1
|
Rehman ZU, Ghaani M, Mohamed AYA, Gallagher J, Saikaly PE, Ali M. Alginate-like exopolysaccharides extracted from different waste sludges exhibit varying physicochemical and material properties. Front Microbiol 2024; 15:1493782. [PMID: 39564492 PMCID: PMC11573756 DOI: 10.3389/fmicb.2024.1493782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
This study examined the influence of different wastewater treatment processes on the physicochemical properties of Alginate-Like Exopolymers (ALE) extracted from waste sludge. Sludge samples were collected from wastewater treatment plants (WWTPs) processing both combined industrial and domestic wastewater, as well as domestic wastewater alone. Among the processes studied, aerobic granular sludge (AGS) produced the highest ALE yield (352 ± 50 mg/g-VSsludge), significantly exceeding that from membrane bioreactor (170 ± 41 mg/g-VSsludge) and conventional activated sludge (<130 mg/g-VSsludge). AGS-derived ALE also had the highest uronic acid content (224 ± 14.5 mg/g-VSsludge), with mannuronic acids playing a critical role in enhancing hydrogel cohesion and stability. The results showed that the distinct microbial consortium in the AGS system, including the presence of Pseudomonas alcaligenes, was strongly associated with increased ALE production. This establishes a novel link between microbial community composition and ALE yield. These insights are crucial for optimizing resource recovery in AGS systems and underscore the potential of ALE for various industrial applications.
Collapse
Affiliation(s)
- Zahid Ur Rehman
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Research and Analytical Services Department, Saudi. Aramco, Dhahran, Saudi Arabia
| | - Masoud Ghaani
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| | - Ahmed Y A Mohamed
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| | - John Gallagher
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
- TrinityHaus Trinity Research Centre, Trinity College Dublin, Dublin, Ireland
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Ali
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| |
Collapse
|
2
|
Bartlau N, Wichels A, Krohne G, Adriaenssens EM, Heins A, Fuchs BM, Amann R, Moraru C. Highly diverse flavobacterial phages isolated from North Sea spring blooms. THE ISME JOURNAL 2022; 16:555-568. [PMID: 34475519 PMCID: PMC8776804 DOI: 10.1038/s41396-021-01097-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/17/2021] [Indexed: 11/24/2022]
Abstract
It is generally recognized that phages are a mortality factor for their bacterial hosts. This could be particularly true in spring phytoplankton blooms, which are known to be closely followed by a highly specialized bacterial community. We hypothesized that phages modulate these dense heterotrophic bacteria successions following phytoplankton blooms. In this study, we focused on Flavobacteriia, because they are main responders during these blooms and have an important role in the degradation of polysaccharides. A cultivation-based approach was used, obtaining 44 lytic flavobacterial phages (flavophages), representing twelve new species from two viral realms. Taxonomic analysis allowed us to delineate ten new phage genera and ten new families, from which nine and four, respectively, had no previously cultivated representatives. Genomic analysis predicted various life styles and genomic replication strategies. A likely eukaryote-associated host habitat was reflected in the gene content of some of the flavophages. Detection in cellular metagenomes and by direct-plating showed that part of these phages were actively replicating in the environment during the 2018 spring bloom. Furthermore, CRISPR/Cas spacers and re-isolation during two consecutive years suggested that, at least part of the new flavophages are stable components of the microbial community in the North Sea. Together, our results indicate that these diverse flavophages have the potential to modulate their respective host populations.
