1
|
Kim J, Fuller ME, Hatzinger PB, Chu KH. Isolation and characterization of nitroguanidine-degrading microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169184. [PMID: 38092196 DOI: 10.1016/j.scitotenv.2023.169184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Nitroguanidine (NQ) is a component of newly developed insensitive munition (IM) formulations which are more resistant to impact, friction, heat, or sparks than conventional explosives. NQ is also used to synthesize various organic compounds and herbicides, and has both human and environmental health impacts. Despite the wide application and associated health concerns, limited information is known regarding NQ biodegradation, and only one NQ-degrading pure culture identified as Variovorax strain VC1 has been characterized. Here, we present results for three new NQ-degrading bacterial strains isolated from soil, sediment, and a lab-scale aerobic membrane bioreactor (MBR), respectively. Each of these strains -utilizes NQ as a nitrogen (N) source rather than as a source of carbon or energy. The MBR strain, identified as Pseudomonas extremaustralis strain NQ5, is capable of degrading NQ at a rate of approximately 150 μmole L-1 h-1 under aerobic conditions with glucose as a sole carbon source - and NQ as a sole N source. The addition of NH4+ to strain NQ5 during active growth with NQ as a sole N source slowed the growth rate for several hours, and the strain released NH4+, presumably from NQ. When NO3- was added as an alternate N source under similar conditions, the NO3- was not consumed, but NH4+ release into the culture medium was again observed. Strain NQ5 was also able to utilize guanylurea, guanidine, and ethyl allophanate as N sources, and - tolerate salt concentrations as high as 4 % (as NaCl). The other two stains, NQ4 and NQ7, both identified as Arthrobacter spp., grew significantly slower than strain NQ5 under similar culture conditions and tolerated only ∼1 % NaCl. In addition, neither strain NQ4 nor strain NQ7 was able to degrade guanlyurea or ethyl allophanate, but each degraded guanidine. These strains, particularly strain NQ5, may have practical applications for in-situ and ex-situ NQ bioremediation.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Paul B Hatzinger
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
2
|
Zhou X, Yao Q, Li N, Xia M, Deng Y. Multi-Omics Strategies to Investigate the Biodegradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine in Rhodococcus sp. Strain DN22. Microorganisms 2023; 12:76. [PMID: 38257903 PMCID: PMC10820124 DOI: 10.3390/microorganisms12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is an energetic and persistent explosive with long-lasting properties. Rhodococcus sp. strain DN22 has been discovered to be a microbe capable of degrading RDX. Herein, the complete genome of Rhodococcus sp. strain DN22 was sequenced and analyzed. The entire sequences of genes that encoded the two proteins participating in RDX degradation in Rhodococcus sp. strain DN22 were obtained, and were validated through proteomic data. In addition, few studies have investigated the physiological changes and metabolic pathways occurring within Rhodococcus sp. cells when treated with RDX, particularly through mass spectrometry-based omics. Hence, proteomic and metabolomic analyses were carried out on Rhodococcus sp. strain DN22 with the existence or lack of RDX in the medium. A total of 3186 proteins were identified between the two groups, with 115 proteins being significantly differentially expressed proteins. There were 1056 metabolites identified in total, among which 130 metabolites were significantly different. Through the combined analysis of differential proteomics and metabolomics, KEGG pathways including two-component system, ABC transporters, alanine, aspartate and glutamate metabolism, arginine biosynthesis, purine metabolism, nitrogen metabolism, and phosphotransferase system (PTS), were observed to be significantly enriched. These findings provided ponderable perspectives on the physiological alterations and metabolic pathways in Rhodococcus sp. strain DN22, responding to the existence or lack of RDX. This study is anticipated to expand the knowledge of Rhodococcus sp. strain DN22, as well as advancing understanding of microbial degradation.
