1
|
Staar M, Ahlborn L, Estévez-Gay M, Pallasch K, Osuna S, Schallmey A. A Dynamic Loop in Halohydrin Dehalogenase HheG Regulates Activity and Enantioselectivity in Epoxide Ring Opening. ACS Catal 2024; 14:15976-15987. [PMID: 39507489 PMCID: PMC11536340 DOI: 10.1021/acscatal.4c04815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Halohydrin dehalogenase HheG and its homologues are remarkable enzymes for the efficient ring opening of sterically demanding internal epoxides using a variety of nucleophiles. The enantioselectivity of the respective wild-type enzymes, however, is usually insufficient for application and frequently requires improvement by protein engineering. We herein demonstrate that the highly flexible N-terminal loop of HheG, comprising residues 39 to 47, has a tremendous impact on the activity as well as enantioselectivity of this enzyme in the ring opening of structurally diverse epoxide substrates. Thus, highly active and enantioselective HheG variants could be accessed through targeted engineering of this loop. In this regard, variant M45F displayed almost 10-fold higher specific activity than wild type in the azidolysis of cyclohexene oxide, yielding the corresponding product (1S,2S)-2-azidocyclohexan-1-ol in 96%eeP (in comparison to 49%eeP for HheG wild type). Moreover, this variant was also improved regarding activity and enantioselectivity in the ring opening of cyclohexene oxide with other nucleophiles, demonstrating even inverted enantioselectivity with cyanide and cyanate. In contrast, a complete loop deletion yielded an inactive enzyme. Concomitant computational analyses of HheG M45F in comparison to wild type enzyme revealed that mutation M45F promotes the productive binding of cyclohexene oxide and azide in the active site by establishing noncovalent C-H ··π interactions between epoxide and F45. These interactions further position one of the two carbon atoms of the epoxide ring closer to the azide, resulting in higher enantioselectivity. Additionally, stable and enantioselective cross-linked enzyme crystals of HheG M45F were successfully generated after combination with mutation D114C. Overall, our study highlights that a highly flexible loop in HheG governs the enzyme's activity and selectivity in epoxide ring opening and should thus be considered in future protein engineering campaigns of HheG.
Collapse
Affiliation(s)
- Marcel Staar
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Lina Ahlborn
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Miquel Estévez-Gay
- CompBioLab
Group, Institut de Química Computacional i Catàlisi
(IQCC), Departament de Química, Universitat
de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Katharina Pallasch
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Sílvia Osuna
- CompBioLab
Group, Institut de Química Computacional i Catàlisi
(IQCC), Departament de Química, Universitat
de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Anett Schallmey
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
- Zentrum
für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Braunschweig
Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Dokli I, Brkljača Z, Švaco P, Tang L, Stepanić V, Majerić Elenkov M. Biocatalytic approach to chiral fluoroaromatic scaffolds. Org Biomol Chem 2022; 20:9734-9741. [PMID: 36440739 DOI: 10.1039/d2ob01955h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ten different fluorinated aromatic epoxides have been tested as potential substrates for halohydrin dehalogenase (HHDH) HheC. The majority of investigated epoxides are useful building blocks in synthetic chemistry applications, with a number of them being polysubstituted. Moderate to high enantioselectivities (ER = 15 → 200) were observed in azidolysis, allowing the synthesis of enantioenriched (R)-azido alcohols containing fluorine in the molecule. In the case where a reaction runs over 50% conversion, enantiopure (S)-epoxides are also available. While o-F-styrene oxide was easily converted into a product, a sterically challenging o-CF3-derivative was not accepted by HheC. In silico probing of the binding site indicates that, in order to accommodate an o-CF3-derivative in the HheC active site, it is necessary to eliminate steric hindrance. Hence, we extended our research by probing several available HheC variants containing relevant modifications in the active site. The active mutant P84V/F86P/T134A/N176A (named HheC-M4) was identified, showing not only high activity towards o-CF3-styrene oxide, but also inverted enantioselectivity (ES = 27). Since (S)-enantioselective HHDHs are rare and therefore valuable for their synthetic application, this enzyme was screened on the initial panel of substrates. The observed (S)-enantioselectivity (ES = 1-111) is ascribed to the formation of the additional space by introduced mutations in HheC-M4, which is also confirmed by classical MD simulations. Successive molecular docking demonstrated that this newly formed tunnel located close to the protein surface is a critical feature of HheC-M4, representing a novel binding site.