Collapse
Affiliation(s)
- Nina Bartlau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Wichels
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Biologische Anstalt Helgoland, Heligoland, Germany
| | - Georg Krohne
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Anneke Heins
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
3
|
Sabra W. The Promise and Challenge of Microbial Alginate Production: A Product with Novel Applications. POLYSACCHARIDES OF MICROBIAL ORIGIN 2022:79-98. [DOI: 10.1007/978-3-030-42215-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Dudun AA, Akoulina EA, Zhuikov VA, Makhina TK, Voinova VV, Belishev NV, Khaydapova DD, Shaitan KV, Bonartseva GA, Bonartsev AP. Competitive Biosynthesis of Bacterial Alginate Using Azotobacter vinelandii 12 for Tissue Engineering Applications. Polymers (Basel) 2021; 14:131. [PMID: 35012152 PMCID: PMC8747204 DOI: 10.3390/polym14010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of various cultivation conditions (sucrose/phosphate concentrations, aeration level) on alginate biosynthesis using the bacterial producing strain Azotobacter vinelandii 12 by the full factorial design (FFD) method and physicochemical properties (e.g., rheological properties) of the produced bacterial alginate. We demonstrated experimentally the applicability of bacterial alginate for tissue engineering (the cytotoxicity testing using mesenchymal stem cells (MSCs)). The isolated synthesis of high molecular weight (Mw) capsular alginate with a high level of acetylation (25%) was achieved by FFD method under a low sucrose concentration, an increased phosphate concentration, and a high aeration level. Testing the viscoelastic properties and cytotoxicity showed that bacterial alginate with a maximal Mw (574 kDa) formed the densest hydrogels (which demonstrated relatively low cytotoxicity for MSCs in contrast to bacterial alginate with low Mw). The obtained data have shown promising prospects in controlled biosynthesis of bacterial alginate with different physicochemical characteristics for various biomedical applications including tissue engineering.
Collapse
Affiliation(s)
- Andrei A. Dudun
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Elizaveta A. Akoulina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Vsevolod A. Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Vera V. Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Nikita V. Belishev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Dolgor D. Khaydapova
- Department of Soil Physics and Reclamation, Soil Science Faculty, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Konstantin V. Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Garina A. Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| |
Collapse
|
5
|
Pacheco-Moreno A, Stefanato FL, Ford JJ, Trippel C, Uszkoreit S, Ferrafiat L, Grenga L, Dickens R, Kelly N, Kingdon AD, Ambrosetti L, Nepogodiev SA, Findlay KC, Cheema J, Trick M, Chandra G, Tomalin G, Malone JG, Truman AW. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021; 10:71900. [PMID: 34792466 PMCID: PMC8719888 DOI: 10.7554/elife.71900] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs. Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques – for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Christine Trippel
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Simon Uszkoreit
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Laura Ferrafiat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lucia Grenga
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Ruth Dickens
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Nathan Kelly
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alexander Dh Kingdon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Liana Ambrosetti
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jitender Cheema
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
6
|
Bacterial Extracellular Polymers: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prokaryotic microbial cells especially bacteria are highly emphases for their exopolysaccharides (EPS) production. EPS are the higher molecular weight natural extracellular compounds observe at the surface of the bacterial cells. Nowadays bacterial EPS represent rapidly emerging as new and industrially important biomaterials because it having tremendous physical and chemical properties with novel functionality. Due to its industrial demand as well as research studies the different extraction processes have been discovered to remove the EPS from the microbial biofilm. The novelties of EPS are also based on the microbial habitat conditions such as higher temperature, lower temperature, acidic, alkaliphilic, saline, etc. Based on its chemical structure they can be homopolysaccharide or heteropolysaccharide. EPSs have a wide range of applications in various industries such as food, textile, pharmaceutical, heavy metal recovery, agriculture, etc. So, this review focus on the understanding of the structure, different extraction processes, biosynthesis and genetic engineering of EPS as well as their desirable biotechnological applications.
Collapse
|
7
|
Chlebek D, Pinski A, Żur J, Michalska J, Hupert-Kocurek K. Genome Mining and Evaluation of the Biocontrol Potential of Pseudomonas fluorescens BRZ63, a New Endophyte of Oilseed Rape ( Brassica napus L.) against Fungal Pathogens. Int J Mol Sci 2020; 21:ijms21228740. [PMID: 33228091 PMCID: PMC7699435 DOI: 10.3390/ijms21228740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.
