1
|
Kanai M, Shibata T, Zhou Y, Hayashi R, Fukuba I, Kochi T, Teramoto S, Shimoi H, Takahashi H, Akao T. Efficient genes identification via quantitative trait loci analysis by crossbreeding of sake and laboratory yeast. Appl Microbiol Biotechnol 2025; 109:84. [PMID: 40198396 PMCID: PMC11978678 DOI: 10.1007/s00253-025-13470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Saccharomyces cerevisiae, a unicellular eukaryotic microorganism, includes various strains used in alcoholic beverage production, like sake, shochu/awamori, and wine yeasts. Despite being the same "Saccharomyces cerevisiae", each strain has unique genes and mutations that make them suitable for specific production processes. We focused on sake yeast, Saccharomyces cerevisiae, suitable for sake making. To identify genes and mutations contributing to sake yeast's characteristics more efficiently, we improved the quantitative trait loci (QTL) analysis system. This genetic statistical method used spore-separating haploid strains (F1 segregant haploids) from crossing sake yeast and laboratory yeast haploid strains. We increased the number of F1 segregant haploids for QTL analysis from 100 to 400 and set DNA markers uniformly across the genome (approximately 12 Mbp) at 5,267 locations using single nucleotide polymorphisms (SNPs) spaced about 3 kb apart. Additionally, a small-scale sake making test using 400 F1 segregant haploids and QTL analysis of ethanol concentration in sake sample identified the PBS2 gene and its causative mutation (amino acid substitution at position 545). The PBS2 gene was also implicated in producing organic acids (fumaric, succinic, and malic acids) and inorganic acids (phosphoric acid) for sake. These findings validated the improved QTL analysis system as effective genes screening method. KEY POINTS: • A new QTL analysis system was constructed using sake and laboratory yeast. • PBS2 gene involved in the ethanol-producing capacity of Saccharomyces cerevisiae was identified. • PBS2 gene was also involved in the organic acid concentration in sake.
Collapse
Affiliation(s)
- Muneyoshi Kanai
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Tomoko Shibata
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Yan Zhou
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Risa Hayashi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Ikuko Fukuba
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Takayuki Kochi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Satoko Teramoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Hitoshi Shimoi
- The Brewing Society of Japan, 2-6-30 Takinogawa, Kita-Ku, Tokyo, 114-0023, Japan
| | - Hidekazu Takahashi
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima, 960-1296, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
2
|
Tanabe K, Hayashi H, Murakami N, Yoshiyama Y, Shima J, Shoda S. Glazing Affects the Fermentation Process of Sake Brewed in Pottery. Foods 2023; 13:121. [PMID: 38201148 PMCID: PMC10778464 DOI: 10.3390/foods13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Sake (Japanese rice wine) was fermented in pottery for more than a millennium before wooden barrels were adopted to obtain a greater brewing capacity. Although a recently conducted analysis of sake brewed in pottery indicated that sake brewed in unglazed pottery contains more ethanol than that brewed in glazed pottery, little is known about the characteristics of sake brewed in pottery. In this study, we used two types of ceramic containers of identical size, one glazed and one unglazed, for small-scale sake brewing to evaluate the effects of glazing on fermentation properties. The following parameters were measured continuously in the sake samples over 3 weeks of fermentation: temperature, weight, ethanol concentration, and glucose concentration in sake mash. Taste-sensory values, minerals, and volatile components were also quantified in the final fermented sake mash. The results show that, in the unglazed containers, the temperature of the sake mash was lower and the weight loss was higher compared to the sake mash in the glazed containers. The quantity of ethanol and the levels of Na+, Fe3+, and Al3+ tended to be higher in the sake brewed in the unglazed pottery. A taste-sensory analysis revealed that umami and saltiness were also higher in the samples brewed in the unglazed pottery. These results suggest that glazing affects multiple fermentation parameters and the flavor of sake brewed in pottery. They may also suggest that the materials of the containers used in sake brewing generally affect the fermentation properties.