Collapse
Affiliation(s)
- Irena Dokli
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | - Zlatko Brkljača
- Selvita Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Petra Švaco
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | - Lixia Tang
- University of Electronic Science and Technology, No. 4, Section 2, North Jianshe Road, Chengdu, China
| | - Višnja Stepanić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | | |
Collapse
|
3
|
Milčić N, Stepanić V, Crnolatac I, Findrik Blažević Z, Brkljača Z, Majerić Elenkov M. Inhibitory Effect of DMSO on Halohydrin Dehalogenase: Experimental and Computational Insights into the Influence of an Organic Co‐solvent on the Structural and Catalytic Properties of a Biocatalyst. Chemistry 2022; 28:e202201923. [DOI: 10.1002/chem.202201923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Nevena Milčić
- Faculty of Chemical Engineering and Technology University of Zagreb Savska c. 16 10000 Zagreb Croatia
| | - Višnja Stepanić
- Laboratory for Machine Learning and Knowledge Representation Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | | | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Maja Majerić Elenkov
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| |
Collapse
|
4
|
Xue F, Li C, Xu Q. Biocatalytic approaches for the synthesis of optically pure vic-halohydrins. Appl Microbiol Biotechnol 2021; 105:3411-3421. [PMID: 33851239 DOI: 10.1007/s00253-021-11266-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 11/30/2022]
Abstract
Enantiopure vicinal halohydrins (vic-halohydrins) are highly valuable building blocks for the synthesis of many different natural products and pharmaceuticals, and biocatalytic methods for their synthesis have received considerable interest. This review emphasizes the application of biocatalytic approaches as an efficient alternative or complement to conventional chemical reactions, with a special focus on the asymmetric reductions catalyzed by ketoreductases, kinetic resolution catalyzed using lipases or esterases, stereoselective biotransformation catalyzed by halohydrin dehalogenases, asymmetric hydroxylation catalyzed by cytochrome P450 monooxygenases, asymmetric dehalogenation catalyzed by haloalkane dehalogenases, and aldehyde condensation catalyzed by aldolases. Although many chiral vic-halohydrins have been successfully synthesized using wild-type biocatalysts, their enantioselectivity is often too low for enantiopure synthesis. To overcome these limitations, catalytic properties of wild-type enzymes have been improved by rational and semi-rational protein design or directed evolution. This review briefly introduces the research status in this field, highlighting aspects of basic academic research in the biocatalytic synthesis of optically active vic-halohydrins by employing such unconventional approaches. KEY POINTS: • Outlines the enzymatic strategies for the production of enantiopure vic-halohydrins • Highlights recent advances in biocatalytic production of enantiopure vic-halohydrins • Provide guidance for efficient preparation of enantiopure vic-halohydrins.
Collapse
Affiliation(s)
- Feng Xue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Changfan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wenyuan Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
5
|
Improving the enantioselectivity of halohydrin dehalogenase for the synthesis of (R)-benzyl glycidyl ether via biocatalytic azidolysis. Int J Biol Macromol 2020; 170:123-128. [PMID: 33352156 DOI: 10.1016/j.ijbiomac.2020.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/02/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022]
Abstract
Halohydrin dehalogenases (HHDHs) are valuable biocatalysts for the synthesis of enantiopure benzyl glycidyl ether (BGE) and its derivatives, which are important synthetic intermediates for anti-cancer and anti-obesity drugs. However, all the reported HHDHs exhibit low enantioselectivity. In this study, we screened site-saturation mutagenesis libraries of AbHHDH at positions R89, A136, V137, P178, N179, F180, I181, Y186 and F187 for mutants with enhanced enantioselectivity toward BGE. The four improved variant R89V, R89Y, R89K and V137I were identified, and the double mutant R89Y/V137I showed 2.9-fold higher enantioselectivity than the wild type. The regions of HHDH containing the identified mutations were analyzed by homology modeling to explain the changes of enantioselectivity. Kinetic resolution of 20 to 100 mM BGE using whole cells of Escherichia coli expressing the mutant R89Y/V137I resulted in (R)-BGE yields of 42 to 32.5%, with ee >99%. This study improves our understanding of the enantioselectivity of HHDHs and contributes improved biocatalysts for the kinetic resolution of BGE.
