1
|
Akhlaghi H, Javan AJ, Chashmi SHE. Helicobacter pullorum and Helicobacter canadensis: Etiology, pathogenicity, epidemiology, identification, and antibiotic resistance implicating food and public health. Int J Food Microbiol 2024; 413:110573. [PMID: 38246022 DOI: 10.1016/j.ijfoodmicro.2024.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Nowadays, it is well-established that the consumption of poultry meat, especially chicken meat products has been drastically increasing. Even though more attentions are being paid to the major foodborne pathogens, it seems that scientists in the area of food safety and public health would prefer tackling the minor food borne zoonotic emerging or reemerging pathogens, namely Helicobacter species. Recently, understanding the novel aspects of zoonotic Enterohepatic Helicobacter species, including pathogenesis, isolation, identification, and genomic features is regarded as a serious challenge. In this regard, considerable attention is given to emerging elusive zoonotic Enterohepatic Helicobacter species, comprising Helicobacter pullorum and Helicobacter canadensis. In conclusion, the current review paper would attempt to elaborately summarize and somewhat compare the etiology, pathogenesis, cultivation process, identification, genotyping, and antimicrobial resistance profile of both H. pullorum and H. Canadensis. Further, H. pullorum has been introduced as the most significant food borne pathogen in chicken meat products.
Collapse
Affiliation(s)
- Hosein Akhlaghi
- Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Ashkan Jebelli Javan
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
| | | |
Collapse
|
2
|
Taillieu E, Chiers K, Amorim I, Gärtner F, Maes D, Van Steenkiste C, Haesebrouck F. Gastric Helicobacter species associated with dogs, cats and pigs: significance for public and animal health. Vet Res 2022; 53:42. [PMID: 35692057 PMCID: PMC9190127 DOI: 10.1186/s13567-022-01059-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
This article focuses on the pathogenic significance of Helicobacter species naturally colonizing the stomach of dogs, cats and pigs. These gastric "non-Helicobacter (H.) pylori Helicobacter species" (NHPH) are less well-known than the human adapted H. pylori. Helicobacter suis has been associated with gastritis and decreased daily weight gain in pigs. Several studies also attribute a role to this pathogen in the development of hyperkeratosis and ulceration of the non-glandular stratified squamous epithelium of the pars oesophagea of the porcine stomach. The stomach of dogs and cats can be colonized by several Helicobacter species but their pathogenic significance for these animals is probably low. Helicobacter suis as well as several canine and feline gastric Helicobacter species may also infect humans, resulting in gastritis, peptic and duodenal ulcers, and low-grade mucosa-associated lymphoid tissue lymphoma. These agents may be transmitted to humans most likely through direct or indirect contact with dogs, cats and pigs. Additional possible transmission routes include consumption of water and, for H. suis, also consumption of contaminated pork. It has been described that standard H. pylori eradication therapy is usually also effective to eradicate the NHPH in human patients, although acquired antimicrobial resistance may occasionally occur and porcine H. suis strains are intrinsically less susceptible to aminopenicillins than non-human primate H. suis strains and other gastric Helicobacter species. Virulence factors of H. suis and the canine and feline gastric Helicobacter species include urease activity, motility, chemotaxis, adhesins and gamma-glutamyl transpeptidase. These NHPH, however, lack orthologs of cytotoxin-associated gene pathogenicity island and vacuolating cytotoxin A, which are major virulence factors in H. pylori. It can be concluded that besides H. pylori, gastric Helicobacter species associated with dogs, cats and pigs are also clinically relevant in humans. Although recent research has provided better insights regarding pathogenic mechanisms and treatment strategies, a lot remains to be investigated, including true prevalence rates, exact modes of transmission and molecular pathways underlying disease development and progression.