Collapse
Affiliation(s)
- Xiangzhe Zhou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (X.Z.)
| | - Qifa Yao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nuomin Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (X.Z.)
| | - Min Xia
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (X.Z.)
| |
Collapse
|
3
|
Effects of Perchlorate and Other Groundwater Inorganic Co-Contaminants on Aerobic RDX Degradation. Microorganisms 2022; 10:microorganisms10030663. [PMID: 35336238 PMCID: PMC8949498 DOI: 10.3390/microorganisms10030663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) pollution is accompanied by other co-contaminants, such as perchlorate and chlorates, which can retard biodegradation. The effects of perchlorate and chlorate on aerobic RDX degradation remain unclear. We hypothesized that they have a negative or no impact on aerobic RDX-degrading bacteria. We used three aerobic RDX-degrading strains—Rhodococcus strains YH1 and T7 and Gordonia YY1—to examine this hypothesis. The strains were exposed to perchlorate, chlorate, and nitrate as single components or in a mixture. Their growth, degradation activity, and gene expression were monitored. Strain-specific responses to the co-contaminants were observed: enhanced growth of strain YH1 and inhibition of strain T7. Vmax and Km of cytochrome P450 (XplA) in the presence of the co-contaminants were not significantly different from the control, suggesting no direct influence on cytochrome P450. Surprisingly, xplA expression increased fourfold in cultures pre-grown on RDX and, after washing, transferred to a medium containing only perchlorate. This culture did not grow, but xplA was translated and active, albeit at lower levels than in the control. We explained this observation as being due to nitrogen limitation in the culture and not due to perchlorate induction. Our results suggest that the aerobic strain YH1 is effective for aerobic remediation of RDX in groundwater.
Collapse
|
4
|
Lu L, Wang G, Yeung M, Xi J, Hu HY. Shift of microbial community in gas-phase biofilters with different inocula, inlet loads and nitrogen sources. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Jung CM, Carr M, Blakeney GA, Indest KJ. Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain Gordonia sp. KTR9. J Ind Microbiol Biotechnol 2019; 46:1273-1281. [PMID: 31119503 DOI: 10.1007/s10295-019-02185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
Horizontal gene transfer (HGT) is the lateral movement of genetic material between organisms. The RDX explosive-degrading bacterium Gordonia sp. KTR9 has been shown previously to transfer the pGKT2 plasmid containing the RDX degradative genes (xplAB) by HGT. Overall, fitness costs to the transconjugants to maintain pGKT2 was determined through growth and survivability assessments. Rhodococcus jostii RHA1 transconjugants demonstrated a fitness cost while other strains showed minimal cost. Biogeochemical parameters that stimulate HGT of pGKT2 were evaluated in soil slurry mating experiments and the absence of nitrogen was found to increase HGT events three orders of magnitude. Experiments evaluating RDX degradation in flow-through soil columns containing mating pairs showed 20% greater degradation than columns with only the donor KTR9 strain. Understanding the factors governing HGT will benefit bioaugmentation efforts where beneficial bacteria with transferrable traits could be used to more efficiently degrade contaminants through gene transfer to native populations.