Collapse
|
6
|
Findrik Blažević Z, Milčić N, Sudar M, Majerić Elenkov M. Halohydrin Dehalogenases and Their Potential in Industrial Application – A Viewpoint of Enzyme Reaction Engineering. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zvjezdana Findrik Blažević
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | - Nevena Milčić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | - Martina Sudar
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | | |
Collapse
|
7
|
Gul I, Wang Q, Jiang Q, Fang R, Tang L. Enzyme immobilization on glass fiber membrane for detection of halogenated compounds. Anal Biochem 2020; 609:113971. [PMID: 32979368 DOI: 10.1016/j.ab.2020.113971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/19/2023]
Abstract
Enzyme immobilization using inorganic membranes has enticed increased attention as they not only improve enzyme stability, but also furnish user-friendly biodevices that can be tailored to different applications. Herein, we explored the suitability of the glass fiber membrane for enzyme immobilization and its application for halocarbon detection. For this, halohydrin dehalogenase (HheC) and bovine serum albumin were crosslinked and immobilized on a glass fiber membrane without membrane functionalization. Immobilized HheC exhibited higher storage stability than its free counterpart over 60 days at 4 °C (67% immobilized vs. 8.1% free) and 30 °C (77% immobilized vs. 57% free). Similarly, the thermal endurance of the immobilized HheC was significantly improved. The practical utility of the membrane-immobilized enzyme was demonstrated by colorimetric detection of 1,3-dichloro-2-propanol (1,3-DCP) and 2,3-dibromo-1-propanol (2,3-DBP) as model analytes. Under optimized conditions, the detection limits of 0.06 mM and 0.09 mM were achieved for 1,3-DCP and 2,3-DBP, respectively. The satisfactory recoveries were observed with spiked river and lake water samples, which demonstrate the application potential of immobilized HheC for screening contaminants in water samples. Our results revealed that the proposed frugal and facile approach could be useful for enzyme stabilization, and mitigation of halocarbon pollution.
Collapse
Affiliation(s)
- Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qifa Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ruiqin Fang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
8
|
Gul I, Bogale TF, Chen Y, Yang X, Fang R, Feng J, Gao H, Tang L. A paper-based whole-cell screening assay for directed evolution-driven enzyme engineering. Appl Microbiol Biotechnol 2020; 104:6013-6022. [DOI: 10.1007/s00253-020-10615-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
|
9
|
Heterologous overexpression of a novel halohydrin dehalogenase from Pseudomonas pohangensis and modification of its enantioselectivity by semi-rational protein engineering. Int J Biol Macromol 2020; 146:80-88. [DOI: 10.1016/j.ijbiomac.2019.12.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/06/2019] [Accepted: 12/22/2019] [Indexed: 02/08/2023]
|
10
|
Gul I, Bogale TF, Deng J, Chen Y, Fang R, Feng J, Tang L. Enzyme‐based detection of epoxides using colorimetric assay integrated with smartphone imaging. Biotechnol Appl Biochem 2020; 67:685-692. [DOI: 10.1002/bab.1898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Ijaz Gul
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Tadesse Fantaye Bogale
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Jiao Deng
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Yong Chen
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Ruiqin Fang
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
- Center for Informational Biology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Juan Feng
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
- Center for Informational Biology University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Lixia Tang
- School of Life Science and Technology University of Electronic Science and Technology of China Chengdu People's Republic of China
- Center for Informational Biology University of Electronic Science and Technology of China Chengdu People's Republic of China
| |
Collapse
|
11
|
Xue F, Zhang LH, Xu Q. Significant improvement of the enantioselectivity of a halohydrin dehalogenase for asymmetric epoxide ring opening reactions by protein engineering. Appl Microbiol Biotechnol 2020; 104:2067-2077. [DOI: 10.1007/s00253-020-10356-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/15/2019] [Accepted: 01/05/2020] [Indexed: 02/03/2023]
|
12
|