Collapse
Affiliation(s)
- Koichi Tanabe
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan; (H.H.); (Y.Y.); (J.S.)
- Research Center for Fermentation and Brewing, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan
| | - Honoka Hayashi
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan; (H.H.); (Y.Y.); (J.S.)
| | - Natsuki Murakami
- Nara National Research Institute for Cultural Properties, 2-9-1 Nijo, Nara 630-8577, Japan; (N.M.); (S.S.)
| | - Yoko Yoshiyama
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan; (H.H.); (Y.Y.); (J.S.)
| | - Jun Shima
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan; (H.H.); (Y.Y.); (J.S.)
- Research Center for Fermentation and Brewing, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan
| | - Shinya Shoda
- Nara National Research Institute for Cultural Properties, 2-9-1 Nijo, Nara 630-8577, Japan; (N.M.); (S.S.)
- Department of Archaeology, BioArCh, University of York, York YO10 5DD, UK
| |
Collapse
|
3
|
Chen Y, Yang Y, Cai W, Zeng J, Liu N, Wan Y, Fu G. Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit Rev Food Sci Nutr 2023; 63:12308-12323. [PMID: 35848108 DOI: 10.1080/10408398.2022.2101090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Saccharomyces cerevisiae plays a decisive role in the brewing of alcohol products, and the ideal growth and fermentation characteristics can give the pure flavor of alcohol products. However, S. cerevisiae can be affected profoundly by environmental factors during the brewing process, which have negative effects on the growth and fermentation characteristics of S. cerevisiae, and seriously hindered the development of brewing industry. Therefore, we summarized the environmental stress factors (ethanol, organic acids, temperature and osmotic pressure) that affect S. cerevisiae during the brewing process. Their impact mechanisms and the metabolic adaption of S. cerevisiae in response to these stress factors. Of note, S. cerevisiae can increase the ability to resist stress factors by changing the cell membrane components, expressing transcriptional regulatory factors, activating the anti-stress metabolic pathway and enhancing ROS scavenging ability. Meantime, the strategies and methods to improve the stress- tolerant ability of S. cerevisiae during the brewing process were also introduced. Compared with the addition of exogenous anti-stress substances, mutation breeding and protoplast fusion, it appears that adaptive evolution and genetic engineering are able to generate ideal environmental stress tolerance strains of S. cerevisiae and are more in line with the needs of the current brewing industry.
Collapse
Affiliation(s)
- Yanru Chen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering & Biotechnology, Taizhou, PR China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Jiali Zeng
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Na Liu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| |
Collapse
|
4
|
Negoro H, Ishida H. Development of sake yeast breeding and analysis of genes related to its various phenotypes. FEMS Yeast Res 2022; 22:6825454. [PMID: 36370450 DOI: 10.1093/femsyr/foac057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sake is a traditional Japanese alcoholic beverage made from rice and water, fermented by the filamentous fungi Aspergillus oryzae and the yeast Saccharomyces cerevisiae. Yeast strains, also called sake yeasts, with high alcohol yield and the ability to produce desired flavor compounds in the sake, have been isolated from the environment for more than a century. Furthermore, numerous methods to breed sake yeasts without genetic modification have been developed. The objectives of breeding include increasing the efficiency of production, improving the aroma and taste, enhancing safety, imparting functional properties, and altering the appearance of sake. With the recent development of molecular biology, the suitable sake brewing characteristics in sake yeasts, and the causes of acquisition of additional phenotypes in bred yeasts have been elucidated genetically. This mini-review summarizes the history and lineage of sake yeasts, their genetic characteristics, the major breeding methods used, and molecular biological analysis of the acquired strains. The data in this review on the metabolic mechanisms of sake yeasts and their genetic profiles will enable the development of future strains with superior phenotypes.