Collapse
Affiliation(s)
- Daria Chlebek
- Correspondence: (D.C.); (K.H.-K.); Tel.: +48-32-2009-462 (K.H.-K.)
| | | | | | | | | |
Collapse
|
8
|
Storey N, Rabiey M, Neuman BW, Jackson RW, Mulley G. Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages. Viruses 2020; 12:E1286. [PMID: 33182769 PMCID: PMC7696170 DOI: 10.3390/v12111286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023] Open
Abstract
Bacterial diseases of the edible white button mushroom Agaricus bisporus caused by Pseudomonas species cause a reduction in crop yield, resulting in considerable economic loss. We examined bacterial pathogens of mushrooms and bacteriophages that target them to understand the disease and opportunities for control. The Pseudomonastolaasii genome encoded a single type III protein secretion system (T3SS), but contained the largest number of non-ribosomal peptide synthase (NRPS) genes, multimodular enzymes that can play a role in pathogenicity, including a putative tolaasin-producing gene cluster, a toxin causing blotch disease symptom. However, Pseudomonasagarici encoded the lowest number of NRPS and three putative T3SS while non-pathogenic Pseudomonas sp. NS1 had intermediate numbers. Potential bacteriophage resistance mechanisms were identified in all three strains, but only P. agarici NCPPB 2472 was observed to have a single Type I-F CRISPR/Cas system predicted to be involved in phage resistance. Three novel bacteriophages, NV1, ϕNV3, and NV6, were isolated from environmental samples. Bacteriophage NV1 and ϕNV3 had a narrow host range for specific mushroom pathogens, whereas phage NV6 was able to infect both mushroom pathogens. ϕNV3 and NV6 genomes were almost identical and differentiated within their T7-like tail fiber protein, indicating this is likely the major host specificity determinant. Our findings provide the foundations for future comparative analyses to study mushroom disease and phage resistance.
Collapse
Affiliation(s)
- Nathaniel Storey
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
| | - Mojgan Rabiey
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Benjamin W. Neuman
- Biology Department, College of Arts, Sciences and Education, TAMUT, Texarkana, TX 75503, USA;
| | - Robert W. Jackson
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Geraldine Mulley
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
| |
Collapse
|
9
|
LuTheryn G, Glynne-Jones P, Webb JS, Carugo D. Ultrasound-mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microb Biotechnol 2020; 13:613-628. [PMID: 32237219 PMCID: PMC7111087 DOI: 10.1111/1751-7915.13471] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilms are an ever-growing concern for public health, featuring both inherited genetic resistance and a conferred innate tolerance to traditional antibiotic therapies. Consequently, there is a growing interest in novel methods of drug delivery, in order to increase the efficacy of antimicrobial agents. One such method is the use of acoustically activated microbubbles, which undergo volumetric oscillations and collapse upon exposure to an ultrasound field. This facilitates physical perturbation of the biofilm and provides the means to control drug delivery both temporally and spatially. In line with current literature in this area, this review offers a rounded argument for why ultrasound-responsive agents could be an integral part of advancing wound care. To achieve this, we will outline the development and clinical significance of biofilms in the context of chronic infections. We will then discuss current practices used in combating biofilms in chronic wounds and then critically evaluate the use of acoustically activated gas microbubbles as an emerging treatment modality. Moreover, we will introduce the novel concept of microbubbles carrying biologically active gases that may facilitate biofilm dispersal.
Collapse
Affiliation(s)
- Gareth LuTheryn
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
| | - Peter Glynne-Jones
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jeremy S Webb
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Dario Carugo
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Mærk M, Jakobsen ØM, Sletta H, Klinkenberg G, Tøndervik A, Ellingsen TE, Valla S, Ertesvåg H. Identification of Regulatory Genes and Metabolic Processes Important for Alginate Biosynthesis in Azotobacter vinelandii by Screening of a Transposon Insertion Mutant Library. Front Bioeng Biotechnol 2020; 7:475. [PMID: 32010681 PMCID: PMC6979010 DOI: 10.3389/fbioe.2019.00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Azotobacter vinelandii produces the biopolymer alginate, which has a wide range of industrial and pharmaceutical applications. A random transposon insertion mutant library was constructed from A. vinelandii ATCC12518Tc in order to identify genes and pathways affecting alginate biosynthesis, and about 4,000 mutant strains were screened for altered alginate production. One mutant, containing a mucA disruption, displayed an elevated alginate production level, and several mutants with decreased or abolished alginate production were identified. The regulatory proteins AlgW and AmrZ seem to be required for alginate production in A. vinelandii, similarly to Pseudomonas aeruginosa. An algB mutation did however not affect alginate yield in A. vinelandii although its P. aeruginosa homolog is needed for full alginate production. Inactivation of the fructose phosphoenolpyruvate phosphotransferase system protein FruA resulted in a mutant that did not produce alginate when cultivated in media containing various carbon sources, indicating that this system could have a role in regulation of alginate biosynthesis. Furthermore, impaired or abolished alginate production was observed for strains with disruptions of genes involved in peptidoglycan biosynthesis/recycling and biosynthesis of purines, isoprenoids, TCA cycle intermediates, and various vitamins, suggesting that sufficient access to some of these compounds is important for alginate production. This hypothesis was verified by showing that addition of thiamine, succinate or a mixture of lysine, methionine and diaminopimelate increases alginate yield in the non-mutagenized strain. These results might be used in development of optimized alginate production media or in genetic engineering of A. vinelandii strains for alginate bioproduction.