Wan N, Tian J, Wang H, Tian M, He Q, Ma R, Cui B, Han W, Chen Y. Identification and characterization of a highly S-enantioselective halohydrin dehalogenase from Tsukamurella sp. 1534 for kinetic resolution of halohydrins. Bioorg Chem 2018; 81:529-535. [PMID: 30245234 DOI: 10.1016/j.bioorg.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023]
Abstract
Halohydrin dehalogenases are remarkable enzymes which possess promiscuous catalytic activity and serve as potential biocatalysts for the synthesis of chiral halohydrins, epoxides and β-substituted alcohols. The enzyme HheC exhibits a highly R enantioselectivity in the processes of dehalogenation of vicinal halohydrins and ring-opening of epoxides, which attracts more attentions in organic synthesis. Recently dozens of novel potential halohydrin dehalogenases have been identified by gene mining, however, most of the characterized enzymes showed low stereoselectivity. In this study, a novel halohydrin dehalogenase of HheA10 from Tsukamurella sp. 1534 has been heterologously expressed, purified and characterized. Substrate spectrum and kinetic resolution studies indicated the HheA10 was a highly S enantioselective enzyme toward several halohydrins, which produced the corresponding epoxides with the ee (enantiomeric excess) and E values up to >99% and >200 respectively. Our results revealed the HheA10 was a promising biocatalyst for the synthesis of enantiopure aromatic halohydrins and epoxides via enzymatic kinetic resolution of racemic halohydrins. What's more important, the HheA10 as the first individual halohydrin dehalogenase with the highly S enantioselectivity provides a complementary enantioselectivity to the HheC.
Collapse
Affiliation(s)
- Nanwei Wan
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Jiawei Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Huihui Wang
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Meiting Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qing He
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ran Ma
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Baodong Cui
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Wenyong Han
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongzheng Chen
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
13
|
Cross-linked enzyme aggregates (CLEAs) of halohydrin dehalogenase from Agrobacterium radiobacter AD1: Preparation, characterization and application as a biocatalyst. J Biotechnol 2018; 272-273:48-55. [DOI: 10.1016/j.jbiotec.2017.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/01/2023]
|
14
|
Identification and Characterization of a Novel Halohydrin Dehalogenase from Bradyrhizobium erythrophlei and Its Performance in Preparation of Both Enantiomers of Epichlorohydrin. Catal Letters 2018. [DOI: 10.1007/s10562-017-2292-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Luo Y, Chen Y, Ma H, Tian Z, Zhang Y, Zhang J. Enhancing the biocatalytic manufacture of the key intermediate of atorvastatin by focused directed evolution of halohydrin dehalogenase. Sci Rep 2017; 7:42064. [PMID: 28165015 PMCID: PMC5292711 DOI: 10.1038/srep42064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/05/2017] [Indexed: 11/09/2022] Open
Abstract
Halohydrin dehalogenases (HHDHs) are biocatalytically interesting enzymes due to their ability to form C-C, C-N, C-O, and C-S bonds. One of most important application of HHDH was the protein engineering of HheC (halohydrin dehalogenase from Agrobacterium radiobacter AD1) for the industrial manufacturing of ethyl (R)-4-cyano-3-hydroxybutanoate (HN), a key chiral synthon of a cholesterol-lowering drug of atorvastatin. During our development of an alternative, more efficient and economic route for chemo-enzymatic preparation of the intermediate of atorvastatin, we found that the HheC2360 previously reported for HN manufacture, had insufficient activity for the cyanolysis production of tert-butyl (3 R,5 S)-6-cyano-3,5-dihydroxyhexanoate (A7). Herein, we present the focused directed evolution of HheC2360 with higher activity and enhanced biocatalytic performance using active site mutagenesis. Through docking of the product, A7, into the crystal structure of HheC2360, 6 residues was selected for combined active sites testing (CASTing). After library screening, the variant V84G/W86F was identified to have a 15- fold increase in activity. Time course analysis of the cyanolysis reaction catalyzed by this variant, showed 2- fold increase in space time productivity compared with HheC2360. These results demonstrate the applicability of the variant V84G/W86F as a biocatalyst for the efficient and practical production of atorvastatin intermediate.