Collapse
Affiliation(s)
- Hiroaki Negoro
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| |
Collapse
|
5
|
Acquired Resistance to Severe Ethanol Stress in Saccharomyces cerevisiae Protein Quality Control. Appl Environ Microbiol 2021; 87:AEM.02353-20. [PMID: 33361368 DOI: 10.1128/aem.02353-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Acute severe ethanol stress (10% [vol/vol]) damages proteins and causes the intracellular accumulation of insoluble proteins in Saccharomyces cerevisiae On the other hand, a pretreatment with mild stress increases tolerance to subsequent severe stress, which is called acquired stress resistance. It currently remains unclear whether the accumulation of insoluble proteins under severe ethanol stress may be mitigated by increasing protein quality control (PQC) activity in cells pretreated with mild stress. In the present study, we examined the induction of resistance to severe ethanol stress in PQC and confirmed that a pretreatment with 6% (vol/vol) ethanol or mild thermal stress at 37°C significantly reduced insoluble protein levels and the aggregation of Lsg1, which is prone to denaturation and aggregation by stress, in yeast cells under 10% (vol/vol) ethanol stress. The induction of this stress resistance required the new synthesis of proteins; the expression of proteins comprising the bichaperone system (Hsp104, Ssa3, and Fes1), Sis1, and Hsp42 was upregulated during the pretreatment and maintained under subsequent severe ethanol stress. Since the pretreated cells of deficient mutants in the bichaperone system (fes1Δ hsp104Δ and ssa2Δ ssa3Δ ssa4Δ) failed to sufficiently reduce insoluble protein levels and Lsg1 aggregation, the enhanced activity of the bichaperone system appears to be important for the induction of adequate stress resistance. In contrast, the importance of proteasomes and aggregases (Btn2 and Hsp42) in the induction of stress resistance has not been confirmed. These results provide further insights into the PQC activity of yeast cells under severe ethanol stress, including the brewing process.IMPORTANCE Although the budding yeast S. cerevisiae, which is used in the production of alcoholic beverages and bioethanol, is highly tolerant of ethanol, high concentrations of ethanol are also stressful to the yeast and cause various adverse effects, including protein denaturation. A pretreatment with mild stress improves the ethanol tolerance of yeast cells; however, it currently remains unclear whether it increases PQC activity and reduces the levels of denatured proteins. In the present study, we found that a pretreatment with mild ethanol upregulated the expression of proteins involved in PQC and mitigated the accumulation of insoluble proteins, even under severe ethanol stress. These results provide novel insights into ethanol tolerance and the adaptive capacity of yeast. They may also contribute to research on the physiology of yeast cells during the brewing process, in which the concentration of ethanol gradually increases.
Collapse
|
6
|
Molecular characterization of Hsf1 as a master regulator of heat shock response in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. J Microbiol 2021; 59:151-163. [PMID: 33527316 DOI: 10.1007/s12275-021-0646-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Ogataea parapolymorpha (Hansenula polymorpha DL-1) is a thermotolerant methylotrophic yeast with biotechnological applications. Here, O. parapolymorpha genes whose expression is induced in response to heat shock were identified by transcriptome analysis and shown to possess heat shock elements (HSEs) in their promoters. The function of O. parapolymorpha HSF1 encoding a putative heat shock transcription factor 1 (OpHsf1) was characterized in the context of heat stress response. Despite exhibiting low sequence identity (26%) to its Saccharomyces cerevisiae homolog, OpHsf1 harbors conserved domains including a DNA binding domain (DBD), domains involved in trimerization (TRI), transcriptional activation (AR1, AR2), transcriptional repression (CE2), and a C-terminal modulator (CTM) domain. OpHSF1 could complement the temperature sensitive (Ts) phenotype of a S. cerevisiae hsf1 mutant. An O. parapolymorpha strain with an H221R mutation in the DBD domain of OpHsf1 exhibited significantly retarded growth and a Ts phenotype. Intriguingly, the expression of heat-shock-protein-coding genes harboring HSEs was significantly decreased in the H221R mutant strain, even under non-stress conditions, indicating the importance of the DBD for the basal growth of O. parapolymorpha. Notably, even though the deletion of C-terminal domains (ΔCE2, ΔAR2, ΔCTM) of OpHsf1 destroyed complementation of the growth defect of the S. cerevisiae hsf1 strain, the C-terminal domains were shown to be dispensable in O. parapolymorpha. Overexpression of OpHsf1 in S. cerevisiae increased resistance to transient heat shock, supporting the idea that OpHsf1 could be useful in the development of heat-shock-resistant yeast host strains.