Collapse
Affiliation(s)
- Mali Mærk
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | - Svein Valla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
11
|
Rhizobium spp exopolysaccharides production and xanthan lyase use on its structural modification. Int J Biol Macromol 2019; 136:424-435. [DOI: 10.1016/j.ijbiomac.2019.06.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/25/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
|
12
|
Extremophilic exopolysaccharides: A review and new perspectives on engineering strategies and applications. Carbohydr Polym 2019; 205:8-26. [DOI: 10.1016/j.carbpol.2018.10.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
|
13
|
Schmid J. Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies. Curr Opin Biotechnol 2018; 53:130-136. [PMID: 29367163 DOI: 10.1016/j.copbio.2018.01.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 02/05/2023]
Abstract
The distinct biosynthesis pathways for microbial exopolysaccharide production provide different engineering strategies to tailor the chemical structures of the final polymers. This review focuses on the latest insights in the various pathways and identifies bottlenecks as well as promising targets for tailoring microbial polysaccharide production. The main engineering strategies includes the combinatorial assembly of glycosyltransferases and engineering of the Wzx and Wzy proteins for flipping of repeating units as well as polymerization. In the case of synthase based polysaccharides, the use of epimerases or engineering approaches of the synthase itself as well as overexpression of c-di-GMP levels is identified as one of the most promising strategies. For sucrase-based biosynthesis, the in vitro production by engineered sucrase enzymes or adjusted production conditions is shown as a very promising method.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, 94315 Straubing, Germany.
| |
Collapse
|
14
|
Hamedi H, Kargozari M, Shotorbani PM, Mogadam NB, Fahimdanesh M. A novel bioactive edible coating based on sodium alginate and galbanum gum incorporated with essential oil of Ziziphora persica: The antioxidant and antimicrobial activity, and application in food model. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Vásquez-Ponce F, Higuera-Llantén S, Pavlov MS, Ramírez-Orellana R, Marshall SH, Olivares-Pacheco J. Alginate overproduction and biofilm formation by psychrotolerant Pseudomonas mandelii depend on temperature in Antarctic marine sediments. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Vitorino LC, Bessa LA. Technological Microbiology: Development and Applications. Front Microbiol 2017; 8:827. [PMID: 28539920 PMCID: PMC5423913 DOI: 10.3389/fmicb.2017.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Over thousands of years, modernization could be predicted for the use of microorganisms in the production of foods and beverages. However, the current accelerated pace of new food production is due to the rapid incorporation of biotechnological techniques that allow the rapid identification of new molecules and microorganisms or even the genetic improvement of known species. At no other time in history have microorganisms been so present in areas such as agriculture and medicine, except as recognized villains. Currently, however, beneficial microorganisms such as plant growth promoters and phytopathogen controllers are required by various agricultural crops, and many species are being used as biofactories of important pharmacological molecules. The use of biofactories does not end there: microorganisms have been explored for the synthesis of diverse chemicals, fuel molecules, and industrial polymers, and strains environmentally important due to their biodecomposing or biosorption capacity have gained interest in research laboratories and in industrial activities. We call this new microbiology Technological Microbiology, and we believe that complex techniques, such as heterologous expression and metabolic engineering, can be increasingly incorporated into this applied science, allowing the generation of new and improved products and services.
