Islam MT, Cheng J, Sadmani AHMA, Reinhart D, Chang NB. Investigating removal mechanisms of long- and short-chain per- and polyfluoroalkyl substances using specialty adsorbents in a field-scale surface water filtration system.
JOURNAL OF HAZARDOUS MATERIALS 2024;
474:134646. [PMID:
38838519 DOI:
10.1016/j.jhazmat.2024.134646]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
This study assessed the application of two specialty adsorbents, also known as green sorption media (GSM), including clay-perlite and sand sorption media (CPS) and zero-valent iron and perlite green environmental media (ZIPGEM) to remove long- and short-chain per- and polyfluoroalkyl substances (PFAS) at field scale. The field-scale demonstration employed four GSM filter cells installed near the C-23 Canal (St. Lucie County, FL), which discharges water to the ecologically sensitive St. Lucie River estuary and to the Atlantic Ocean finally. Although prior lab-scale experiments had demonstrated the effectiveness of CPS and ZIPGEM in treating long-chain PFAS, their performance in field-scale application warranted further investigation. The study reveals the critical roles of divalent cations such as Ca2+ and monovalent cations such as ammonium and hydronium ions, as well as other water quality parameters, on PFAS removal efficacy. Ammonia, most likely resulting from photo- and bacterial ammonification, gives rise to elevated ammonium ion formation in the wet season due to the decrease in pH, which ultimately worsens PFAS adsorption. Moreover, there is a strong negative correlation between pH and PFAS removal efficiency in the presence of ammonia, as evidenced by the reduced removal of PFAS during events associated with low pH.
Collapse