Collapse
|
7
|
Crossbreeding of Yeasts Domesticated for Fermentation: Infertility Challenges. Int J Mol Sci 2020; 21:ijms21217985. [PMID: 33121129 PMCID: PMC7662550 DOI: 10.3390/ijms21217985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023] Open
Abstract
Sexual reproduction is almost a universal feature of eukaryotic organisms, which allows the reproduction of new organisms by combining the genetic information from two individuals of different sexes. Based on the mechanism of sexual reproduction, crossbreeding provides an attractive opportunity to improve the traits of animals, plants, and fungi. The budding yeast Saccharomyces cerevisiae has been widely utilized in fermentative production since ancient times. Currently it is still used for many essential biotechnological processes including the production of beer, wine, and biofuels. It is surprising that many yeast strains used in the industry exhibit low rates of sporulation resulting in limited crossbreeding efficiency. Here, I provide an overview of the recent findings about infertility challenges of yeasts domesticated for fermentation along with the progress in crossbreeding technologies. The aim of this review is to create an opportunity for future crossbreeding of yeasts used for fermentation.
Collapse
|
8
|
Shimoi H, Kawamura N, Yamada M. Cloning of the SPO11 gene that complements a meiotic recombination defect in sake yeast. J Biosci Bioeng 2020; 130:367-373. [PMID: 32646632 DOI: 10.1016/j.jbiosc.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/04/2023]
Abstract
Cross hybridization breeding of sake yeasts is hampered by difficulty in acquisition of haploid cells through sporulation. We previously demonstrated that typical sake yeast strains were defective in meiotic chromosome recombination, which caused poor sporulation and loss of spore viability. In this study, we screened a single copy plasmid genomic DNA library of the laboratory Saccharomyces cerevisiae GRF88 for genes that might complement the meiotic recombination defect of UTCAH-3, a strain derived from the sake yeast Kyokai no. 7 (K7). We identified the SPO11 gene of the laboratory strain (ScSPO11), encoding a meiosis-specific endonuclease that catalyzes DNA double-strand breaks required for meiotic recombination, as a gene that restored meiotic recombination and spore viability of UTCAH-3. K7SPO11 could not restore sporulation efficiency and spore viability of UTCAH-3 and a laboratory strain BY4743 spo11Δ/spo11Δ, indicating that K7SPO11 is not functional. Sequence analysis of the SPO11 genes of various Kyokai sake yeasts (K1, and K3-K10) revealed that the K7 group of sake yeasts (K6, K7, K9, and K10) had a mutual missense mutation (C73T) in addition to other three common mutations present in all Kyokai yeasts tested. ScSPO11C73T created through in vitro mutagenesis could not restore spore viability of BY4743 spo11Δ/spo11Δ. On the other hand, K8SPO11, which have the three common mutations except for C73T could restore spore viability of BY4743 spo11Δ/spo11Δ. These results suggest that C73T might be a causative mutation of recombination defect in K7SPO11. Moreover, we found that the introduction of ScRIM15 restored sporulation efficiency but not spore viability.