Collapse
Affiliation(s)
- Luciana C. Vitorino
- Laboratory of Agricultural Microbiology, Goiano Federal InstituteGoiás, Brazil
| | | |
Collapse
|
17
|
Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in Pseudomonas aeruginosa. Appl Environ Microbiol 2017; 83:AEM.03499-16. [PMID: 28258142 DOI: 10.1128/aem.03499-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/23/2017] [Indexed: 12/11/2022] Open
Abstract
The exopolysaccharide alginate, produced by the opportunistic human pathogen Pseudomonas aeruginosa, confers a survival advantage to the bacterium by contributing to the formation of characteristic biofilms during infection. Membrane-anchored proteins Alg8 (catalytic subunit) and Alg44 (copolymerase) constitute the alginate polymerase that is being activated by the second messenger molecule bis-(3', 5')-cyclic dimeric GMP (c-di-GMP), but the mechanism of activation remains elusive. To shed light on the c-di-GMP-mediated activation of alginate polymerization in vivo, an in silico structural model of Alg8 fused to the c-di-GMP binding PilZ domain informed by the structure of cellulose synthase, BcsA, was developed. This structural model was probed by site-specific mutagenesis and different cellular levels of c-di-GMP. Results suggested that c-di-GMP-mediated activation of alginate polymerization involves amino acids residing at two loops, including H323 (loop A) and T457 and E460 (loop B), surrounding the catalytic site in the predicted model. The activities of the respective Alg8 variants suggested that c-di-GMP-mediated control of substrate access to the catalytic site of Alg8 is dissimilar to the known activation mechanism of BcsA. Alg8 variants responded differently to various c-di-GMP levels, while MucR imparted c-di-GMP for activation of alginate polymerase. Furthermore, we showed that Alg44 copolymerase constituted a stable dimer, with its periplasmic domains required for protein localization and alginate polymerization and modification. Superfolder green fluorescent protein (GFP) fusions of Alg8 and Alg44 showed a nonuniform, punctate, and patchy arrangement of both proteins surrounding the cell. Overall, this study provides insights into the c-di-GMP-mediated activation of alginate polymerization while assigning functional roles to Alg8 and Alg44, including their subcellular localization and distribution.IMPORTANCE The exopolysaccharide alginate is an important biofilm component of the opportunistic human pathogen P. aeruginosa and the principal cause of the mucoid phenotype that is the hallmark of chronic infections of cystic fibrosis patients. The production of alginate is mediated by interacting membrane proteins Alg8 and Alg44, while their activity is posttranslationally regulated by the second messenger c-di-GMP, a well-known regulator of the synthesis of a range of other exopolysaccharides in bacteria. This study provides new insights into the unknown activation mechanism of alginate polymerization by c-di-GMP. Experimental evidence that the activation of alginate polymerization requires the engagement of specific amino acid residues residing at the catalytic domain of Alg8 glycosyltransferase was obtained, and these residues are proposed to exert an allosteric effect on the PilZAlg44 domain upon c-di-GMP binding. This mechanism is dissimilar to the proposed mechanism of the autoinhibition of cellulose polymerization imposed by salt bridge formation between amino acid residues and released upon c-di-GMP binding, leading to activation of polymerization. On the other hand, conserved amino acid residues in the periplasmic domain of Alg44 were found to be involved in alginate polymerization as well as modification events, i.e., acetylation and epimerization. Due to the critical role of c-di-GMP in the regulation of many biological processes, particularly the motility-sessility switch and also the emergence of persisting mucoid phenotypes, these results aid to reach a better understanding of biofilm-associated regulatory networks and c-di-GMP signaling and might assist the development of inhibitory drugs.
Collapse
|
18
|
Gawin A, Valla S, Brautaset T. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microb Biotechnol 2017; 10:702-718. [PMID: 28276630 PMCID: PMC5481539 DOI: 10.1111/1751-7915.12701] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low‐ and high‐level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose‐dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β‐lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5′ untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system.