Collapse
Affiliation(s)
- Emily Taillieu
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Koen Chiers
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Irina Amorim
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Porto, Portugal.,Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal.,School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Porto, Portugal.,Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp University, Edegem, Belgium.,Department of Gastroenterology and Hepatology, General Hospital Maria Middelares, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Chan N, Shen Z, Mannion A, Kurnick S, Popescu IS, Burton FJ, Calle PP, Fox JG. Helicobacter cyclurae sp. Nov., Isolated From Endangered Blue Iguanas (Cyclura lewisi). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blue iguanas (Cyclura lewisi) are endangered reptiles found only on Grand Cayman. Previously, DNA for a novel Helicobacter species GCBI1 was detected in sick and dead iguanas. In the current study, fecal and cloacal swab samples were obtained from 25 iguanas. Through molecular and microbiological techniques, a novel Helicobacter species was cultured from feces and characterized, for whom we propose the name Helicobacter cyclurae. This novel helicobacter had a prevalence of 56% by PCR and 20% by culture in samples analyzed. The type strain MIT 16-1353 was catalase, oxidase, and gamma-glutamyl transpeptidase positive. By electron microscopy, H. cyclurae has a curved rod morphology and a single sheathed polar flagellum. Phylogenetic analysis using 16S rRNA, gyrB, and hsp60 indicated that these strains were most closely related to Helicobacter sp. 12502256-12 previously isolated from lizards. H. cyclurae has a 1.91-Mb genome with a GC content of 33.37%. There were 1,969 genes with four notable virulence genes: high temperature requirement-A protein-secreted serine protease, gamma-glutamyl transpeptidase, fibronectin/fibrinogen binding protein, and neutrophil-activating protein. Whole-genome phylogeny, average nucleotide identity, and digital DNA–DNA hybridization analysis confirmed that H. cyclurae is a novel species, and the first helicobacter cultured and characterized from blue iguanas.
Collapse
|
4
|
Shen Z, Mannion A, Lin M, Esmail M, Bakthavatchalu V, Yang S, Ho C, Feng Y, Smith B, Elliott J, Gresham V, VandeBerg JL, Samollow PB, Fox JG. Helicobacter monodelphidis sp. nov. and Helicobacter didelphidarum sp. nov., isolated from grey short-tailed opossums ( Monodelphis domestica) with endemic cloacal prolapses. Int J Syst Evol Microbiol 2021; 70:6032-6043. [PMID: 33079029 DOI: 10.1099/ijsem.0.004424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In a search for potential causes of increased prolapse incidence in grey short-tailed opossum colonies, samples from the gastrointestinal tracts of 94 clinically normal opossums with rectal prolapses were screened for Helicobacter species by culture and PCR. Forty strains of two novel Helicobacter species which differed from the established Helicobacter taxa were isolated from opossums with and without prolapses. One of the Helicobacter species was spiral-shaped and urease-negative whereas the other Helicobacter strain had fusiform morphology with periplasmic fibres and was urease-positive. 16S rRNA gene sequence analysis revealed that all the isolates had over 99 % sequence identity with each other, and were most closely related to Helicobacter canadensis. Strains from the two novel Helicobacter species were subjected to gyrB and hsp60 gene and whole genome sequence analyses. These two novel Helicobacter species formed separate phylogenetic clades, divergent from other known Helicobacter species. The bacteria were confirmed as novel Helicobacter species based on digital DNA-DNA hybridization and average nucleotide identity analysis of their genomes, for which we propose the names Helicobacter monodelphidis sp. nov. with the type strain MIT 15-1451T (=LMG 29780T=NCTC 14189T) and Helicobacter didelphidarum sp. nov with type strain MIT 17-337T (=LMG 31024T=NCTC 14188T).