Collapse
Affiliation(s)
- Carina M Jung
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| | - Matthew Carr
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - G Alon Blakeney
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Karl J Indest
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| |
Collapse
|
6
|
Sowani H, Kulkarni M, Zinjarde S. Harnessing the catabolic versatility of Gordonia species for detoxifying pollutants. Biotechnol Adv 2019; 37:382-402. [DOI: 10.1016/j.biotechadv.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
|
7
|
Abstract
Temperate phages play important roles in the physiology of their bacterial hosts and establish a lysogenic relationship with the host through which prophage-expressed genes confer new phenotypes. A key phenotype is prophage-mediated defense against heterotypic viral attack, in which temperate phages collude with their bacterial host to prevent other phages from attacking, sometimes with exquisite specificity. Such defense systems have been described in Pseudomonas and Mycobacterium phages but are likely widespread throughout the microbial community. Here, we describe a novel prophage-mediated defense system encoded by Gordonia phage CarolAnn, which defends against infection by unrelated phages grouped in cluster CZ. CarolAnn genes 43 and 44 are coexpressed with the repressor and are necessary and sufficient to confer defense against phage Kita and its close relatives. Kita and these relatives are targeted through Kita gene 53, a gene that is of unknown function but which is the location of defense escape mutations that overcome CarolAnn defense. Expression of Kita gene 53 is toxic to Gordonia terrae in the presence of CarolAnn genes 43 and 44, suggesting that defense may be mediated by an abortive infection type of mechanism. CarolAnn genes 43 and 44 are distant relatives of mycobacteriophage Sbash genes 31 and 30, respectively, which also confer viral defense but use a different targeting system.IMPORTANCE Prophage-mediated viral defense systems play a key role in microbial dynamics, as lysogeny is established relatively efficiently, and prophage-expressed genes can strongly inhibit lytic infection of other, unrelated phages. Demonstrating such defense systems in Gordonia terrae suggests that these systems are widespread and that there are a multitude of different systems with different specificities for the attacking phages.
Collapse
|
8
|
Sabir DK, Grosjean N, Rylott EL, Bruce NC. Investigating differences in the ability of XplA/B-containing bacteria to degrade the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). FEMS Microbiol Lett 2018; 364:3958792. [PMID: 28854671 DOI: 10.1093/femsle/fnx144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 11/13/2022] Open
Abstract
The xenobiotic hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a toxic explosive and environmental pollutant. This study examines three bacterial species that degrade RDX, using it as a sole source of nitrogen for growth. Although isolated from diverse geographical locations, the species contain near identical copies of genes encoding the RDX-metabolising cytochrome P450, XplA and accompanying reductase, XplB. Sequence analysis indicates a single evolutionary origin for xplA and xplB as part of a genomic island, which has been distributed around the world via horizontal gene transfer. Despite the fact that xplA and xplB are highly conserved between species, Gordonia sp. KTR9 and Microbacterium sp. MA1 degrade RDX more slowly than Rhodococcus rhodochrous 11Y. Both Gordonia sp. KTR9 and Microbacterium sp. MA1 were found to contain single base-pair mutations in xplB which, following expression and purification, were found to encode inactive XplB protein. Additionally, the Gordonia sp. KTR9 XplB was fused to glutamine synthetase, which would be likely to sterically inhibit XplB activity. Although the glutamine synthetase is fused to XplB and truncated by 71 residues, it was found to be active. Glutamine synthetase has been implicated in the regulation of nitrogen levels; controlling nitrogen availability will be important for effective bioremediation of RDX.
Collapse
Affiliation(s)
- Dana Khdr Sabir
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.,Department of General Sciences, Charmo University, 46023 Chamchamal, Sulaimani, Kurdistan Region- IRAQ
| | - Nicolas Grosjean
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
9
|
Lapointe MC, Martel R, Diaz E. A Conceptual Model of Fate and Transport Processes for RDX Deposited to Surface Soils of North American Active Demolition Sites. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1444-1454. [PMID: 29293864 DOI: 10.2134/jeq2017.02.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as an energetic material (EM) in ammunition constituents such as detonators, primers, mines, and rocket boosters and in plastic explosives has led to an international warning on possible soil, surface water, and groundwater contamination on military training sites. In Canada, the demolition sites of range training areas are known to be the second most contaminated sites by EM residues in terms of their concentrations in soil after anti-tank ranges. This research proposes a conceptual model of the presence of RDX at the field scale at demolition sites according to previous soil and water characterization studies. This model illustrates the origin of RDX contamination, the main RDX transport pathways and processes, and the main threatened receptors. This conceptual model is of importance to visualize and understand RDX's environmental fate and behavior and to ultimately enable the production of a detailed quantitative model that can help to manage those RDX-contaminated sites.
