1
|
Xu Y, Teng Y, Wang X, Ren W, Zhao L, Luo Y, Christie P, Greening C. Endogenous biohydrogen from a rhizobium-legume association drives microbial biodegradation of polychlorinated biphenyl in contaminated soil. ENVIRONMENT INTERNATIONAL 2023; 176:107962. [PMID: 37196568 DOI: 10.1016/j.envint.2023.107962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Endogenous hydrogen (H2) is produced through rhizobium-legume associations in terrestrial ecosystems worldwide through dinitrogen fixation. In turn, this gas may alter rhizosphere microbial community structure and modulate biogeochemical cycles. However, very little is understood about the role that this H2 leaking to the rhizosphere plays in shaping the persistent organic pollutants degrading microbes in contaminated soils. Here, we combined DNA-stable isotope probing (DNA-SIP) with metagenomics to explore how endogenous H2 from the symbiotic rhizobium-alfalfa association drives the microbial biodegradation of tetrachlorobiphenyl PCB 77 in a contaminated soil. The results showed that PCB77 biodegradation efficiency increased significantly in soils treated with endogenous H2. Based on metagenomes of 13C-enriched DNA fractions, endogenous H2 selected bacteria harboring PCB degradation genes. Functional gene annotation allowed the reconstruction of several complete pathways for PCB catabolism, with different taxa conducting successive metabolic steps of PCB metabolism. The enrichment through endogenous H2 of hydrogenotrophic Pseudomonas and Magnetospirillum encoding biphenyl oxidation genes drove PCB biodegradation. This study proves that endogenous H2 is a significant energy source for active PCB-degrading communities and suggests that elevated H2 can influence the microbial ecology and biogeochemistry of the legume rhizosphere.
Collapse
Affiliation(s)
- Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Li Y, Li J, Wang D, Wang G, Yue X, Kong X, Young L, Huang W. Denitrifying Microbial Community Structure and bamA Gene Diversity of Phenol Degraders in Soil Contaminated from the Coking Process. Appl Biochem Biotechnol 2019; 190:966-981. [DOI: 10.1007/s12010-019-03144-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
|
3
|
Sidhu C, Vikram S, Pinnaka AK. Unraveling the Microbial Interactions and Metabolic Potentials in Pre- and Post-treated Sludge from a Wastewater Treatment Plant Using Metagenomic Studies. Front Microbiol 2017; 8:1382. [PMID: 28769920 PMCID: PMC5515832 DOI: 10.3389/fmicb.2017.01382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Sewage waste represents an ecosystem of complex and interactive microbial consortia which proliferate with different kinetics according to their individual genetic as well as metabolic potential. We performed metagenomic shotgun sequencing on Ion-Torrent platform, to explore the microbial community structure, their biological interactions and associated functional capacity of pre-treated/raw sludge (RS) and post-treated/dried sludge (DS) of wastewater treatment plant. Bacterial phylotypes belonging to Epsilonproteobacteria (∼45.80%) dominated the RS with relatively few Archaea (∼1.94%) whereas DS has the dominance of beta- (30.23%) and delta- (13.38%) classes of Proteobacteria with relatively greater abundance of Archaea (∼7.18%). In particular, Epsilonproteobacteria appears as a primary energy source in RS and sulfur-reducing bacteria with methanogens seems to be in the potential syntrophic association in DS. These interactions could be ultimately responsible for carrying out amino-acid degradation, aromatic compound degradation and degradation of propionate and butyrate in DS. Our data also reveal the presence of key genes in the sludge microbial community responsible for degradation of polycyclic aromatic hydrocarbons. Potential pathogenic microbes and genes for the virulence factors were found to be relatively abundant in RS which clearly reflect the necessity of treatment of RS. After treatment, potential pathogens load was reduced, indicating the sludge hygienisation in DS. Additionally, the interactions found in this study would reveal the biological and environmental cooperation among microbial communities for domestic wastewater treatment.
Collapse
Affiliation(s)
- Chandni Sidhu
- Microbial Type Culture Collection and Gene Bank, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Surendra Vikram
- Microbial Type Culture Collection and Gene Bank, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India.,Centre for Microbial Ecology and Genomics, Department of Genetics, University of PretoriaPretoria, South Africa
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| |
Collapse
|
4
|
Meyer-Cifuentes I, Martinez-Lavanchy PM, Marin-Cevada V, Böhnke S, Harms H, Müller JA, Heipieper HJ. Isolation and characterization of Magnetospirillum sp. strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model. PLoS One 2017; 12:e0174750. [PMID: 28369150 PMCID: PMC5378359 DOI: 10.1371/journal.pone.0174750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/14/2017] [Indexed: 11/23/2022] Open
Abstract
Previously, Planted Fixed-Bed Reactors (PFRs) have been used to investigate microbial toluene removal in the rhizosphere of constructed wetlands. Aerobic toluene degradation was predominant in these model systems although bulk redox conditions were hypoxic to anoxic. However, culture-independent approaches indicated also that microbes capable of anaerobic toluene degradation were abundant. Therefore, we aimed at isolating anaerobic-toluene degraders from one of these PFRs. From the obtained colonies which consisted of spirilli-shaped bacteria, a strain designated 15–1 was selected for further investigations. Analysis of its 16S rRNA gene revealed greatest similarity (99%) with toluene-degrading Magnetospirillum sp. TS-6. Isolate 15–1 grew with up to 0.5 mM of toluene under nitrate-reducing conditions. Cells reacted to higher concentrations of toluene by an increase in the degree of saturation of their membrane fatty acids. Strain 15–1 contained key genes for the anaerobic degradation of toluene via benzylsuccinate and subsequently the benzoyl-CoA pathway, namely bssA, encoding for the alpha subunit of benzylsuccinate synthase, bcrC for subunit C of benzoyl-CoA reductase and bamA for 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase. Finally, most members of a clone library of bssA generated from the PFR had highest similarity to bssA from strain 15–1. Our study provides insights about the physiological capacities of a strain of Magnetospirillum isolated from a planted system where active rhizoremediation of toluene is taking place.