Collapse
Affiliation(s)
- Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maggie Lin
- Department of Veterinary Integrative Biosciences, The Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Michael Esmail
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Stephanie Yang
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Calvin Ho
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Briony Smith
- Department of Veterinary Integrative Biosciences, The Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - James Elliott
- Department of Veterinary Integrative Biosciences, The Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Vince Gresham
- Department of Veterinary Integrative Biosciences, The Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - John L VandeBerg
- South Texas Diabetes & Obesity Institute, School of Medicine, The University of Texas, Rio Grande Valley, TX, USA
| | - Paul B Samollow
- Department of Veterinary Integrative Biosciences, The Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Peng Z, Wang A, Xie L, Song W, Wang J, Yin Z, Zhou D, Li F. Use of recombinant porcine β-defensin 2 as a medicated feed additive for weaned piglets. Sci Rep 2016; 6:26790. [PMID: 27225034 PMCID: PMC4880912 DOI: 10.1038/srep26790] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/09/2016] [Indexed: 01/06/2023] Open
Abstract
Post-weaning diarrhoea (PWD) in piglets is associated with colonization of the intestine with bacterial pathogens. In this study, we evaluated the use of recombinant porcine β-defensin 2 (rpBD2) as a medicated feed additive for weaned piglets. The crude extract from the culture supernatant of rpBD2-expressing Pichia pastoris was used as a medicated feed additive for weaned piglets. Dietary treatments included a positive control (basal diet + antibiotics, designated PC) and three different rpBD2 treatments without antibiotics (basal diet supplemented with 1, 5, or 15 g of crude rpBD2/kg basal diet, designated 1PD, 5PD, and 15PD, respectively). Of all the treatments, 5PD had the greatest impact on the weaned piglets. It increased their body weight, average daily weight gain, average daily feed intake, and intestinal villus height in the duodenum and jejunum, and reduced the incidence of PWD. The diversity of the cecal digesta and mucosa microflora was compared between the weaned piglets in the PC and 5PD groups. Piglets treated with 5PD had lower diversity indices and fewer bacterial pathogens in their cecal digesta and mucosa than the PC group. Our results demonstrate that crude rpBD2 could provide an alternative to the traditional antibiotic feed additives given to weaned piglets.
Collapse
Affiliation(s)
- Zixin Peng
- Microbiology Laboratory, China National Center for Food Safety Risk Assessment, No. 7 Panjiayuannanli Road, Chaoyang District, Beijing, 100021, China.,State Key Laboratory of Direct-Fed Microbial Engineering, No. B-3 Northern Territory of Zhongguancun Dongsheng Science and Technology Park, Haidian District, Beijing, 100193, China
| | - Anru Wang
- State Key Laboratory of Direct-Fed Microbial Engineering, No. B-3 Northern Territory of Zhongguancun Dongsheng Science and Technology Park, Haidian District, Beijing, 100193, China
| | - Linqi Xie
- State Key Laboratory of Direct-Fed Microbial Engineering, No. B-3 Northern Territory of Zhongguancun Dongsheng Science and Technology Park, Haidian District, Beijing, 100193, China
| | - Weiping Song
- State Key Laboratory of Direct-Fed Microbial Engineering, No. B-3 Northern Territory of Zhongguancun Dongsheng Science and Technology Park, Haidian District, Beijing, 100193, China
| | - Jie Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 15 Fengtaidongdajie Street, Fengtai District, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 15 Fengtaidongdajie Street, Fengtai District, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 15 Fengtaidongdajie Street, Fengtai District, Beijing, 100071, China
| | - Fengqin Li
- Microbiology Laboratory, China National Center for Food Safety Risk Assessment, No. 7 Panjiayuannanli Road, Chaoyang District, Beijing, 100021, China
| |
Collapse
|
6
|
Flahou B, Haesebrouck F, Smet A. Non-Helicobacter pylori Helicobacter Infections in Humans and Animals. HELICOBACTER PYLORI RESEARCH 2016:233-269. [DOI: 10.1007/978-4-431-55936-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Hund A, Dzieciol M, Schmitz-Esser S, Wittek T. Characterization of mucosa-associated bacterial communities in abomasal ulcers by pyrosequencing. Vet Microbiol 2015; 177:132-41. [PMID: 25770891 DOI: 10.1016/j.vetmic.2015.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 12/21/2022]
Abstract
Abomasal ulcers are important pathological alterations of the gastrointestinal tract in cattle and are exceptionally hard to diagnose in vivo. The microbiome of the abomasum in cattle with or without ulcers has hardly been studied to date, and if so, the studies used culture-dependent methods. In the present study, the bacterial communities associated with abomasal ulcers of slaughter cows, bulls, and calves in Austria were described using 16S rRNA gene pyrosequencing. Sequences were clustered into 10,459 operational taxonomic units (OTUs), affiliating to 28 phyla with Proteobacteria, Firmicutes, Bacteroidetes and Tenericutes dominating (96.4% of all reads). The most abundant genera belonged to Helicobacter, Acetobacter, Lactobacillus, and novel Mycoplasma-like phylotypes. Significant differences between the microbial communities of healthy and ulcerated calves compared to cows and bulls could be observed. However, only few statistically significant differences in the abundances of certain OTUs between healthy and ulcerated abomasal mucosa were found. Additionally, near full-length 16S rRNA gene sequences of the most abundant phylotypes were obtained by cloning and Sanger sequencing (n=88). In conclusion, our results allow the first deep insights into the composition of abomasal mucosal bacterial communities in cattle and describe a hitherto unknown high diversity and species richness of abomasal bacteria in cattle. Our results suggest that bacteria may have only limited involvement in the etiology of abomasal ulcers. However, future research will be needed to verify the contribution of bacteria to abomasal ulcer formation as presence or absence of bacteria does not necessarily correlate with etiology of disease.
