1
|
Zhang X, Zhang Y, Wang L, Wu G, Pan C. Three novel simple sequence repeats (SSRs) identified by MALDI-TOF-MS method were associated with backfat in pig. Anim Biotechnol 2023; 34:1014-1021. [PMID: 35048796 DOI: 10.1080/10495398.2021.2009845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Backfat trait is an important economic trait and highly heritable, but difficult to evaluate. Thus, it is of great significance to explore optimal backfat thickness of pigs by using marker-assisted selection (MAS) to speed up its breeding process and improve economic efficiency. This study aimed to investigate the relationship between genetic variations (e.g., SSRs) and backfat of Qinghai Bamei pigs using MALDI-TOF Mass Spectrometry (MALDI-TOF-MS). Herein, five alternative SSR loci (namely V1, V2, V3, V4 and V5) were selected for subsequent detection. The results suggested that 3 (141-, 143- and 145-), 3 (128-, 130- and 132-), 2 (160- and 162-), 2 (136- and 139-) and 3 (170-, 184- and 192-) alleles of V1, V2, V3, V4 and V5 were found, respectively. Subsequent analysis showed that there was linkage equilibrium among five SSRs and Hap19 (13.1%) (141-/132-/160-/139-/192-) had the highest haplotype frequency. Among these five SSR loci, V1, V2 and V3 loci were significantly associated to the backfat of Qinghai Bamei sows. These findings enriched the study of SSRs in Qinghai Bamei pigs, and (AC)n (Chr15:85485851-85485995), (AC)n (Chr10:52724583-52724713) and (TG)n (Chr4:90732644-90732802) could be utilized as the candidate locus for MAS in pig industry.HIGHLIGHTSFive novel SSR loci was identified in pigs through MALDI-TOF MS.V1, V2 and V3 loci was were significantly associated to the backfat of pigs.
Collapse
Affiliation(s)
- Xuelian Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yanghai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Guofang Wu
- College of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Byrne A, Bissonnette N, Ollier S, Tahlan K. Investigating in vivo Mycobacterium avium subsp. paratuberculosis microevolution and mixed strain infections. Microbiol Spectr 2023; 11:e0171623. [PMID: 37584606 PMCID: PMC10581078 DOI: 10.1128/spectrum.01716-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's Disease (JD) in ruminants, which is responsible for significant economic loss to the global dairy industry. Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with genetically distinct strains of a pathogen, whereas within-host changes in an infecting strain leading to genetically distinguishable progeny is called microevolution. The two processes can influence host-pathogen dynamics, disease progression and outcomes, but not much is known about their prevalence and impact on JD. Therefore, we obtained up to 10 MAP isolates each from 14 high-shedding animals and subjected them to whole-genome sequencing. Twelve of the 14 animals examined showed evidence for the presence of MSIs and microevolution, while the genotypes of MAP isolates from the remaining two animals could be attributed solely to microevolution. All MAP isolates that were otherwise isogenic had differences in short sequence repeats (SSRs), of which SSR1 and SSR2 were the most diverse and homoplastic. Variations in SSR1 and SSR2, which are located in ORF1 and ORF2, respectively, affect the genetic reading frame, leading to protein products with altered sequences and computed structures. The ORF1 gene product is predicted to be a MAP surface protein with possible roles in host immune modulation, but nothing could be inferred regarding the function of ORF2. Both genes are conserved in Mycobacterium avium complex members, but SSR1-based modulation of ORF1 reading frames seems to only occur in MAP, which could have potential implications on the infectivity of this pathogen. IMPORTANCE Johne's disease (JD) is a major problem in dairy animals, and concerns have been raised regarding the association of Mycobacterium avium subsp. paratuberculosis (MAP) with Crohn's disease in humans. MAP is an extremely slow-growing bacterium with low genome evolutionary rates. Certain short sequence repeats (SSR1 and SSR2) in the MAP chromosome are highly variable and evolve at a faster rate than the rest of the chromosome. In the current study, multiple MAP isolates with genetic variations such as single-nucleotide polymorphisms, and more noticeably, diverse SSRs, could simultaneously infect animals. Variations in SSR1 and SSR2 affect the products of the respective genes containing them. Since multiple MAP isolates can infect the same animal and the possibility that the pathogen undergoes further changes within the host due to unstable SSRs, this could provide a compensative mechanism for an otherwise slow-evolving pathogen to increase phenotypic diversity for overcoming host responses.
