clonal Variation in Stress Gene Regulation. Pathogens 2014; 3:528-48. [PMID: 25438010 PMCID: PMC4243427 DOI: 10.3390/pathogens3030528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Airborne dust from feedlots is a potential mechanism of contamination of nearby vegetable crops with Escherichia coli O157:H7 (EcO157). We compared the fitness of clinical and environmental strains of EcO157 in <45 µm soil from a spinach farm. Differences in survival were observed among the 35 strains with D-values (days for 90% decreases) ranging from 1–12 days. Strains that survived longer, generally, were from environmental sources and lacked expression of curli, a protein associated with attachment and virulence. Furthermore, the proportion of curli-positive (C+) variants of EcO157 strains decreased with repeated soil exposure and the strains that were curli-negative (C−) remained C− post-soil exposure. Soil exposure altered expression of stress-response genes linked to fitness of EcO157, but significant clonal variation in expression was measured. Mutations were detected in the stress-related sigma factor, rpoS, with a greater percentage occurring in parental strains of clinical origin prior to soil exposure. We speculate that these mutations in rpoS may confer a differential expression of genes, associated with mechanisms of survival and/or virulence, and thus may influence the fitness of EcO157.
Collapse
Affiliation(s)
- Subbarao V Ravva
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Chester Z Sarreal
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Robert E Mandrell
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| |
Collapse
|
47
|
Holmes A, Birse L, Jackson RW, Holden NJ. An optimized method for the extraction of bacterial mRNA from plant roots infected with Escherichia coli O157:H7. Front Microbiol 2014; 5:286. [PMID: 25018749 PMCID: PMC4071639 DOI: 10.3389/fmicb.2014.00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/23/2014] [Indexed: 01/08/2023] Open
Abstract
Analysis of microbial gene expression during host colonization provides valuable information on the nature of interaction, beneficial or pathogenic, and the adaptive processes involved. Isolation of bacterial mRNA for in planta analysis can be challenging where host nucleic acid may dominate the preparation, or inhibitory compounds affect downstream analysis, e.g., quantitative reverse transcriptase PCR (qPCR), microarray, or RNA-seq. The goal of this work was to optimize the isolation of bacterial mRNA of food-borne pathogens from living plants. Reported methods for recovery of phytopathogen-infected plant material, using hot phenol extraction and high concentration of bacterial inoculation or large amounts of infected tissues, were found to be inappropriate for plant roots inoculated with Escherichia coli O157:H7. The bacterial RNA yields were too low and increased plant material resulted in a dominance of plant RNA in the sample. To improve the yield of bacterial RNA and reduce the number of plants required, an optimized method was developed which combines bead beating with directed bacterial lysis using SDS and lysozyme. Inhibitory plant compounds, such as phenolics and polysaccharides, were counteracted with the addition of high-molecular-weight polyethylene glycol and hexadecyltrimethyl ammonium bromide. The new method increased the total yield of bacterial mRNA substantially and allowed assessment of gene expression by qPCR. This method can be applied to other bacterial species associated with plant roots, and also in the wider context of food safety.
Collapse
Affiliation(s)
- Ashleigh Holmes
- Cell and Molecular Sciences, The James Hutton Institute Invergowrie, Dundee, UK
| | - Louise Birse
- Cell and Molecular Sciences, The James Hutton Institute Invergowrie, Dundee, UK
| | - Robert W Jackson
- School of Biological Sciences, The University of Reading Knight Building, Whiteknights, Reading, UK
| | - Nicola J Holden
- Cell and Molecular Sciences, The James Hutton Institute Invergowrie, Dundee, UK
| |
Collapse
|
48
|
Carter MQ, Louie JW, Huynh S, Parker CT. Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak. Food Microbiol 2014; 44:108-18. [PMID: 25084652 DOI: 10.1016/j.fm.2014.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/12/2014] [Accepted: 05/26/2014] [Indexed: 01/14/2023]
Abstract
We previously reported significantly different acid resistance between curli variants derived from the same Escherichia coli O157:H7 strain, although the curli fimbriae were not associated with this phenotypic divergence. Here we investigated the underlying molecular mechanism by examining the genes encoding the common transcriptional regulators of curli biogenesis and acid resistance. rpoS null mutations were detected in all curli-expressing variants of the 2006 spinach-associated outbreak strains, whereas a wild-type rpoS was present in all curli-deficient variants. Consequently curli-expressing variants were much more sensitive to various stress challenges than curli-deficient variants. This loss of general stress fitness appeared solely to be the result of rpoS mutation since the stress resistances could be restored in curli-expressing variants by a functional rpoS. Comparative transcriptomic analyses between the curli variants revealed a large number of differentially expressed genes, characterized by the enhanced expression of metabolic genes in curli-expressing variants, but a marked decrease in transcription of genes related to stress resistances. Unlike the curli-expressing variants of the 1993 US hamburger-associated outbreak strains (Applied Environmental Microbiology 78: 7706-7719), all curli-expressing variants of the 2006 spinach-associated outbreak strains carry a functional rcsB gene, suggesting an alternative mechanism governing intra-strain phenotypic divergence in E. coli O157:H7.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA.
| | - Jacqueline W Louie
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Craig T Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| |
Collapse
|
49
|
Martínez-Vaz BM, Fink RC, Diez-Gonzalez F, Sadowsky MJ. Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ 2014; 29:123-35. [PMID: 24859308 PMCID: PMC4103518 DOI: 10.1264/jsme2.me13139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/19/2014] [Indexed: 11/12/2022] Open
Abstract
Leafy green vegetables have been identified as a source of foodborne illnesses worldwide over the past decade. Human enteric pathogens, such as Escherichia coli O157:H7 and Salmonella, have been implicated in numerous food poisoning outbreaks associated with the consumption of fresh produce. An understanding of the mechanisms responsible for the establishment of pathogenic bacteria in or on vegetable plants is critical for understanding and ameliorating this problem as well as ensuring the safety of our food supply. While previous studies have described the growth and survival of enteric pathogens in the environment and also the risk factors associated with the contamination of vegetables, the molecular events involved in the colonization of fresh produce by enteric pathogens are just beginning to be elucidated. This review summarizes recent findings on the interactions of several bacterial pathogens with leafy green vegetables. Changes in gene expression linked to the bacterial attachment and colonization of plant structures are discussed in light of their relevance to plant-microbe interactions. We propose a mechanism for the establishment and association of enteric pathogens with plants and discuss potential strategies to address the problem of foodborne illness linked to the consumption of leafy green vegetables.
Collapse
Affiliation(s)
| | - Ryan C. Fink
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN 55108, USA
| | | | - Michael J. Sadowsky
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
- Department of Soil, Water and Climate, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
50
|
Landstorfer R, Simon S, Schober S, Keim D, Scherer S, Neuhaus K. Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces. BMC Genomics 2014; 15:353. [PMID: 24885796 PMCID: PMC4048457 DOI: 10.1186/1471-2164-15-353] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/31/2014] [Indexed: 12/26/2022] Open
Abstract
Background Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems. Results Transcriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates. Conclusions Since only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-353) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| |
Collapse
|