Collapse
Affiliation(s)
- Alexandra Hund
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Monika Dzieciol
- Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Research Cluster Animal Gut Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Thomas Wittek
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
8
|
Mitchell HM, Rocha GA, Kaakoush NO, O’Rourke JL, Queiroz DMM. The Family Helicobacteraceae. THE PROKARYOTES 2014:337-392. [DOI: 10.1007/978-3-642-39044-9_275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
9
|
Sanad YM, Closs G, Kumar A, LeJeune JT, Rajashekara G. Molecular epidemiology and public health relevance of Campylobacter isolated from dairy cattle and European starlings in Ohio, USA. Foodborne Pathog Dis 2012; 10:229-36. [PMID: 23259503 DOI: 10.1089/fpd.2012.1293] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dairy cattle serve as a potential source for Campylobacter infection in humans. Outbreaks associated with consumption of either Campylobacter contaminated raw milk or contaminated milk after treatment were previously recorded in the United States. Further, starlings have been implicated in the spread of bacterial pathogens among livestock. Here, we determined the prevalence, genotypic, and phenotypic properties of Campylobacter isolated from fecal samples of dairy cattle and starlings found on the same establishment in northeastern Ohio. Campylobacter were detected in 83 (36.6%) and 57 (50.4%) out of 227 dairy and 113 starling fecal samples, respectively. Specifically, 79 C. jejuni, five C. coli, and two other Campylobacter spp. were isolated from dairy feces, while all isolates from starlings (n=57) were C. jejuni. Our results showed that the prevalence of C. jejuni in birds was significantly (p<0.01) higher than that in dairy cattle. The pulsed-field gel electrophoresis analysis showed that C. jejuni were genotypically diverse and host restricted; however, there were several shared genotypes between dairy cattle and starling isolates. Likewise, many shared clonal complexes (CC) between dairy cattle and starlings were observed by multilocus sequence typing (MLST) analysis. As in humans, both in cattle and starlings, the CC 45 and CC 21 were the most frequently represented CCs. As previously reported, CC 177 and CC 682 were restricted to the bird isolates, while CC 42 was restricted to dairy cattle isolates. Further, two new sequence types (STs) were detected in C. jejuni from dairy cattle. Interestingly, cattle and starling C. jejuni showed high resistance to multiple antimicrobials, including ciprofloxacin, erythromycin, and gentamicin. In conclusion, our results highlight starlings as potential reservoirs for C. jejuni, and they may play an important role in the epidemiology of clinically important C. jejuni in dairy population.