Collapse
Affiliation(s)
- Alexander Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Séverine Ollier
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
3
|
Byrne A, Ollier S, Tahlan K, Biet F, Bissonnette N. Genomic epidemiology of Mycobacterium avium subsp. paratuberculosis isolates from Canadian dairy herds provides evidence for multiple infection events. Front Genet 2023; 14:1043598. [PMID: 36816022 PMCID: PMC9934062 DOI: 10.3389/fgene.2023.1043598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the pathogen responsible for paratuberculosis or Johne's Disease (JD) in ruminants, which is responsible for substantial economic losses worldwide. MAP transmission primarily occurs through the fecal-oral route, and the introduction of an MAP infected animal into a herd is an important transmission route. In the current study, we characterized MAP isolates from 67 cows identified in 20 herds from the provinces of Quebec and Ontario, Canada. Whole genome sequencing (WGS) was performed and an average genome coverage (relative to K-10) of ∼14.9 fold was achieved. The total number of SNPs present in each isolate varied from 51 to 132 and differed significantly between herds. Isolates with the highest genetic variability were generally present in herds from Quebec. The isolates were broadly separated into two main clades and this distinction was not influenced by the province from which they originated. Analysis of 8 MIRU-VNTR loci and 11 SSR loci was performed on the 67 isolates from the 20 dairy herds and publicly available references, notably major genetic lineages and six isolates from the province of Newfoundland and Labrador. All 67 field isolates were phylogenetically classified as Type II (C-type) and according to MIRU-VNTR, the predominant type was INMV 2 (76.1%) among four distinct patterns. Multilocus SSR typing identified 49 distinct INMV SSR patterns. The discriminatory index of the multilocus SSR typing was 0.9846, which was much higher than MIRU-VNTR typing (0.3740). Although multilocus SSR analysis provides good discriminatory power, the resolution was not informative enough to determine inter-herd transmission. In select cases, SNP-based analysis was the only approach able to document disease transmission between herds, further validated by animal movement data. The presence of SNPs in several virulence genes, notably for PE, PPE, mce and mmpL, is expected to explain differential antigenic or pathogenetic host responses. SNP-based studies will provide insight into how MAP genetic variation may impact host-pathogen interactions. Our study highlights the informative power of WGS which is now recommended for epidemiological studies and to document mixed genotypes infections.
Collapse
Affiliation(s)
- Alexander Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Séverine Ollier
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Franck Biet
- INRAE, ISP, Université de Tours, Nouzilly, France
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada,*Correspondence: Nathalie Bissonnette,
| |
Collapse
|
4
|
Wu G, Shen W, Xue X, Wang L, Ma Y, Zhou J. A novel (ATC) n microsatellite locus is associated with litter size in an indigenous Chinese pig. Vet Med Sci 2021; 7:1332-1338. [PMID: 33955708 PMCID: PMC8294369 DOI: 10.1002/vms3.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Simple sequence repeats (SSRs) are an important part of the genome and have become powerful auxiliary DNA markers in animal breeding using marker-assisted selection (MAS). Based on previous sequencing data of Qinghai Bamei pigs, a total of three novel candidate SSR loci were analysed in this study. Time-of-flight mass spectrometry (TOF-MS) was used for SSR genotyping, and association analyses between SSRs and the litter size of Qinghai Bamei sows was also performed. The results of genotyping showed that the (ATC)n -P1, (AC)n -P2 and (AC)n -P3 loci had 2, 3 and 18 genotypes, respectively; 2, 3 and 8 alleles were also identified at these loci. Except for the (AC)n -P2 locus, the polymorphism information content (PIC) values of other loci were greater than 0.25. Association analyses indicated that only the (ATC)n -P1 locus was significantly associated with the litter size of Qinghai Bamei sows (p = .047). Compared to 189-/189- genotype, individuals with the 189-/195- genotype had the senior litter size, which was 9.04 ± 0.21. Our results enrich the data on SSRs in Qinghai Bamei pigs and indicate that (ATC)n -P1 is a candidate locus for MAS in the pig industry.