Collapse
Affiliation(s)
- Yu Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Abiochem Co. LTD, Shanghai, China
| | - Yangzi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hongmin Ma
- Key Laboratory of Combinational Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | | | - Yeqi Zhang
- Key Laboratory of Combinational Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
16
|
Stereoselective Chemoenzymatic Synthesis of Optically Active Aryl-Substituted Oxygen-Containing Heterocycles. Catalysts 2017. [DOI: 10.3390/catal7020037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Wu Z, Deng W, Tong Y, Liao Q, Xin D, Yu H, Feng J, Tang L. Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy. Appl Microbiol Biotechnol 2017; 101:3201-3211. [PMID: 28074221 DOI: 10.1007/s00253-017-8090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 01/26/2023]
Abstract
As a crucial factor for biocatalysts, protein thermostability often arises from a combination of factors that are often difficult to rationalize. In this work, the thermostable nature of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) was systematically explored using a combinatorial directed evolution approach. For this, a mutagenesis library of HheC mutants was first constructed using error-prone PCR with low mutagenesis frequency. After screening approximately 2000 colonies, six mutants with eight mutation sites were obtained. Those mutation sites were subsequently combined by adopting several rounds of iterative saturation mutagenesis (ISM) approach. After four rounds of saturation mutagenesis, one best mutant ISM-4 with a 3400-fold improvement in half-life (t 1/2) inactivation at 65 °C, 18 °C increase in apparent T m value, and 20 °C increase in optimum temperature was obtained, compared to wild-type HheC. To the best of our knowledge, the mutant represents the most thermostable HheC variant reported up to now. Moreover, the mutant was as active as wild-type enzyme for the substrate 1,3-dichloro-2-propanol, and they remained most enantioselectivity of wild-type enzyme in the kinetic resolution of rac-2-chloro-1-phenolethanol, exhibiting a great potential for industrial applications. Our structural investigation highlights that surface loop regions are hot spots for modulating the thermostability of HheC, the residues located at these regions contribute to the thermostability of HheC in a cooperative way, and protein rigidity and oligomeric interface connections contribute to the thermostability of HheC. All of these essential factors could be used for further design of an even more thermostable HheC, which, in turn, could greatly facilitate the application of the enzyme as a biocatalyst.
Collapse
Affiliation(s)
- Zhiyun Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Wenfeng Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Yapei Tong
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Qian Liao
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Dongmin Xin
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Huashun Yu
- Research and Development Center, Angel Yeast Co., Ltd., Yichang, China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China. .,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
18
|
Azidolysis of epoxides catalysed by the halohydrin dehalogenase from Arthrobacter sp. AD2 and a mutant with enhanced enantioselectivity: an (S)-selective HHDH. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Recent advances on halohydrin dehalogenases-from enzyme identification to novel biocatalytic applications. Appl Microbiol Biotechnol 2016; 100:7827-39. [PMID: 27502414 PMCID: PMC4989007 DOI: 10.1007/s00253-016-7750-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 10/25/2022]
Abstract
Halohydrin dehalogenases are industrially relevant enzymes that catalyze the reversible dehalogenation of vicinal haloalcohols with formation of the corresponding epoxides. In the reverse reaction, also other negatively charged nucleophiles such as azide, cyanide, or nitrite are accepted besides halides to open the epoxide ring. Thus, novel C-N, C-C, or C-O bonds can be formed by halohydrin dehalogenases, which makes them attractive biocatalysts for the production of various β-substituted alcohols. Despite the fact that only five individual halohydrin dehalogenase enzyme sequences have been known until recently enabling their heterologous production, a large number of different biocatalytic applications have been reported using these enzymes. The recent characterization of specific sequence motifs has facilitated the identification of novel halohydrin dehalogenase sequences available in public databases and has largely increased the number of recombinantly available enzymes. These will help to extend the biocatalytic repertoire of this enzyme family and to foster novel biotechnological applications and developments in the future. This review gives a general overview on the halohydrin dehalogenase enzyme family and their biochemical properties and further focuses on recent developments in halohydrin dehalogenase biocatalysis and protein engineering.