Collapse
Affiliation(s)
- Hitoshi Shimoi
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Brewing Society of Japan, 2-6-30, Takinogawa, Kita-ku, Tokyo 114-0023, Japan.
| | - Natsuki Kawamura
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Miwa Yamada
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
9
|
Peltier E, Friedrich A, Schacherer J, Marullo P. Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Front Genet 2019; 10:683. [PMID: 31396264 PMCID: PMC6664092 DOI: 10.3389/fgene.2019.00683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is certainly the prime industrial microorganism and is related to many biotechnological applications including food fermentations, biofuel production, green chemistry, and drug production. A noteworthy characteristic of this species is the existence of subgroups well adapted to specific processes with some individuals showing optimal technological traits. In the last 20 years, many studies have established a link between quantitative traits and single-nucleotide polymorphisms found in hundreds of genes. These natural variations constitute a pool of QTNs (quantitative trait nucleotides) that modulate yeast traits of economic interest for industry. By selecting a subset of genes functionally validated, a total of 284 QTNs were inventoried. Their distribution across pan and core genome and their frequency within the 1,011 Saccharomyces cerevisiae genomes were analyzed. We found that 150 of the 284 QTNs have a frequency lower than 5%, meaning that these variants would be undetectable by genome-wide association studies (GWAS). This analysis also suggests that most of the functional variants are private to a subpopulation, possibly due to their adaptive role to specific industrial environment. In this review, we provide a literature survey of their phenotypic impact and discuss the opportunities and the limits of their use for industrial strain selection.
Collapse
Affiliation(s)
- Emilien Peltier
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Anne Friedrich
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Philippe Marullo
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
10
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
11
|
Abstract
Completion of the whole genome sequence of a laboratory yeast strain Saccharomyces cerevisiae in 1996 ushered in the development of genome-wide experimental tools and accelerated subsequent genetic study of S. cerevisiae. The study of sake yeast also shared the benefit of such tools as DNA microarrays, gene disruption-mutant collections, and others. Moreover, whole genome analysis of representative sake yeast strain Kyokai no. 7 was performed in the late 2000s, and enabled comparative genomics between sake yeast and laboratory yeast, resulting in some notable finding for of sake yeast genetics. Development of next-generation DNA sequencing and bioinformatics also drastically changed the field of the genetics, including for sake yeast. Genomics and the genome-wide study of sake yeast have progressed under these circumstances during the last two decades, and are summarized in this article. Abbreviations: AFLP: amplified fragment length polymorphism; CGH: comparative genomic hybridization; CNV: copy number variation; DMS: dimethyl succinate; DSW: deep sea water; LOH: loss of heterozygosity; NGS: next generation sequencer; QTL: quantitative trait loci; QTN: quantitative trait nucleotide; SAM: S-adenosyl methionine; SNV: single nucleotide variation.
Collapse
Affiliation(s)
- Takeshi Akao
- a National Research Institute of Brewing , Higashi-hiroshima , Japan
| |
Collapse
|
12
|
Takao Y, Takahashi T, Yamada T, Goshima T, Isogai A, Sueno K, Fujii T, Akao T. Characteristic features of the unique house sake yeast strain Saccharomyces cerevisiae Km67 used for industrial sake brewing. J Biosci Bioeng 2018; 126:617-623. [DOI: 10.1016/j.jbiosc.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 11/24/2022]
|
13
|
Watanabe D, Takagi H. Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation. Biosci Biotechnol Biochem 2017; 81:1061-1068. [DOI: 10.1080/09168451.2017.1295805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Rim15p, a Greatwall-family protein kinase in yeast Saccharomyces cerevisiae, is required for cellular nutrient responses, such as the entry into quiescence and the induction of meiosis and sporulation. In higher eukaryotes, the orthologous gene products are commonly involved in the cell cycle G2/M transition. How are these pleiotropic functions generated from a single family of protein kinases? Recent advances in both research fields have identified the conserved Greatwall-mediated signaling pathway and a variety of downstream target molecules. In addition, our studies of S. cerevisiae sake yeast strains revealed that Rim15p also plays a significant role in the control of alcoholic fermentation. Despite an extensive history of research on glycolysis and alcoholic fermentation, there has been no critical clue to artificial modification of fermentation performance of yeast cells. Our finding of an in vivo metabolic regulatory mechanism is expected to provide a major breakthrough in yeast breeding technologies for fermentation applications.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