Collapse
Affiliation(s)
- Guofang Wu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wenjuan Shen
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xingxing Xue
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lei Wang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yuhong Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jiping Zhou
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
5
|
Fawzy A, Zschöck M, Ewers C, Eisenberg T. Genotyping methods and molecular epidemiology of Mycobacterium avium subsp. paratuberculosis (MAP). Int J Vet Sci Med 2018; 6:258-264. [PMID: 30564606 PMCID: PMC6286618 DOI: 10.1016/j.ijvsm.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease (JD) which affects mainly ruminants and is characterized by chronic diarrhea and emaciation. Johne’s disease is highly prevalent in many countries around the world and leads to high economic losses associated with decreased production. Genotyping of the involved pathogen could be used in the study of population genetics, pathogenesis and molecular epidemiology including disease surveillance and outbreak investigation. Principally, researchers have first assumed the presence of two different MAP strains that are associated with the animal host species (cattle and sheep). However, nowadays MAP characterization depends mainly upon genetic testing using genetic markers such as insertion elements, repetitive sequences and single nucleotide polymorphisms. This work aims to provide an overview of the advances in molecular biological tools used for MAP typing in the last two decades, discuss how these methods have been used to address interesting epidemiological questions, and explore the future prospects of MAP molecular epidemiology given the ever decreasing costs of the high throughput sequencing technology.
Collapse
Affiliation(s)
- Ahmad Fawzy
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Egypt
- Hessian State Laboratory (LHL), Giessen, Germany
- Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany
- Corresponding author at: Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany.
| | | | - Christa Ewers
- Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany
| | - Tobias Eisenberg
- Hessian State Laboratory (LHL), Giessen, Germany
- Institute of Hygiene and Animal Infectious Diseases, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
6
|
Barkema HW, Orsel K, Nielsen SS, Koets AP, Rutten VPMG, Bannantine JP, Keefe GP, Kelton DF, Wells SJ, Whittington RJ, Mackintosh CG, Manning EJ, Weber MF, Heuer C, Forde TL, Ritter C, Roche S, Corbett CS, Wolf R, Griebel PJ, Kastelic JP, De Buck J. Knowledge gaps that hamper prevention and control of Mycobacterium avium subspecies paratuberculosis infection. Transbound Emerg Dis 2017; 65 Suppl 1:125-148. [PMID: 28941207 DOI: 10.1111/tbed.12723] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 12/17/2022]
Abstract
In the last decades, many regional and country-wide control programmes for Johne's disease (JD) were developed due to associated economic losses, or because of a possible association with Crohn's disease. These control programmes were often not successful, partly because management protocols were not followed, including the introduction of infected replacement cattle, because tests to identify infected animals were unreliable, and uptake by farmers was not high enough because of a perceived low return on investment. In the absence of a cure or effective commercial vaccines, control of JD is currently primarily based on herd management strategies to avoid infection of cattle and restrict within-farm and farm-to-farm transmission. Although JD control programmes have been implemented in most developed countries, lessons learned from JD prevention and control programmes are underreported. Also, JD control programmes are typically evaluated in a limited number of herds and the duration of the study is less than 5 year, making it difficult to adequately assess the efficacy of control programmes. In this manuscript, we identify the most important gaps in knowledge hampering JD prevention and control programmes, including vaccination and diagnostics. Secondly, we discuss directions that research should take to address those knowledge gaps.