Collapse
|
10
|
Saha S, Badhe N, Pal S, Biswas R, Nandy T. Carbon and nutrient-limiting conditions stimulate biodegradation of low concentration of phenol. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Chatterjee S, Deb U, Datta S, Walther C, Gupta DK. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. CHEMOSPHERE 2017; 184:438-451. [PMID: 28618276 DOI: 10.1016/j.chemosphere.2017.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/10/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Explosive materials are energetic substances, when released into the environment, contaminate by posing toxic hazards to environment and biota. Throughout the world, soils are contaminated by such contaminants either due to manufacturing operations, military activities, conflicts of different levels, open burning/open detonation (OB/OD), dumping of munitions etc. Among different forms of chemical explosives, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) are most common. These explosives are highly toxic as USEPA has recommended restrictions for lifetime contact through drinking water. Although, there are several utilitarian aspects in anthropogenic activities, however, effective remediation of explosives is very important. This review article emphasizes the details of appropriate practices to ameliorate the contamination. Critical evaluation has also been made to encompass the recent knowledge and advancement about bioremediation and phytoremediation of explosives (especially TNT, RDX and HMX) along with the molecular mechanisms of biodegradation.
Collapse
Affiliation(s)
- Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Utsab Deb
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Sibnarayan Datta
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Clemens Walther
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, 30419, Hannover, Germany
| | - Dharmendra K Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, 30419, Hannover, Germany.
| |
Collapse
|
12
|
Indest KJ, Hancock DE, Crocker FH, Eberly JO, Jung CM, Blakeney GA, Brame J, Chappell MA. Biodegradation of insensitive munition formulations IMX101 and IMX104 in surface soils. ACTA ACUST UNITED AC 2017; 44:987-995. [DOI: 10.1007/s10295-017-1930-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/23/2017] [Indexed: 11/24/2022]
Abstract
Abstract
The biodegradation potential of insensitive munition melt cast formulations IMX101 and IMX104 was investigated in two unamended training range soils under aerobic and anaerobic growth conditions. Changes in community profiles in soil microcosms were monitored via high-throughput 16S rRNA sequencing over the course of the experiments to infer key microbial phylotypes that may be linked to IMX degradation. Complete anaerobic biotransformation occurred for IMX101 and IMX104 constituents 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one during the 30-day incubation period with Camp Shelby (CS) soil. By comparison, soil from Umatilla chemical depot demonstrated incomplete DNAN degradation with reduced transformation rates for both IMX101 and IMX104. Aerobic soil microcosms for both soils demonstrated reduced transformation rates compared to anaerobic degradation for all IMX constituents with DNAN the most susceptible to biotransformation by CS soil. Overall, IMX constituents hexahydro-1,3,5-trinitro-1,3,5-triazine and 1-nitroguanidine did not undergo significant transformation. In CS soil, organisms that have been associated with explosives degradation, namely members of the Burkholderiaceae, Bacillaceae, and Paenibacillaceae phylotypes increased significantly in anaerobic treatments whereas Sphingomonadaceae increased significantly in aerobic treatments. Collectively, these data may be used to populate fate and transport models to provide more accurate estimates for assessing environmental costs associated with release of IMX101 and IMX104.