14
|
Watanabe D, Kaneko A, Sugimoto Y, Ohnuki S, Takagi H, Ohya Y. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. J Biosci Bioeng 2017; 123:183-189. [DOI: 10.1016/j.jbiosc.2016.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/14/2016] [Accepted: 08/12/2016] [Indexed: 01/05/2023]
|
15
|
Watanabe D, Zhou Y, Hirata A, Sugimoto Y, Takagi K, Akao T, Ohya Y, Takagi H, Shimoi H. Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2016; 82:340-51. [PMID: 26497456 PMCID: PMC4702617 DOI: 10.1128/aem.02977-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/20/2015] [Indexed: 11/20/2022] Open
Abstract
The high fermentation rate of Saccharomyces cerevisiae sake yeast strains is attributable to a loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase that is conserved among eukaryotes. In the present study, we performed intracellular metabolic profiling analysis and revealed that deletion of the RIM15 gene in a laboratory strain impaired glucose-anabolic pathways through the synthesis of UDP-glucose (UDPG). Although Rim15p is required for the synthesis of trehalose and glycogen from UDPG upon entry of cells into the quiescent state, we found that Rim15p is also essential for the accumulation of cell wall β-glucans, which are also anabolic products of UDPG. Furthermore, the impairment of UDPG or 1,3-β-glucan synthesis contributed to an increase in the fermentation rate. Transcriptional induction of PGM2 (phosphoglucomutase) and UGP1 (UDPG pyrophosphorylase) was impaired in Rim15p-deficient cells in the early stage of fermentation. These findings demonstrate that the decreased anabolism of glucose into UDPG and 1,3-β-glucan triggered by a defect in the Rim15p-mediated upregulation of PGM2 and UGP1 redirects the glucose flux into glycolysis. Consistent with this, sake yeast strains with defective Rim15p exhibited impaired expression of PGM2 and UGP1 and decreased levels of β-glucans, trehalose, and glycogen during sake fermentation. We also identified a sake yeast-specific mutation in the glycogen synthesis-associated glycogenin gene GLG2, supporting the conclusion that the glucose-anabolic pathway is impaired in sake yeast. These findings demonstrate that downregulation of the UDPG synthesis pathway is a key mechanism accelerating alcoholic fermentation in industrially utilized S. cerevisiae sake strains.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Yan Zhou
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Aiko Hirata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Yukiko Sugimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Kenichi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hitoshi Shimoi
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
16
|
Cho BR, Lee P, Hahn JS. CK2-dependent inhibitory phosphorylation is relieved by Ppt1 phosphatase for the ethanol stress-specific activation of Hsf1 in Saccharomyces cerevisiae. Mol Microbiol 2014; 93:306-16. [PMID: 24894977 DOI: 10.1111/mmi.12660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2014] [Indexed: 12/21/2022]
Abstract
Ethanol, the major fermentation product of Saccharomyces cerevisiae, has long been known as an inducer of heat shock response, but the underlying mechanisms by which ethanol activates heat shock transcription factor (HSF) are not well understood. We demonstrate that CK2-dependent phosphorylation on S608 is an ethanol stress-specific repression mechanism of Hsf1, which does not affect the basal or heat-induced activity of Hsf1. This repression is relieved by dephosphorylation by Ppt1 which directly interacts with Hsf1 via its tetratricopeptide repeat (TPR) domain. In response to ethanol stress, PPT1 deletion and CK2 overexpression exert synergistic inhibitory effects on Hsf1 activation, whereas Hsf1(S608A) mutant shows enhanced activation. Therefore, regulation of the Hsf1 S608 phosphorylation status by reciprocal actions of CK2 and Ppt1 might play an important role to determine Hsf1 sensitivity towards ethanol stress.