Collapse
Affiliation(s)
- H W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - K Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - S S Nielsen
- University of Copenhagen, Copenhagen, Denmark
| | - A P Koets
- Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Wageningen, The Netherlands
| | - V P M G Rutten
- Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | | | - G P Keefe
- University of Prince Edward Island, Charlottetown, Canada
| | | | - S J Wells
- University of Minnesota, Minneapolis, MN, USA
| | | | | | | | - M F Weber
- GD Animal Health, Deventer, The Netherlands
| | - C Heuer
- Massey University, Palmerston North, New Zealand
| | | | - C Ritter
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - S Roche
- University of Guelph, Guelph, Canada
| | - C S Corbett
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - R Wolf
- Amt der Steiermärkischen Landesregierung, Graz, Austria
| | | | - J P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - J De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Ravva SV, Harden LA, Sarreal CZ. Characterization and Differentiation of Mycobacterium avium subsp. paratuberculosis from Other Mycobacteria Using Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Front Cell Infect Microbiol 2017; 7:297. [PMID: 28713782 PMCID: PMC5491938 DOI: 10.3389/fcimb.2017.00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/16/2017] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease in cattle, is responsible for significant economic losses to the US dairy industry. The pathogen has also been associated with chronic human diseases like Crohn's disease, type 1 diabetes and multiple sclerosis. Determining causation requires rapid characterization and source tracking the pathogen. Here, we used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to characterize and differentiate strains of MAP from 14 other species of Mycobacterium from bovine, human, and environmental sources. Lysates from cells disrupted by bead beating in TFA-acetonitrile solution were analyzed by MALDI-TOF. MAP strains were differentiated by mass spectral profiles that are distinct from each other and from other Mycobacterium species. Cluster analysis of spectral profiles indicates two distinct clusters, one dominated by the members of avium complex and a second group dominated by members of fortuitum and parafortuitum complexes. We believe that MALDI-TOF methods can be used to differentiate and source-track MAP strains.
Collapse
Affiliation(s)
- Subbarao V Ravva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, United States
| | - Leslie A Harden
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, United States
| | - Chester Z Sarreal
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, United States
| |
Collapse
|
8
|
Ahlstrom C, Barkema HW, De Buck J. Relative frequency of 4 major strain types of Mycobacterium avium ssp. paratuberculosis in Canadian dairy herds using a novel single nucleotide polymorphism-based polymerase chain reaction. J Dairy Sci 2016; 99:8297-8303. [PMID: 27497900 DOI: 10.3168/jds.2016-11397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/25/2016] [Indexed: 11/19/2022]
Abstract
Johne's disease is a worldwide concern, as it causes huge economic losses. The etiological agent, Mycobacterium avium ssp. paratuberculosis (MAP), has limited genetic diversity, impeding efforts to understand transmission and distribution of strain types. Whole-genome sequencing was previously performed on a representative set of MAP isolates from Canadian dairy herds and 9 divergent clades were identified. Four clades were of particular interest, as they were either MAP types rarely reported in North America, or they represented a substantial proportion of isolates recovered from dairy farms in Canada. One clade included type I/III isolates, whereas the remaining clades included type II isolates. Variant sites in the MAP genome are often separated by thousands of base pairs, limiting use of single nucleotide polymorphism (SNP)-based genotyping on a single genomic region. Therefore, a SNP-PCR assay was developed to facilitate interrogation of 5 SNP in 2 distant regions of the genome, linking them together in a single PCR reaction for subsequent Sanger sequencing. This high-throughput assay enabled discrimination of 602 MAP isolates from 264 herds (from all 10 provinces). More than 1 isolate was cultured from 133 herds, 14 of which included multiple subtypes. A previously identified dominant type included 87% of isolates, whereas the Bison type was more widespread than previously reported. The latter type and isolates from a second clade of interest were overrepresented in Québec and Saskatchewan, respectively. In conclusion, the distribution and relative frequency of MAP subtypes within Canadian dairy herds were assessed using a novel SNP-based typing assay. These findings will contribute to understanding the clinical relevance and transmission dynamics of MAP in this population and elsewhere.