Collapse
Affiliation(s)
- Karl J Indest
- 0000 0001 0637 9574 grid.417553.1 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Dawn E Hancock
- 0000 0001 0637 9574 grid.417553.1 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Fiona H Crocker
- 0000 0001 0637 9574 grid.417553.1 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Jed O Eberly
- 0000 0001 0637 9574 grid.417553.1 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Carina M Jung
- 0000 0001 0637 9574 grid.417553.1 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Gary A Blakeney
- 0000 0001 0637 9574 grid.417553.1 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Jon Brame
- 0000 0001 0637 9574 grid.417553.1 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Mark A Chappell
- 0000 0001 0637 9574 grid.417553.1 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| |
Collapse
|
13
|
Fuller ME, Hatzinger PB, Condee CW, Andaya C, Rezes R, Michalsen MM, Crocker FH, Indest KJ, Jung CM, Alon Blakeney G, Istok JD, Hammett SA. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions. Appl Microbiol Biotechnol 2017; 101:5557-5567. [DOI: 10.1007/s00253-017-8269-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
14
|
Wang D, Boukhalfa H, Marina O, Ware DS, Goering TJ, Sun F, Daligault HE, Lo CC, Vuyisich M, Starkenburg SR. Biostimulation and microbial community profiling reveal insights on RDX transformation in groundwater. Microbiologyopen 2016; 6. [PMID: 27860341 PMCID: PMC5387309 DOI: 10.1002/mbo3.423] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 11/06/2022] Open
Abstract
Hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high‐explosives‐bearing water from a high‐explosives‐machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary source of high‐explosives and inorganic‐element contamination in the area. Data indicate that springs, surface water, alluvial groundwater, and perched‐intermediate groundwater contain explosive compounds, including RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine); HMX (octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine); and TNT (2,4,6‐trinitrotoluene). RDX has been detected in the regional aquifer in several wells, and a corrective measures evaluation is planned to identify remedial alternatives to protect the regional aquifer. Perched‐intermediate groundwater at Technical Area 16 is present at depths from 650 ft to 1200 ft bgs. In this study, we examined the microbial diversity in a monitoring well completed in perched‐intermediate groundwater contaminated by RDX, and examined the response of the microbial population to biostimulation under varying geochemical conditions. Results show that the groundwater microbiome was dominated by Actinobacteria and Proteobacteria. A total of 1,605 operational taxonomic units (OTUs) in 96 bacterial genera were identified. Rhodococcus was the most abundant genus (30.6%) and a total of 46 OTUs were annotated as Rhodococcus. One OTU comprising 25.2% of total sequences was closely related to a RDX ‐degrading strain R. erythropolis HS4. A less abundant OTU from the Pseudomonas family closely related to RDX‐degrading strain P. putida II‐B was also present. Biostimulation significantly enriched Proteobacteria but decreased/eliminated the population of Actinobacteria. Consistent with RDX degradation, the OTU closely related to the RDX‐degrading P. putida strain II‐B was specifically enriched in the RDX‐degrading samples. Analysis of the accumulation of RDX‐degradation products reveals that during active RDX degradation, there is a transient increase in the concentration of the degradation products MNX, DNX, TNX, and NDAB. The accumulation of these degradation products suggests that RDX is degraded via sequential reduction of the nitro functional groups followed by abiotic ring‐cleavage. The results suggest that strict anaerobic conditions are needed to stimulate RDX degradation under the TA‐16 site‐specific conditions.