Collapse
|
20
|
Watanabe F, Yu F, Ohtaki A, Yamanaka Y, Noguchi K, Yohda M, Odaka M. Crystal structures of halohydrin hydrogen-halide-lyases from Corynebacterium
sp. N-1074. Proteins 2015; 83:2230-9. [DOI: 10.1002/prot.24938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Fumiaki Watanabe
- Yokohama Research Laboratories; Mitsubishi Rayon Co. Ltd.; Yokohama Kanagawa 230-0053 Japan
| | - Fujio Yu
- Yokohama Research Laboratories; Mitsubishi Rayon Co. Ltd.; Yokohama Kanagawa 230-0053 Japan
| | - Akashi Ohtaki
- Department of Biotechnology and Life Science, Graduate School of Technology; Tokyo University of Agriculture and Technology; Koganei Tokyo 184-8588 Japan
| | - Yasuaki Yamanaka
- Department of Biotechnology and Life Science, Graduate School of Technology; Tokyo University of Agriculture and Technology; Koganei Tokyo 184-8588 Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center; Tokyo University of Agriculture and Technology; Koganei Tokyo 184-8588 Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Graduate School of Technology; Tokyo University of Agriculture and Technology; Koganei Tokyo 184-8588 Japan
| | - Masafumi Odaka
- Department of Biotechnology and Life Science, Graduate School of Technology; Tokyo University of Agriculture and Technology; Koganei Tokyo 184-8588 Japan
- Department of Life Science, Faculty and Graduate School of Engineering and Resource Science; Akita University; Akita City, Akita 010-8502 Japan
| |
Collapse
|
21
|
Hu D, Ye HH, Wu MC, Feng F, Zhu LJ, Yin X, Li JF. Chemoenzymatic preparation of (S)-p-nitrostyrene oxide from p-nitrophenacyl bromide by recombinant Escherichia coli cells expressing a novel halohydrin dehalogenase. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Tang L, Liu Y, Jiang R, Zheng Y, Zheng K, Zheng H. A high-throughput adrenaline test for the exploration of the catalytic potential of halohydrin dehalogenases in epoxide ring-opening reactions. Biotechnol Appl Biochem 2015; 62:451-7. [PMID: 25099782 DOI: 10.1002/bab.1278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 08/02/2014] [Indexed: 11/06/2022]
Abstract
The principle of the adrenaline test for enzymes is based on the quantification of periodate-sensitive reaction products with adrenaline to produce a chromogenic compound adrenochrome that can be easily detected. Here, a rapid whole-cell -based adrenaline assay for the activity measurement of halohydrin dehalogenases (HHDHs) in nucleophile-mediated epoxide ring-opening reactions is presented. The assay was validated using two types of model reactions (glycidol with nucleophiles and nitrite with epoxides). Moreover, the reliability of the assay was confirmed by gas chromatography analysis. Our results demonstrated that the developed assay is efficient in both library screening and the evaluation of catalytic diversity and specificity of HHDHs. Thus, the assay represents a valuable tool in the evolution of HHDHs for its industrial applications. Moreover, the adrenaline test exhibits a great potential for enzyme assay and could be easily adopted for other suitable enzymes.