Collapse
Affiliation(s)
- Christina Ahlstrom
- Department of Production Animal Health, University of Calgary, Calgary, Alberta, T2N 4N1 Canada
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, Calgary, Alberta, T2N 4N1 Canada.
| | - Jeroen De Buck
- Department of Production Animal Health, University of Calgary, Calgary, Alberta, T2N 4N1 Canada
| |
Collapse
|
9
|
Li L, Katani R, Schilling M, Kapur V. Molecular Epidemiology ofMycobacterium aviumsubsp.paratuberculosison Dairy Farms. Annu Rev Anim Biosci 2016; 4:155-76. [DOI: 10.1146/annurev-animal-021815-111304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lingling Li
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; , , ,
| | - Robab Katani
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; , , ,
| | - Megan Schilling
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; , , ,
| | - Vivek Kapur
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; , , ,
| |
Collapse
|
10
|
Ahlstrom C, Barkema HW, Stevenson K, Zadoks RN, Biek R, Kao R, Trewby H, Haupstein D, Kelton DF, Fecteau G, Labrecque O, Keefe GP, McKenna SLB, Tahlan K, De Buck J. Genome-Wide Diversity and Phylogeography of Mycobacterium avium subsp. paratuberculosis in Canadian Dairy Cattle. PLoS One 2016; 11:e0149017. [PMID: 26871723 PMCID: PMC4752300 DOI: 10.1371/journal.pone.0149017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative bacterium of Johne’s disease (JD) in ruminants. The control of JD in the dairy industry is challenging, but can be improved with a better understanding of the diversity and distribution of MAP subtypes. Previously established molecular typing techniques used to differentiate MAP have not been sufficiently discriminatory and/or reliable to accurately assess the population structure. In this study, the genetic diversity of 182 MAP isolates representing all Canadian provinces was compared to the known global diversity, using single nucleotide polymorphisms identified through whole genome sequencing. MAP isolates from Canada represented a subset of the known global diversity, as there were global isolates intermingled with Canadian isolates, as well as multiple global subtypes that were not found in Canada. One Type III and six “Bison type” isolates were found in Canada as well as one Type II subtype that represented 86% of all Canadian isolates. Rarefaction estimated larger subtype richness in Québec than in other Canadian provinces using a strict definition of MAP subtypes and lower subtype richness in the Atlantic region using a relaxed definition. Significant phylogeographic clustering was observed at the inter-provincial but not at the intra-provincial level, although most major clades were found in all provinces. The large number of shared subtypes among provinces suggests that cattle movement is a major driver of MAP transmission at the herd level, which is further supported by the lack of spatial clustering on an intra-provincial scale.
Collapse
Affiliation(s)
| | | | | | - Ruth N. Zadoks
- Moredun Research Institute, Penicuik, Scotland
- University of Glasgow, Glasgow, Scotland
| | - Roman Biek
- University of Glasgow, Glasgow, Scotland
| | | | | | | | | | | | - Olivia Labrecque
- Laboratoire d'épidémiosurveillance animale du Québec, Saint-Hyacinthe, Québec, Canada
| | - Greg P. Keefe
- University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Shawn L. B. McKenna
- University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Kapil Tahlan
- Memorial University of Newfoundland and Labrador, St. John’s, Newfoundland, Canada
| | - Jeroen De Buck
- University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
11
|
Podder MP, Banfield SE, Keefe GP, Whitney HG, Tahlan K. Typing of Mycobacterium avium subspecies paratuberculosis isolates from Newfoundland using fragment analysis. PLoS One 2015; 10:e0126071. [PMID: 25927612 PMCID: PMC4415927 DOI: 10.1371/journal.pone.0126071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/28/2015] [Indexed: 01/12/2023] Open
Abstract
Short Sequence Repeat (SSR) typing of Mycobacterium avium subspecies paratuberculosis (Map) isolates is one of the most commonly used method for genotyping this pathogen. Currently used techniques have challenges in analyzing mononucleotide repeats >15 bp, which include some of the Map SSRs. Fragment analysis is a relatively simple technique, which can accurately measure the size of DNA fragments and can be used to calculate the repeat length of the target SSR loci. In the present study, fragment analysis was used to analyze 4 Map SSR loci known to provide sufficient discriminatory power to determine the relationship between Map isolates. Eighty-five Map isolates from 18 animals from the island of Newfoundland were successfully genotyped using fragment analysis. To the best of our knowledge, this is the first report on Map SSR diversity from Newfoundland dairy farms. Previously unreported Map SSR-types or combinations were also identified during the course of the described work. In addition, multiple Map SSR-types were isolated from a single animal in many cases, which is not a common finding.