Collapse
Affiliation(s)
- Dongping Wang
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Hakim Boukhalfa
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Oana Marina
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Doug S Ware
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Tim J Goering
- Environmental Programs ADEP, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Hajnalka E Daligault
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chien-Chi Lo
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Momchilo Vuyisich
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shawn R Starkenburg
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
15
|
Singh P, Chachan S, Singhi D, Srivastava P. Isolation and molecular characterization of a stationary phase promoter useful for gene expression in Gordonia. Gene 2016; 591:153-160. [DOI: 10.1016/j.gene.2016.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/29/2016] [Accepted: 07/05/2016] [Indexed: 11/25/2022]
|
16
|
Eberly JO, Indest KJ, Hancock DE, Jung CM, Crocker FH. Metagenomic analysis of denitrifying wastewater enrichment cultures able to transform the explosive, 3-nitro-1,2,4-triazol-5-one (NTO). ACTA ACUST UNITED AC 2016; 43:795-805. [DOI: 10.1007/s10295-016-1755-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
Abstract
Removal of 3-nitro-1,2,4-triazol-5-one (NTO) was investigated in conjunction with heterotrophic and autotrophic denitrifying growth conditions by a microbial consortium from a wastewater treatment plant. Microcosms were supplemented with molasses, methanol, or thiosulfate. Cultures were passaged twice by transferring 10 % of the culture volume to fresh media on days 11 and 21. Rates of NTO removal were 18.71 ± 0.65, 9.04 ± 2.61, and 4.34 ± 2.72 mg/L/day while rates of nitrate removal were 20.08 ± 1.13, 21.58 ± 1.20, and 24.84 ± 1.26 mg/L/day, respectively, for molasses, methanol, or thiosulfate. Metagenomic analysis showed that Proteobacteria and Firmicutes were the major phyla in the microbial communities. In molasses supplemented cultures, the community profile at the family level changed over time with Pseudomonadaceae the most abundant (67.4 %) at day 11, Clostridiaceae (65.7 %) at day 21, and Sporolactobacillaceae (35.4 %) and Clostridiaceae (41.0 %) at day 29. Pseudomonadaceae was the dominant family in methanol and thiosulfate supplemented cultures from day 21 to 29 with 76.6 and 81.6 % relative abundance, respectively.
Collapse
Affiliation(s)
- Jed O Eberly
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Karl J Indest
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Dawn E Hancock
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Carina M Jung
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Fiona H Crocker
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| |
Collapse
|
17
|
Khan MI, Yang J, Yoo B, Park J. Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:243-251. [PMID: 25661171 DOI: 10.1016/j.jhazmat.2015.01.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
In this work, we developed and characterized a novel nitrogen-fixing aerobic microbial consortium for the complete detoxification of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Aerobic RDX biodegradation coupled with microbial growth and nitrogen fixation activity were effectively stimulated by the co-addition of starch and RDX under nitrogen limiting conditions. In the starch-stimulated nitrogen-fixing RDX degradative consortium, the RDX degradation activity was correlated with the xplA and nifH gene copy numbers, suggesting the involvement of nitrogen fixing populations in RDX biodegradation. Formate, nitrite, nitrate, and ammonia were detected as aerobic RDX degradation intermediates without the accumulation of any nitroso-derivatives or NDAB (4-nitro-2,4-diazabutanal), indicating nearly complete mineralization. Pyrosequencing targeting the bacterial 16S rRNA genes revealed that the Rhizobium, Rhizobacter and Terrimonas population increased as the RDX degradation activity increased, suggesting their involvement in the degradation process. These findings imply that the nitrogen-fixing aerobic RDX degrading consortium is a valuable microbial resource for improving the detoxification of RDX-contaminated soil or groundwater, especially when combined with rhizoremediation.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- School of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea; Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jihoon Yang
- School of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Byungun Yoo
- School of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Joonhong Park
- School of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
18
|
Laboratory evaluation of bioaugmentation for aerobic treatment of RDX in groundwater. Biodegradation 2014; 26:77-89. [DOI: 10.1007/s10532-014-9717-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
|
19
|
The effects of putative lipase and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase gene knockouts on triacylglycerol accumulation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 2014; 42:219-27. [PMID: 25487758 DOI: 10.1007/s10295-014-1552-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
Previously, we demonstrated triacylglycerol (TAG) accumulation and the in vivo ability to catalyze esters from exogenous short chain alcohol sources in Gordonia sp. strain KTR9. In this study, we investigated the effects that putative lipase (KTR9_0186) and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT; KTR9_3844) gene knockouts had on TAG accumulation. Gene disruption of KTR9_0186 resulted in a twofold increase in TAG content in nitrogen starved cells. Lipase mutants subjected to carbon starvation, following nitrogen starvation, retained 75 % more TAGs and retained pigmentation. Transcriptome expression data confirmed the deletion of KTR9_0186 and identified the up-regulation of key genes involved in fatty acid degradation, a likely compensatory mechanism for reduced TAG mobilization. In vitro assays with purified KTR9_3844 demonstrated WS/DGAT activity with short chain alcohols and C16 and C18 fatty acid Co-As. Collectively, these results indicate that Gordonia sp. KTR9 has a suitable tractable genetic background for TAG production as well as the enzymatic capacity to catalyze fatty acid esters from short chain alcohols.