Collapse
Affiliation(s)
- Yasser M Sanad
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, Ohio State University, Wooster, Ohio 44691, USA
| | | | | | | | | |
Collapse
|
10
|
Jenkins MB, Liotta JL, Bowman DD. Inactivation kinetics of Cryptosporidium parvum oocysts in a swine waste lagoon and spray field. J Parasitol 2012; 99:337-42. [PMID: 23016982 DOI: 10.1645/ge-3193.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Because of outbreaks of cryptosporidiosis in humans, some Cryptosporidium spp. have become a public health concern. Commercial swine operations can be a source of this protozoan parasite. Although the species distribution of Cryptosporidium is likely dominated by Cryptosporidium suis , a fraction may be comprised of other Cryptosporidium species infectious to humans such as Cryptosporidium parvum . To better understand the survival dynamics of Cryptosporidium spp., oocysts associated with swine operations, 2 experiments were performed to determine die-off rates of C. parvum oocysts in a swine waste lagoon (2009 and 2010) and its spray field (2010 and 2011). Sentinel chambers containing a lagoon effluent suspension of C. parvum oocysts were submerged in the lagoon, and triplicate chambers were removed over time; oocysts were extracted and assayed for viability. For comparative purposes, inactivation rates of Ascaris suum eggs contained in sentinel chambers were also determined. For 2 spray field experiments, air-dried and sieved surface soil was placed in sentinel chambers, hydrated, and inoculated with a lagoon effluent suspension of C. parvum oocysts. Sentinel chambers and control oocysts in PBS contained in microcentrifuge tubes were buried 1.5 cm below the soil surface in 3 blocks. Triplicate chambers and controls were removed over time; oocysts were extracted and assayed for viability. Based on the first order decay equation, days to reach 99% die-off (T(99)) were determined. T(99)-values determined for the 2 lagoon experiments were 13.1 and 20.1 wk, respectively. A T(99)-value for C. parvum in the spray field was significantly longer at 38.0 wk than the control oocysts in PBS at 29.0 wk. The waste lagoon and spray field system of manure management at this large-scale farrowing operation appeared to reduce the load of C. parvum oocysts before they can be hydrologically transported off the operation and reduces their likelihood of contaminating surface waters and threatening public health.
Collapse
Affiliation(s)
- Michael B Jenkins
- USDA-Agriculture Research Service, J. Phil Campbell, Sr., Natural Resource Conservation Center, Watkinsville, Georgia 30677, USA.
| | | | | |
Collapse
|
11
|
Sanad YM, Kassem II, Abley M, Gebreyes W, LeJeune JT, Rajashekara G. Genotypic and phenotypic properties of cattle-associated Campylobacter and their implications to public health in the USA. PLoS One 2011; 6:e25778. [PMID: 22046247 PMCID: PMC3198382 DOI: 10.1371/journal.pone.0025778] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 09/09/2011] [Indexed: 01/24/2023] Open
Abstract
Since cattle are a major source of food and the cattle industry engages people from farms to processing plants and meat markets, it is conceivable that beef-products contaminated with Campylobacter spp. would pose a significant public health concern. To better understand the epidemiology of cattle-associated Campylobacter spp. in the USA, we characterized the prevalence, genotypic and phenotypic properties of these pathogens. Campylobacter were detected in 181 (19.2%) out of 944 fecal samples. Specifically, 71 C. jejuni, 132 C. coli, and 10 other Campylobacter spp. were identified. The prevalence of Campylobacter varied regionally and was significantly (P<0.05) higher in fecal samples collected from the South (32.8%) as compared to those from the North (14.8%), Midwest (15.83%), and East (12%). Pulsed Field Gel Electrophoresis (PFGE) analysis showed that C. jejuni and C. coli isolates were genotypically diverse and certain genotypes were shared across two or more of the geographic locations. In addition, 13 new C. jejuni and two C. coli sequence types (STs) were detected by Multi Locus Sequence Typing (MLST). C. jejuni associated with clinically human health important sequence type, ST-61 which was not previously reported in the USA, was identified in the present study. Most frequently observed clonal complexes (CC) were CC ST-21, CC ST-42, and CC ST-61, which are also common in humans. Further, the cattle associated C. jejuni strains showed varying invasion and intracellular survival capacity; however, C. coli strains showed a lower invasion and intracellular survival potential compared to C. jejuni strains. Furthermore, many cattle associated Campylobacter isolates showed resistance to several antimicrobials including ciprofloxacin, erythromycin, and gentamicin. Taken together, our results highlight the importance of cattle as a potential reservoir for clinically important Campylobacter.