Collapse
Affiliation(s)
- Agnieszka Gawin
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
19
|
Ertesvåg H, Sletta H, Senneset M, Sun YQ, Klinkenberg G, Konradsen TA, Ellingsen TE, Valla S. Identification of genes affecting alginate biosynthesis in Pseudomonas fluorescens by screening a transposon insertion library. BMC Genomics 2017; 18:11. [PMID: 28049432 PMCID: PMC5210274 DOI: 10.1186/s12864-016-3467-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
Background Polysaccharides often are necessary components of bacterial biofilms and capsules. Production of these biopolymers constitutes a drain on key components in the central carbon metabolism, but so far little is known concerning if and how the cells divide their resources between cell growth and production of exopolysaccharides. Alginate is an industrially important linear polysaccharide synthesized from fructose 6-phosphate by several bacterial species. The aim of this study was to identify genes that are necessary for obtaining a normal level of alginate production in alginate-producing Pseudomonas fluorescens. Results Polysaccharide biosynthesis is costly, since it utilizes nucleotide sugars and sequesters carbon. Consequently, transcription of the genes necessary for polysaccharide biosynthesis is usually tightly regulated. In this study we used an engineered P. fluorescens SBW25 derivative where all genes encoding the proteins needed for biosynthesis of alginate from fructose 6-phosphate and export of the polymer are expressed from inducible Pm promoters. In this way we would avoid identification of genes merely involved in regulating the expression of the alginate biosynthetic genes. The engineered strain was subjected to random transposon mutagenesis and a library of about 11500 mutants was screened for strains with altered alginate production. Identified inactivated genes were mainly found to encode proteins involved in metabolic pathways related to uptake and utilization of carbon, nitrogen and phosphor sources, biosynthesis of purine and tryptophan and peptidoglycan recycling. Conclusions The majority of the identified mutants resulted in diminished alginate biosynthesis while cell yield in most cases were less affected. In some cases, however, a higher final cell yield were measured. The data indicate that when the supplies of fructose 6-phosphate or GTP are diminished, less alginate is produced. This should be taken into account when bacterial strains are designed for industrial polysaccharide production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3467-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helga Ertesvåg
- Department of Biotechnology, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | | | - Mona Senneset
- Department of Biotechnology, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,SINTEF Materials and Chemistry, Trondheim, Norway
| | - Yi-Qian Sun
- Department of Biotechnology, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | - Svein Valla
- Department of Biotechnology, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
20
|
Identification of a New Phosphatase Enzyme Potentially Involved in the Sugar Phosphate Stress Response in Pseudomonas fluorescens. Appl Environ Microbiol 2016; 83:AEM.02361-16. [PMID: 27836849 DOI: 10.1128/aem.02361-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/06/2016] [Indexed: 11/20/2022] Open
Abstract
The alginate-producing bacterium Pseudomonas fluorescens utilizes the Entner-Doudoroff (ED) and pentose phosphate (PP) pathways to metabolize fructose, since the upper part of its Embden-Meyerhof-Parnas pathway is defective. Our previous study indicated that perturbation of the central carbon metabolism by diminishing glucose-6-phosphate dehydrogenase activity could lead to sugar phosphate stress when P. fluorescens was cultivated on fructose. In the present study, we demonstrate that PFLU2693, annotated as a haloacid dehalogenase-like enzyme, is a new sugar phosphate phosphatase, now designated Spp, which is able to dephosphorylate a range of phosphate substrates, including glucose 6-phosphate and fructose 6-phosphate, in vitro The effect of spp overexpression on growth and alginate production was investigated using both the wild type and several mutant strains. The results obtained suggested that sugar phosphate accumulation caused diminished growth in some of the mutant strains, since this was partially relieved by spp overexpression. On the other hand, overexpression of spp in fructose-grown alginate-producing strains negatively affected both growth and alginate production. The latter implies that Spp dephosphorylates the sugar phosphates, thus depleting the pool of these important metabolites. Deletion of the spp gene did not affect growth of the wild-type strain on fructose, but the gene could not be deleted in the alginate-producing strain. This indicates that Spp is essential for relieving the cells of sugar phosphate stress in P. fluorescens actively producing alginate. IMPORTANCE In enteric bacteria, the sugar phosphate phosphatase YigL is known to play an important role in combating stress caused by sugar phosphate accumulation. In this study, we identified a sugar phosphate phosphatase, designated Spp, in Pseudomonas fluorescens Spp utilizes glucose 6-phosphate, fructose 6-phosphate, and ribose 5-phosphate as substrates, and overexpression of the gene had a positive effect on growth in P. fluorescens mutants experiencing sugar phosphate stress. The gene was localized downstream of gnd and zwf-2, which encode enzymes involved in the pentose phosphate and Entner-Doudoroff pathways. Genes encoding Spp homologues were identified in similar genetic contexts in some bacteria belonging to several phylogenetically diverse families, suggesting similar functions.