Collapse
|
20
|
Metagenomic insights into the RDX-degrading potential of the ovine rumen microbiome. PLoS One 2014; 9:e110505. [PMID: 25383623 PMCID: PMC4226467 DOI: 10.1371/journal.pone.0110505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
The manufacturing processes of royal demolition explosive (RDX), or hexahydro-1,3,5-trinitro-1,3,5-triazine, have resulted in serious water contamination. As a potential carcinogen, RDX can cause a broad range of harmful effects to humans and animals. The ovine rumen is capable of rapid degradation of nitroaromatic compounds, including RDX. While ruminal RDX-degrading bacteria have been identified, the genes and pathways responsible for RDX degradation in the rumen have yet to be characterized. In this study, we characterized the metabolic potential of the ovine rumen using metagenomic approaches. Sequences homologous to at least five RDX-degrading genes cloned from environmental samples (diaA, xenA, xenB, xplA, and xplB) were present in the ovine rumen microbiome. Among them, diaA was the most abundant, likely reflective of the predominance of the genus Clostridium in the ovine rumen. At least ten genera known to harbor RDX-degrading microorganisms were detectable. Metagenomic sequences were also annotated using public databases, such as Pfam, COG, and KEGG. Five of the six Pfam protein families known to be responsible for RDX degradation in environmental samples were identified in the ovine rumen. However, increased substrate availability did not appear to enhance the proliferation of RDX-degrading bacteria and alter the microbial composition of the ovine rumen. This implies that the RDX-degrading capacity of the ovine rumen microbiome is likely regulated at the transcription level. Our results provide metagenomic insights into the RDX-degrading potential of the ovine rumen, and they will facilitate the development of novel and economic bioremediation strategies.
Collapse
|
21
|
Zhu SH, Reuther J, Liu J, Crocker FH, Indest KJ, Eltis LD, Mohn WW. The essential role of nitrogen limitation in expression of xplA and degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Gordonia sp. strain KTR9. Appl Microbiol Biotechnol 2014; 99:459-67. [PMID: 25142696 DOI: 10.1007/s00253-014-6013-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a widely used explosive and a major soil and groundwater contaminant. Organisms such as Gordonia sp. KTR9, capable of degrading RDX and using it as an N source, may prove useful for bioremediation of contaminated sites. XplA is a cytochrome P450 monooxygenase responsible for RDX degradation. Expression of xplA in KTR9 was not induced by RDX but was strongly induced (50-fold) during N-limited growth. When glnR, encoding a regulatory protein affecting N assimilation in diverse Actinobacteria, was deleted from KTR9, the bacterium lost the ability to use nitrate, nitrite, and RDX as N sources. Deletion of glnR also abolished the inhibition of xplA expression by nitrite. Our results confirm the essential role of GlnR in regulating assimilation of nitrite, but there was no evidence for a direct role of GlnR in regulating XplA expression. Rather, the general availability of nitrogen repressed XplA expression. We conclude that the inability of the glnR mutant to use RDX as an N source was due to its inability to assimilate nitrite, an intermediate in the assimilation of nitrogen from RDX. Regulation of XplA does not seem adaptive for KTR9, but it is important for RDX bioremediation with KTR9 or similar bacteria.
Collapse
Affiliation(s)
- Song-Hua Zhu
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Analysis of the xplAB-containing gene cluster involved in the bacterial degradation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 2014; 80:6601-10. [PMID: 25128343 DOI: 10.1128/aem.01818-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.
Collapse
|