Collapse
Affiliation(s)
- Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yu Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Rongxiang Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yu Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kai Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Huayu Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
23
|
Xue F, Liu ZQ, Wang YJ, Wan NW, Zheng YG. Biochemical characterization and biosynthetic application of a halohydrin dehalogenase from Tistrella mobilis ZJB1405. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Denard CA, Ren H, Zhao H. Improving and repurposing biocatalysts via directed evolution. Curr Opin Chem Biol 2015; 25:55-64. [DOI: 10.1016/j.cbpa.2014.12.036] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 11/27/2022]
|
25
|
An efficient high-throughput screening assay for rapid directed evolution of halohydrin dehalogenase for preparation of β-substituted alcohols. Appl Microbiol Biotechnol 2015; 99:4019-29. [DOI: 10.1007/s00253-015-6527-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/04/2015] [Accepted: 03/07/2015] [Indexed: 10/23/2022]
|
26
|
Schallmey M, Jekel P, Tang L, Majerić Elenkov M, Höffken HW, Hauer B, Janssen DB. A single point mutation enhances hydroxynitrile synthesis by halohydrin dehalogenase. Enzyme Microb Technol 2015; 70:50-7. [DOI: 10.1016/j.enzmictec.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 12/19/2022]
|
27
|
Exploring the enantioselective mechanism of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by iterative saturation mutagenesis. Appl Environ Microbiol 2015; 81:2919-26. [PMID: 25681194 DOI: 10.1128/aem.04153-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) shows great potential in producing valuable chiral epoxides and β-substituted alcohols. The wild-type (WT) enzyme displays a high R-enantiopreference toward most aromatic substrates, whereas no S-selective HheC has been reported to date. To obtain more enantioselective enzymes, seven noncatalytic active-site residues were subjected to iterative saturation mutagenesis (ISM). After two rounds of screening aspects of both activity and enantioselectivity (E), three outstanding mutants (Thr134Val/Leu142Met, Leu142Phe/Asn176His, and Pro84Val/Phe86Pro/Thr134Ala/Asn176Ala mutants) with divergent enantioselectivity were obtained. The two double mutants displayed approximately 2-fold improvement in R-enantioselectivity toward 2-chloro-1-phenylethanol (2-CPE) without a significant loss of enzyme activity compared with the WT enzyme. Strikingly, the Pro84Val/Phe86Pro/Thr134Ala/Asn176Ala mutant showed an inverted enantioselectivity (from an ER of 65 [WT] to an ES of 101) and approximately 100-fold-enhanced catalytic efficiency toward (S)-2-CPE. Molecular dynamic simulation and docking analysis revealed that the phenyl side chain of (S)-2-CPE bound at a different location than that of its R-counterpart; those mutations generated extra connections for the binding of the favored enantiomer, while the eliminated connections reduced binding of the nonfavored enantiomer, all of which could contribute to the observed inverted enantiopreference.
Collapse
|
28
|
Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining. Appl Environ Microbiol 2014; 80:7303-15. [PMID: 25239895 DOI: 10.1128/aem.01985-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/13/2014] [Indexed: 01/22/2023] Open
Abstract
Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community.
Collapse
|
29
|
MDC-Analyzer: a novel degenerate primer design tool for the construction of intelligent mutagenesis libraries with contiguous sites. Biotechniques 2014; 56:301-2, 304, 306-8, passim. [PMID: 24924390 DOI: 10.2144/000114177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/03/2014] [Indexed: 11/23/2022] Open
Abstract
Recent computational and bioinformatics advances have enabled the efficient creation of novel biocatalysts by reducing amino acid variability at hot spot regions. To further expand the utility of this strategy, we present here a tool called Multi-site Degenerate Codon Analyzer (MDC-Analyzer) for the automated design of intelligent mutagenesis libraries that can completely cover user-defined randomized sequences, especially when multiple contiguous and/or adjacent sites are targeted. By initially defining an objective function, the possible optimal degenerate PCR primer profiles could be automatically explored using the heuristic approach of Greedy Best-First-Search. Compared to the previously developed DC-Analyzer, MDC-Analyzer allows for the existence of a small amount of undesired sequences as a tradeoff between the number of degenerate primers and the encoded library size while still providing all the benefits of DC-Analyzer with the ability to randomize multiple contiguous sites. MDC-Analyzer was validated using a series of randomly generated mutation schemes and experimental case studies on the evolution of halohydrin dehalogenase, which proved that the MDC methodology is more efficient than other methods and is particularly well-suited to exploring the sequence space of proteins using data-driven protein engineering strategies.