Collapse
Affiliation(s)
- Milka P. Podder
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Susan E. Banfield
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Greg P. Keefe
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Hugh G. Whitney
- Animal Health Division, Newfoundland and Labrador Department of Natural Resources, St. John's, Newfoundland and Labrador, Canada
- * E-mail: (KT); (HGW)
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- * E-mail: (KT); (HGW)
| |
Collapse
|
12
|
Ahlstrom C, Barkema HW, Stevenson K, Zadoks RN, Biek R, Kao R, Trewby H, Haupstein D, Kelton DF, Fecteau G, Labrecque O, Keefe GP, McKenna SLB, De Buck J. Limitations of variable number of tandem repeat typing identified through whole genome sequencing of Mycobacterium avium subsp. paratuberculosis on a national and herd level. BMC Genomics 2015; 16:161. [PMID: 25765045 PMCID: PMC4356054 DOI: 10.1186/s12864-015-1387-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/24/2015] [Indexed: 01/14/2023] Open
Abstract
Background Mycobacterium avium subsp. paratuberculosis (MAP), the causative bacterium of Johne’s disease in dairy cattle, is widespread in the Canadian dairy industry and has significant economic and animal welfare implications. An understanding of the population dynamics of MAP can be used to identify introduction events, improve control efforts and target transmission pathways, although this requires an adequate understanding of MAP diversity and distribution between herds and across the country. Whole genome sequencing (WGS) offers a detailed assessment of the SNP-level diversity and genetic relationship of isolates, whereas several molecular typing techniques used to investigate the molecular epidemiology of MAP, such as variable number of tandem repeat (VNTR) typing, target relatively unstable repetitive elements in the genome that may be too unpredictable to draw accurate conclusions. The objective of this study was to evaluate the diversity of bovine MAP isolates in Canadian dairy herds using WGS and then determine if VNTR typing can distinguish truly related and unrelated isolates. Results Phylogenetic analysis based on 3,039 SNPs identified through WGS of 124 MAP isolates identified eight genetically distinct subtypes in dairy herds from seven Canadian provinces, with the dominant type including over 80% of MAP isolates. VNTR typing of 527 MAP isolates identified 12 types, including “bison type” isolates, from seven different herds. At a national level, MAP isolates differed from each other by 1–2 to 239–240 SNPs, regardless of whether they belonged to the same or different VNTR types. A herd-level analysis of MAP isolates demonstrated that VNTR typing may both over-estimate and under-estimate the relatedness of MAP isolates found within a single herd. Conclusions The presence of multiple MAP subtypes in Canada suggests multiple introductions into the country including what has now become one dominant type, an important finding for Johne’s disease control. VNTR typing often failed to identify closely and distantly related isolates, limiting the applicability of using this typing scheme to study the molecular epidemiology of MAP at a national and herd-level.
Collapse
Affiliation(s)
| | | | | | - Ruth N Zadoks
- Moredun Research Institute, Penicuik, Scotland. .,University of Glasgow, Glasgow, Scotland.
| | - Roman Biek
- University of Glasgow, Glasgow, Scotland.
| | | | | | | | | | | | - Olivia Labrecque
- Laboratoire d'épidémiosurveillance animale du Québec, Saint-Hyacinthe, Québec, Canada.
| | - Greg P Keefe
- University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
| | - Shawn L B McKenna
- University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
| | | |
Collapse
|