Collapse
Affiliation(s)
- Ingrid Meyer-Cifuentes
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
| | - Paula M Martinez-Lavanchy
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
- Technical University of Denmark, Bibliometrics and Data Management, Department for Innovation and Sector Services, Lyngby, Denmark
| | - Vianey Marin-Cevada
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
| | - Stefanie Böhnke
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Jochen A Müller
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
| | - Hermann J Heipieper
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany
| |
Collapse
|
5
|
Rabus R, Boll M, Golding B, Wilkes H. Anaerobic Degradation of p-Alkylated Benzoates and Toluenes. J Mol Microbiol Biotechnol 2016; 26:63-75. [PMID: 26960059 DOI: 10.1159/000441144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The anaerobic degradation of 4-alkylbenzoates and 4-alkyltoluenes is to date a rarely reported microbial capacity. The newly isolated Alphaproteobacterium Magnetospirillum sp. strain pMbN1 represents the first pure culture demonstrated to degrade 4-methylbenzoate completely to CO2 in a process coupled to denitrification. Differential proteogenomic studies in conjunction with targeted metabolite analyses and enzyme activity measurements elucidated a specific 4-methylbenzoyl-coenzyme A (CoA) pathway in this bacterium alongside the classical central benzoyl-CoA pathway. Whilst these two pathways are analogous, in the former the p-methyl group is retained and its 4-methylbenzoyl-CoA reductase (MbrCBAD) is phylogenetically distinct from the archetypical class I benzoyl-CoA reductase (BcrCBAD). Subsequent global regulatory studies on strain pMbN1 grown with binary or ternary substrate mixtures revealed benzoate to repress the anaerobic utilization of 4-methylbenzoate and succinate. The shared nutritional property of betaproteobacterial 'Aromatoleum aromaticum' pCyN1 and Thauera sp. strain pCyN2 is the anaerobic degradation of the plant-derived hydrocarbon p-cymene (4-isopropyltoluene) coupled to denitrification. Notably, the two strains employ two different peripheral pathways for the conversion of p-cymene to 4-isopropylbenzoyl-CoA as the possible first common intermediate. In 'A. aromaticum' pCyN1 a putative p-cymene dehydrogenase (CmdABC) is proposed to hydroxylate the benzylic methyl group, which is subsequently further oxidized to the CoA-thioester. In contrast, Thauera sp. strain pCyN2 employs a reaction sequence analogous to the known anaerobic toluene pathway, involving a distinct branching (4-isopropylbenzyl)succinate synthase (IbsABCDEF).
Collapse
Affiliation(s)
- Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | |
Collapse
|
6
|
Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PMH, Krüger M, Lueders T, Martins BM, Musat F, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann GM, Vogt C, von Bergen M, Wilkes H. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment. J Mol Microbiol Biotechnol 2016; 26:5-28. [PMID: 26960061 DOI: 10.1159/000443997] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive dearomatization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetylene, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons.
Collapse
Affiliation(s)
- Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Environmental bacteria play a central role in the Earth's elemental cycles and represent a mostly untapped reservoir for novel metabolic capacities and biocatalysts. Over the last 15 years, the author's laboratory has focused on three major switches in the breakdown of organic carbon defined by the abundance and recalcitrance of the substrates: carbohydrates and amino acids by aerobic heterotrophs, fermentation end products by sulphate reducers and anaerobic degradation of aromatic compounds and hydrocarbons by denitrifiers and sulphate reducers. As these bacteria are novel isolates mostly not accessibly by molecular genetics, genomics combined with differential proteomics was early on applied to obtain molecular-functional insights into degradation pathways, catabolic and regulatory networks, as well as mechanisms and strategies for adapting to changing environmental conditions. This review provides some background on research motivations and briefly summarizes insights into studied model organisms, e.g. "Aromatoleum aromaticum" EbN1, Desulfobacula toluolica Tol2 and Phaeobacter inhibens DSM 17395.