Collapse
Affiliation(s)
- Yasser M Sanad
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | | | | | | | | | | |
Collapse
|
12
|
Hansen R, Thomson JM, Fox JG, El-Omar EM, Hold GL. Could Helicobacter organisms cause inflammatory bowel disease? ACTA ACUST UNITED AC 2010; 61:1-14. [PMID: 20955468 DOI: 10.1111/j.1574-695x.2010.00744.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of Helicobacter pylori sparked a revolution in the understanding and management of peptic ulcer disease and gastric cancer. Other Helicobacter species are recognized as important pathogenic agents in colitic diseases of rodents and primates, in particular Helicobacter bilis, Helicobacter fennelliae, Helicobacter hepaticus and Helicobacter trogontum. Helicobacter bilis and H. hepaticus are now routinely used to initiate rodent models of inflammatory bowel disease (IBD), particularly in immunocompromised hosts. Molecular evidence exists linking various non-pylori Helicobacter spp. with human IBD; however, attempts to culture organisms in this disease cohort have proved unsuccessful to date. Attributing causation has therefore proved elusive. Seven enterohepatic, non-pylori Helicobacter organisms have been successfully cultured from humans, namely Helicobacter canadensis, Helicobacter canis, Helicobacter cinaedi, H. fennelliae, Helicobacter pullorum, Helicobacter winghamensis and Helicobacter sp. flexispira taxon 8 (now classified as H. bilis). Of these, H. cinaedi and H. fennelliae are the closest to fulfilling Koch's postulates as causative agents in homosexual proctitis. The possibility that novel Helicobacter organisms have a role in the initiation of human IBD warrants further consideration and targeted investigations.
Collapse
Affiliation(s)
- Richard Hansen
- Gastrointestinal Research Group, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | | | | | |
Collapse
|
13
|
Snyder LAS, Loman NJ, Linton JD, Langdon RR, Weinstock GM, Wren BW, Pallen MJ. Simple sequence repeats in Helicobacter canadensis and their role in phase variable expression and C-terminal sequence switching. BMC Genomics 2010; 11:67. [PMID: 20105305 PMCID: PMC2823697 DOI: 10.1186/1471-2164-11-67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helicobacter canadensis is an emerging human pathogen and zoonotic agent. The genome of H. canadensis was sequenced previously and determined to contain 29 annotated coding regions associated with homopolymeric tracts. RESULTS Twenty-one of the repeat-associated coding regions were determined to be potentially transcriptionally or translationally phase variable. In each case the homopolymeric tract was within the predicted promoter region or at the 5' end of the coding region, respectively. However, eight coding sequences were identified with simple sequence repeats toward the 3' end of the open reading frame. In these cases, the repeat tract would be too far into the coding region to be mediating translational phase variation. All of the 29 coding region-associated homopolymeric tracts display variability in tract length in the sequencing read data. CONCLUSIONS Twenty-nine coding regions have been identified in the genome sequence of Helicobacter canadensis strain NCTC13241 that show variations in homopolymeric tract length in the bacterial population, indicative of phase variation. Five of these are potentially associated with promoter regions, which would lead to transcriptional phase variation. Translational phase variation usually switches expression of a gene ON and OFF due to the repeat region being located sufficiently close to the initiation codon for the resulting frame-shift to lead to a premature termination codon and stop the translation of the protein. Sixteen of the 29 coding regions have homopolymeric tracts characteristic of translational phase variation. For eight coding sequences with repeats located later in the reading frame, changes in the repeat tract length would alter the protein sequence at the C-terminus but not stop the expression of the protein. This mechanism of C-terminal phase variation has implications for stochastic switching of protein sequence in bacterial species that already undergo transcriptional and translational phase variation.
Collapse
Affiliation(s)
- Lori A S Snyder
- Centre for Systems Biology, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B152TT, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Loman NJ, Snyder LAS, Linton JD, Langdon R, Lawson AJ, Weinstock GM, Wren BW, Pallen MJ. Genome sequence of the emerging pathogen Helicobacter canadensis. J Bacteriol 2009; 191:5566-7. [PMID: 19542273 PMCID: PMC2725615 DOI: 10.1128/jb.00729-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/11/2009] [Indexed: 11/20/2022] Open
Abstract
We determined the genome sequence of the type strain of Helicobacter canadensis, an emerging human pathogen with diverse animal reservoirs. Potential virulence determinants carried by the genome include systems for N-linked glycosylation and capsular export. A protein-based phylogenetic analysis places H. canadensis close to Wolinella succinogenes.