Collapse
|
21
|
Wang Y, Moradali MF, Goudarztalejerdi A, Sims IM, Rehm BHA. Biological function of a polysaccharide degrading enzyme in the periplasm. Sci Rep 2016; 6:31249. [PMID: 27824067 PMCID: PMC5099689 DOI: 10.1038/srep31249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Carbohydrate polymers are industrially and medically important. For instance, a polysaccharide, alginate (from seaweed), is widely used in food, textile and pharmaceutical industries. Certain bacteria also produce alginate through membrane spanning multi-protein complexes. Using Pseudomonas aeruginosa as a model organism, we investigated the biological function of an alginate degrading enzyme, AlgL, in alginate production and biofilm formation. We showed that AlgL negatively impacts alginate production through its enzymatic activity. We also demonstrated that deletion of AlgL does not interfere with polymer length control, epimerization degree or stability of the biosynthesis complex, arguing that AlgL is a free periplasmic protein dispensable for alginate production. This was further supported by our protein-stability and interaction experiments. Interestingly, over-production of AlgL interfered with polymer length control, suggesting that AlgL could be loosely associated with the biosynthesis complex. In addition, chromosomal expression of algL enhanced alginate O-acetylation; both attachment and dispersal stages of the bacterial biofilm lifecycle were sensitive to the level of O-acetylation. Since this modification also protects the pathogen against host defences and enhances other virulence factors, chromosomal expression of algL could be important for the pathogenicity of this organism. Overall, this work improves our understanding of bacterial alginate production and provides new knowledge for alginate production and disease control.
Collapse
Affiliation(s)
- Yajie Wang
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - M Fata Moradali
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Ali Goudarztalejerdi
- Department of Pathobiology, School of Paraveterinary Science, Bu-Ali Sina University, Hamadan, Iran
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, Wellington, New Zealand
| | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
22
|
Maleki S, Mærk M, Hrudikova R, Valla S, Ertesvåg H. New insights into Pseudomonas fluorescens alginate biosynthesis relevant for the establishment of an efficient production process for microbial alginates. N Biotechnol 2016; 37:2-8. [PMID: 27593394 DOI: 10.1016/j.nbt.2016.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
Alginate denotes a family of linear polysaccharides with a wide range of industrial and pharmaceutical applications. Presently, all commercially available alginates are manufactured from brown algae. However, bacterial alginates have advantages with regard to compositional homogeneity and reproducibility. In order to be able to design bacterial strains that are better suited for industrial alginate production, defining limiting factors for alginate biosynthesis is of vital importance. Our group has been studying alginate biosynthesis in Pseudomonas fluorescens using several complementary approaches. Alginate is synthesised and transported out of the cell by a multiprotein complex spanning from the inner to the outer membrane. We have developed an immunogold labelling procedure in which the porin AlgE, as a part of this alginate factory, could be detected by transmission electron microscopy. No time-dependent correlation between the number of such factories on the cell surface and alginate production level was found in alginate-producing strains. Alginate biosynthesis competes with the central carbon metabolism for the key metabolite fructose 6-phosphate. In P. fluorescens, glucose, fructose and glycerol, are metabolised via the Entner-Doudoroff and pentose phosphate pathways. Mutational analysis revealed that disruption of the glucose 6-phosphate dehydrogenase gene zwf-1 resulted in increased alginate production when glycerol was used as carbon source. Furthermore, alginate-producing P. fluorescens strains cultivated on glucose experience acid stress due to the simultaneous production of alginate and gluconate. The combined results from our studies strongly indicate that the availability of fructose 6-phosphate and energy requires more attention in further research aimed at the development of an optimised alginate production process.
Collapse
Affiliation(s)
- Susan Maleki
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway; Department of Biotechnology and Nanomedicine, Unit of SINTEF Materials and Chemistry, N-7465 Trondheim, Norway
| | - Mali Mærk
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Radka Hrudikova
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| |
Collapse
|