Collapse
Affiliation(s)
- R Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg , Oldenburg , Germany
| |
Collapse
|
8
|
Lahme S, Trautwein K, Strijkstra A, Dörries M, Wöhlbrand L, Rabus R. Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1. BMC Microbiol 2014; 14:269. [PMID: 25344702 PMCID: PMC4268860 DOI: 10.1186/s12866-014-0269-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/15/2014] [Indexed: 11/13/2022] Open
Abstract
Background At high concentrations of organic substrates, microbial utilization of preferred substrates (i.e., supporting fast growth) often results in diauxic growth with hierarchical substrate depletion. Unlike the carbon catabolite repression-mediated discriminative utilization of carbohydrates, the substrate preferences of non-carbohydrate-utilizing bacteria for environmentally relevant compound classes (e.g., aliphatic or aromatic acids) are rarely investigated. The denitrifying alphaproteobacterium Magnetospirillum sp. strain pMbN1 anaerobically degrades a wide variety of aliphatic and aromatic compounds and is unique for anaerobic degradation of 4-methylbenzoate. The latter proceeds via a distinct reaction sequence analogous to the central anaerobic benzoyl-CoA pathway to intermediates of central metabolism. Considering the presence of these two different anaerobic “aromatic ring degrading” pathways, substrate preferences of Magnetospirillum sp. strain pMbN1 were investigated. Anaerobic growth and substrate consumption were monitored in binary and ternary mixtures of 4-methylbenzoate, benzoate and succinate, in conjuction with time-resolved abundance profiling of selected transcripts and/or proteins related to substrate uptake and catabolism. Results Diauxic growth with benzoate preference was observed for binary and ternary substrate mixtures containing 4-methylbenzoate and succinate (despite adaptation of Magnetospirillum sp. strain pMbN1 to one of the latter two substrates). On the contrary, 4-methylbenzoate and succinate were utilized simultaneously from a binary mixture, as well as after benzoate depletion from the ternary mixture. Apparently, simultaneous repression of 4-methylbenzoate and succinate utilization from the ternary substrate mixture resulted from (i) inhibition of 4-methylbenzoate uptake, and (ii) combined inhibition of succinate uptake (via the two transporters DctPQM and DctA) and succinate conversion to acetyl-CoA (via pyruvate dehydrogenase). The benzoate-mediated repression of C4-dicarboxylate utilization in Magnetospirillum sp. strain pMbN1 differs from that recently described for “Aromatoleum aromaticum” EbN1 (involving only DctPQM). Conclusions The preferential or simultaneous utilization of benzoate and other aromatic acids from mixtures with aliphatic acids may represent a more common nutritional behavior among (anaerobic) degradation specialist than previously thought. Preference of Magnetospirillum sp. strain pMbN1 for benzoate from mixtures with 4-methylbenzoate, and thus temporal separation of the benzoyl-CoA (first) and 4-methylbenzoyl-CoA (second) pathway, may reflect a catabolic tuning towards metabolic efficiency and the markedly broader range of aromatic substrates feeding into the central anaerobic benzoyl-CoA pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0269-4) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Lahme S, Eberlein C, Jarling R, Kube M, Boll M, Wilkes H, Reinhardt R, Rabus R. Anaerobic degradation of 4-methylbenzoate via a specific 4-methylbenzoyl-CoA pathway. Environ Microbiol 2012; 14:1118-32. [PMID: 22264224 DOI: 10.1111/j.1462-2920.2011.02693.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathway for anaerobic degradation of 4-methylbenzoate was studied in the denitrifying alphaproteobacterium Magnetospirillum sp. strain pMbN1. Adaptation studies with whole cells indicated substrate-dependent induction of the capacity to degrade 4-methylbenzoate. Differential protein profiling (2D-DIGE) of 4-methylbenzoate- in comparison with benzoate- or succinate-adapted cells revealed the specific abundance increase of substrate-specific protein sets. Their coding genes form distinct clusters on the genome, two of which were assigned to 4-methylbenzoate and one to benzoate degradation. The predicted functions of the gene products agree with a specific 4-methylbenzoyl-CoA degradation pathway in addition to and analogous to the known anaerobic benzoyl-CoA degradation pathway. In vitro benzoyl-CoA and 4-methylbenzoyl-CoA reductase activities revealed the electron donor and ATP-dependent formation of the corresponding conjugated cyclic dienoyl-CoA/4-methyl-dienoyl-CoA products. The 4-methylbenzoyl-CoA reductase activity was induced in the presence of 4-methylbenzoate. In accordance, metabolite analysis of cultures grown with 4-methylbenzoate tentatively identified 4-methylcyclohex-1,5-diene-1-carboxylate. The 4-methylbenzoate induced genes were assigned to code for the putative 4-methylbenzoyl-CoA reductase; their products display pronounced sequence disparity from the conventional class I benzoyl-CoA reductase, which does not accept substituents at the para-position. Identification of 3-methylglutarate together with the formation of specific proteins for ring cleavage and β-oxidation in 4-methylbenzoate-adapted cells suggest conservation of the methyl group along the specific 4-methylbenzoyl-CoA degradation pathway.
Collapse
Affiliation(s)
- Sven Lahme
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, Oldenburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|