Collapse
|
30
|
Improving the enantioselectivity of an esterase toward (S)-ketoprofen ethyl ester through protein engineering. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Schallmey M, Floor RJ, Hauer B, Breuer M, Jekel PA, Wijma HJ, Dijkstra BW, Janssen DB. Biocatalytic and structural properties of a highly engineered halohydrin dehalogenase. Chembiochem 2013; 14:870-81. [PMID: 23585096 DOI: 10.1002/cbic.201300005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 01/30/2023]
Abstract
Two highly engineered halohydrin dehalogenase variants were characterized in terms of their performance in dehalogenation and epoxide cyanolysis reactions. Both enzyme variants outperformed the wild-type enzyme in the cyanolysis of ethyl (S)-3,4-epoxybutyrate, a conversion yielding ethyl (R)-4-cyano-3-hydroxybutyrate, an important chiral building block for statin synthesis. One of the enzyme variants, HheC2360, displayed catalytic rates for this cyanolysis reaction enhanced up to tenfold. Furthermore, the enantioselectivity of this variant was the opposite of that of the wild-type enzyme, both for dehalogenation and for cyanolysis reactions. The 37-fold mutant HheC2360 showed an increase in thermal stability of 8 °C relative to the wild-type enzyme. Crystal structures of this enzyme were elucidated with chloride and ethyl (S)-3,4-epoxybutyrate or with ethyl (R)-4-cyano-3-hydroxybutyrate bound in the active site. The observed increase in temperature stability was explained in terms of a substantial increase in buried surface area relative to the wild-type HheC, together with enhanced interfacial interactions between the subunits that form the tetramer. The structures also revealed that the substrate binding pocket was modified both by substitutions and by backbone movements in loops surrounding the active site. The observed changes in the mutant structures are partly governed by coupled mutations, some of which are necessary to remove steric clashes or to allow backbone movements to occur. The importance of interactions between substitutions suggests that efficient directed evolution strategies should allow for compensating and synergistic mutations during library design.
Collapse
Affiliation(s)
- Marcus Schallmey
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tang L, Zheng K, Liu Y, Zheng H, Wang H, Song C, Zhou H. Exploring the potential of megaprimer PCR in conjunction with orthogonal array design for mutagenesis library construction. Biotechnol Appl Biochem 2013; 60:190-5. [PMID: 23586485 DOI: 10.1002/bab.1065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/19/2012] [Indexed: 11/12/2022]
Abstract
Although megaprimer PCR mutagenesis has been used routinely in protein directed evolution, users sometimes encounter technical hurdles, particularly inefficiency during amplification when large fragments are used or the template is difficult to be amplified. Instead of methodology development, here we simply overcome the limitation by optimizing megaprimer PCR conditions via orthogonal array design of the four PCR components in three levels of each: template, primer, Mg(2+) , and dNTPs. For this, only nine PCRs need to be performed. The strategy (termed as OptiMega) was not only successfully applied for the construction of one multiple-site saturation mutagenesis library of halohydrin dehalogenase HheC, which failed to be constructed previously using the standard QuikChange™ protocol, but also expanded the construction of two high-quality random mutagenesis libraries of HheA and HheC. Most importantly, OptiMega offers a quick and simple way of constructing random mutagenesis libraries by eliminating the ligation step. Our results demonstrated that the OptiMega strategy could greatly strengthen the potential of megaprimer PCR mutagenesis for library construction.
Collapse
Affiliation(s)
- Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Properties and biotechnological applications of halohydrin dehalogenases: current state and future perspectives. Appl Microbiol Biotechnol 2012; 97:9-21. [DOI: 10.1007/s00253-012-4523-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|