1
|
Methodological tools to study species of the genus Burkholderia. Appl Microbiol Biotechnol 2021; 105:9019-9034. [PMID: 34755214 PMCID: PMC8578011 DOI: 10.1007/s00253-021-11667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Bacteria belonging to the Burkholderia genus are extremely versatile and diverse. They can be environmental isolates, opportunistic pathogens in cystic fibrosis, immunocompromised or chronic granulomatous disease patients, or cause disease in healthy people (e.g., Burkholderia pseudomallei) or animals (as in the case of Burkholderia mallei). Since the genus was separated from the Pseudomonas one in the 1990s, the methodological tools to study and characterize these bacteria are evolving fast. Here we reviewed the techniques used in the last few years to update the taxonomy of the genus, to study gene functions and regulations, to deepen the knowledge on the drug resistance which characterizes these bacteria, and to elucidate their mechanisms to establish infections. The availability of these tools significantly impacts the quality of research on Burkholderia and the choice of the most appropriated is fundamental for a precise characterization of the species of interest. Key points • Updated techniques to study the genus Burkholderia were reviewed. • Taxonomy, genomics, assays, and animal models were described. • A comprehensive overview on recent advances in Burkholderia studies was made.
Collapse
|
2
|
Xiong F, Wang Y, Lu Q, Hao X, Fang W, Yang Y, Zhu X, Wang X. Lifestyle Characteristics and Gene Expression Analysis of Colletotrichum camelliae Isolated from Tea Plant [ Camellia sinensis (L.) O. Kuntze] Based on Transcriptome. Biomolecules 2020; 10:biom10050782. [PMID: 32443615 PMCID: PMC7278179 DOI: 10.3390/biom10050782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum camelliae is one of the most serious pathogens causing anthracnose in tea plants, but the interactive relationship between C. camelliae and tea plants has not been fully elucidated. This study investigated the gene expression changes in five different growth stages of C. camelliae based on transcriptome analysis to explain the lifestyle characteristics during the infection. On the basis of gene ontology (GO) enrichment analyses of differentially expressed genes (DEGs) in comparisons of germ tube (GT)/conidium (Con), appressoria (App)/Con, and cellophane infectious hyphae (CIH)/Con groups, the cellular process in the biological process category and intracellular, intracellular part, cell, and cell part in the cellular component category were significantly enriched. Hydrolase activity, catalytic activity, and molecular_function in the molecular function category were particularly enriched in the infection leaves (IL)/Con group. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs were enriched in the genetic information processing pathway (ribosome) at the GT stage and the metabolism pathway (metabolic pathways and biosynthesis of secondary metabolism) in the rest of the stages. Interestingly, the genes associated with melanin biosynthesis and carbohydrate-active enzymes (CAZys), which are vital for penetration and cell wall degradation, were significantly upregulated at the App, CIH and IL stages. Subcellular localization results further showed that the selected non-annotated secreted proteins based on transcriptome data were majorly located in the cytoplasm and nucleus, predicted as new candidate effectors. The results of this study may establish a foundation and provide innovative ideas for subsequent research on C. camelliae.
Collapse
Affiliation(s)
- Fei Xiong
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (F.X.); (W.F.)
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
| | - Yuchun Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
- College of Agriculture and Food Sciences, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Qinhua Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
| | - Xinyuan Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (F.X.); (W.F.)
| | - Yajun Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (F.X.); (W.F.)
- Correspondence: (X.Z.); (X.W.); Tel.: +86-25-84395182 (X.Z.); Fax: +86-25-84395182 (X.Z.)
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences; National Center for Tea Improvement; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Hangzhou, 310008, China; (Y.W.); (Q.L.); (X.H.); (Y.Y.)
- Correspondence: (X.Z.); (X.W.); Tel.: +86-25-84395182 (X.Z.); Fax: +86-25-84395182 (X.Z.)
| |
Collapse
|
3
|
Sánchez-Rodríguez R, González GM, Becerril-García MA, Treviño-Rangel RDJ, Marcos-Vilchis A, González-Pedrajo B, Valvano MA, Andrade A. The BPtpA protein from Burkholderia cenocepacia belongs to a new subclass of low molecular weight protein tyrosine phosphatases. Arch Biochem Biophys 2020; 681:108277. [PMID: 31978399 DOI: 10.1016/j.abb.2020.108277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
Abstract
Low molecular weight protein tyrosine phosphatases (LMW-PTP) are ubiquitous enzymes found across a spectrum of genera from prokaryotes to higher eukaryotes. LMW-PTP belong to the Cys-based PTP class II protein family. Here, we show that LMW-PTP can be categorized into two different groups, referred as class II subdivision I (class II.I) and subdivision II (class II.II). Using BPtpA from the opportunistic pathogen Burkholderia cenocepacia, as a representative member of the LMW-PTP class II.I, we demonstrated that four conserved residues (W47, H48, D80, and F81) are required for enzyme function. Guided by an in silico model of BPtpA, we show that the conserved residues at α3-helix (D80 and F81) contribute to protein stability, while the other conserved residues in the W-loop (W47 and H48) likely play a role in substrate recognition. Overall, our results provide new information on LMW-PTP protein family and establish B. cenocepacia as a suitable model to investigate how substrates are recognized and sorted by these proteins.
Collapse
Affiliation(s)
- Rebeca Sánchez-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología. Monterrey, Nuevo León, 64460, Mexico
| | - Gloria M González
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología. Monterrey, Nuevo León, 64460, Mexico
| | - Miguel A Becerril-García
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología. Monterrey, Nuevo León, 64460, Mexico
| | - Rogelio de J Treviño-Rangel
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología. Monterrey, Nuevo León, 64460, Mexico
| | - Arely Marcos-Vilchis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 70-243, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 70-243, Mexico
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Angel Andrade
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología. Monterrey, Nuevo León, 64460, Mexico.
| |
Collapse
|
4
|
Schmid N, Suppiger A, Steiner E, Pessi G, Kaever V, Fazli M, Tolker-Nielsen T, Jenal U, Eberl L. High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111. MICROBIOLOGY-SGM 2017; 163:754-764. [PMID: 28463102 DOI: 10.1099/mic.0.000452] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The opportunistic human pathogen Burkholderia cenocepacia H111 uses two chemically distinct signal molecules for controlling gene expression in a cell density-dependent manner: N-acyl-homoserine lactones (AHLs) and cis-2-dodecenoic acid (BDSF). Binding of BDSF to its cognate receptor RpfR lowers the intracellular c-di-GMP level, which in turn leads to differential expression of target genes. In this study we analysed the transcriptional profile of B. cenocepacia H111 upon artificially altering the cellular c-di-GMP level. One hundred and eleven genes were shown to be differentially expressed, 96 of which were downregulated at a high c-di-GMP concentration. Our analysis revealed that the BDSF, AHL and c-di-GMP regulons overlap for the regulation of 24 genes and that a high c-di-GMP level suppresses expression of AHL-regulated genes. Phenotypic analyses confirmed changes in the expression of virulence factors, the production of AHL signal molecules and the biosynthesis of different biofilm matrix components upon altered c-di-GMP levels. We also demonstrate that the intracellular c-di-GMP level determines the virulence of B. cenocepacia to Caenorhabditis elegans and Galleria mellonella.
Collapse
Affiliation(s)
- Nadine Schmid
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Angela Suppiger
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Elisabeth Steiner
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Mustafa Fazli
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Urs Jenal
- Focal Area of Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Leo Eberl
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|