Collapse
Affiliation(s)
- N J Loman
- Centre for Systems Biology, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Inglis GD, Hoar BM, Whiteside DP, Morck DW. Campylobacter canadensis sp. nov., from captive whooping cranes in Canada. Int J Syst Evol Microbiol 2008; 57:2636-2644. [PMID: 17978232 DOI: 10.1099/ijs.0.65061-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ten isolates of an unknown Campylobacter species were isolated from cloacal swabs obtained from captive adult whooping cranes (Grus americana). All isolates were identified as Campylobacter based on generic PCR and grouped with other Campylobacter species based on 23S rRNA gene sequence. None of the isolates could be identified by species-specific PCR for known taxa, and all ten isolates formed a robust clade that was very distinct from known Campylobacter species based on 16S rRNA, rpoB and cpn60 gene sequences. The results of 16S rRNA gene nucleotide sequence (<or=92% sequence similarity to recognized Campylobacter species) and genomic DNA (no detectable relatedness) analyses were consistent with novel species status. Cells of the Campylobacter from whooping cranes were uniflagellar and typically sigmoid to allantoid in shape (0.48 microm wide and 2.61 microm long), but also spheroid to coccoid (0.59 microm wide and 0.73 microm long). The bacterium was oxidase-positive, able to reduce nitrite, able to grow at 3 degrees and 42 degrees C, and grew anaerobically, as well as in an atmosphere devoid of H2, and on MacConkey agar. It was not alpha-haemolytic and was negative for hippurate and indoxyl acetate hydrolysis and alkaline phosphatase. It also was susceptible to cephalotin and was unable to grow on nutrient agar, on a medium containing 3.5% NaCl or in ambient O2. The bacterium was unable to grow at 25 degrees C and growth was negative or very restricted at 30 degrees C. Fluorescent amplified fragment length polymorphism analysis indicated that nine of the recovered isolates were genetically distinct. A species-specific primer set targeting the cpn60 gene was developed. The name Campylobacter canadensis sp. nov. is proposed for the novel species, with the type strain L266T (=CCUG 54429T=LMG 24001T).
Collapse
Affiliation(s)
- G Douglas Inglis
- Food Safety and Quality National Program, Agriculture and Agri-Food Canada Research Centre, 5403 1st Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - Bryanne M Hoar
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Douglas P Whiteside
- Calgary Zoo Animal Health Centre, 1625 Centre Avenue E, Calgary, AB, T2E 8K2, Canada.,Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Douglas W Morck
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
16
|
Hannula M, Hänninen ML. Phylogenetic analysis of Helicobacter species based on partial gyrB gene sequences. Int J Syst Evol Microbiol 2007; 57:444-449. [PMID: 17329766 DOI: 10.1099/ijs.0.64462-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Analysis of 16S rRNA gene sequences is one of the most common methods for investigating the phylogeny and taxonomy of bacteria. However, several studies have indicated that the 16S rRNA gene does not distinguish between certain Helicobacter species. We therefore selected for phylogenetic analysis an alternative marker, gyrB, encoding gyrase subunit B. The aim of this investigation was to examine the applicability of gyrB gene fragments (approximately 1100 bp) for the phylogenetic study of 16 Helicobacter species and a total of 33 Helicobacter strains included in this study. Based on the sequenced fragments, a phylogenetic tree was obtained that contained two distinct clusters, with gastric species forming one cluster and enterohepatic species the other. The only exception was the gastric species Helicobacter mustelae, which clustered with the enterohepatic species. The calculated similarity matrix revealed the highest interspecies similarity between Helicobacter salomonis and Helicobacter felis (89 %) and the lowest similarity between Helicobacter pullorum and H. felis (60 %). The DNA G+C content of the sequenced fragments was < or =40 mol% in enterohepatic species and >46 mol% in gastric species, excluding Helicobacter pylori and H. mustelae, with G+C contents of 34 and 42 mol%, respectively. In summary, the gyrB gene fragments provided superior resolution and reliability to the 16S rRNA gene for differentiating between closely related Helicobacter species. A further outcome of this study was achieved by designing gyrB gene-based species-specific PCR primers for the identification of Helicobacter bizzozeronii.
Collapse
Affiliation(s)
- Minna Hannula
- Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|