Collapse
Affiliation(s)
- Bo-Ram Cho
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-744, Korea
| | | | | |
Collapse
|
17
|
Assessing the mechanisms responsible for differences between nitrogen requirements of saccharomyces cerevisiae wine yeasts in alcoholic fermentation. Appl Environ Microbiol 2013; 80:1330-9. [PMID: 24334661 DOI: 10.1128/aem.03856-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nitrogen is an essential nutrient for Saccharomyces cerevisiae wine yeasts during alcoholic fermentation, and its abundance determines the fermentation rate and duration. The capacity to ferment under conditions of nitrogen deficiency differs between yeasts. A characterization of the nitrogen requirements of a set of 23 strains revealed large differences in their fermentative performances under nitrogen deficiency, and these differences reflect the nitrogen requirements of the strains. We selected and compared two groups of strains, one with low nitrogen requirements (LNRs) and the other with high nitrogen requirements (HNRs). A comparison of various physiological traits indicated that the differences are not related to the ability to store nitrogen or the protein content. No differences in protein synthesis activity were detected between strains with different nitrogen requirements. Transcriptomic analysis revealed expression patterns specific to each of the two groups of strains, with an overexpression of stress genes in HNR strains and a stronger expression of biosynthetic genes in LNR strains. Our data suggest that differences in glycolytic flux may originate from variations in nitrogen sensing and signaling under conditions of starvation.
Collapse
|
18
|
Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J Biosci Bioeng 2013; 116:697-705. [DOI: 10.1016/j.jbiosc.2013.05.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 11/22/2022]
|
19
|
Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2013; 77:2255-62. [PMID: 24200791 DOI: 10.1271/bbb.130519] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sake yeast strains maintain high fermentation rates, even after the stationary growth phase begins. To determine the molecular mechanisms underlying this advantageous brewing property, we compared the gene expression profiles of sake and laboratory yeast strains of Saccharomyces cerevisiae during the stationary growth phase. DNA microarray analysis revealed that the sake yeast strain examined had defects in expression of the genes related to glucose derepression mediated by transcription factors Adr1p and Cat8p. Furthermore, deletion of the ADR1 and CAT8 genes slightly but statistically significantly improved the fermentation rate of a laboratory yeast strain. We also identified two loss-of-function mutations in the ADR1 gene of existing sake yeast strains. Taken together, these results indicate that the gene expression program associated with glucose derepression for yeast acts as an impediment to effective alcoholic fermentation under glucose-rich fermentative conditions.
Collapse
|
20
|
A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol 2012; 78:4008-16. [PMID: 22447585 DOI: 10.1128/aem.00165-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sake yeast cells have defective entry into the quiescent state, allowing them to sustain high fermentation rates. To reveal the underlying mechanism, we investigated the PAS kinase Rim15p, which orchestrates initiation of the quiescence program in Saccharomyces cerevisiae. We found that Rim15p is truncated at the carboxyl terminus in modern sake yeast strains as a result of a frameshift mutation. Introduction of this mutation or deletion of the full-length RIM15 gene in a laboratory strain led to a defective stress response, decreased synthesis of the storage carbohydrates trehalose and glycogen, and impaired G(1) arrest, which together closely resemble the characteristic phenotypes of sake yeast. Notably, expression of a functional RIM15 gene in a modern sake strain suppressed all of these phenotypes, demonstrating that dysfunction of Rim15p prevents sake yeast cells from entering quiescence. Moreover, loss of Rim15p or its downstream targets Igo1p and Igo2p remarkably improved the fermentation rate in a laboratory strain. This finding verified that Rim15p-mediated entry into quiescence plays pivotal roles in the inhibition of ethanol fermentation. Taken together, our results suggest that the loss-of-function mutation in the RIM15 gene may be the key genetic determinant of the increased ethanol production rates in modern sake yeast strains.
Collapse
|