1
|
Meta-omics approaches reveal unique small RNAs exhibited by the uncultured microorganisms dwelling deep-sea hydrothermal sediment in Guaymas Basin. Arch Microbiol 2022; 204:461. [DOI: 10.1007/s00203-022-03085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/08/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
2
|
Asamatsu K, Yoshitake K, Saito M, Prasitwuttisak W, Ishibashi JI, Tsutsumi A, Mustapha NA, Maeda T, Yanagawa K. A Novel Archaeal Lineage in Boiling Hot Springs around Oyasukyo Gorge (Akita, Japan). Microbes Environ 2021; 36. [PMID: 34819404 PMCID: PMC8674440 DOI: 10.1264/jsme2.me21048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel deep-branching archaeal lineage was discovered at high-temperature hot springs around Oyasukyo Gorge in Akita Prefecture, Japan. Actively boiling hot spring water contained >1×104 microbes mL-1. The microbial community composition assessed by analyzing 16S rRNA gene amplicons revealed that the dominant bacterial phyla were Proteobacteria and Aquificae (>50% of the microbial composition) in samples collected in 2016 and 2019, respectively. Approximately 10% of the reads obtained in both years were not assigned to any taxonomy. The more detailed phylogenetic positions of the unassigned sequences identified using a clone library and phylogenetic tree showed that they formed a clade that was independent, distantly related to known phyla, and had low similarity (<82%) to all other sequences in available databases. The present results suggest that this novel archaeal phylum-level lineage thrives in boiling hot springs in Japan.
Collapse
Affiliation(s)
| | - Kai Yoshitake
- Faculty of Environmental Engineering, The University of Kitakyushu
| | - Makoto Saito
- Faculty of Environmental Engineering, The University of Kitakyushu
| | | | - Jun-Ichiro Ishibashi
- Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University
| | - Akihi Tsutsumi
- Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University
| | - Nurul Asyifah Mustapha
- Department of Biological Functions Engineering, Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology
| | | |
Collapse
|
3
|
Transfer RNA-derived fragments in aging Caenorhabditis elegans originate from abundant homologous gene copies. Sci Rep 2021; 11:12304. [PMID: 34112855 PMCID: PMC8192933 DOI: 10.1038/s41598-021-91724-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/21/2021] [Indexed: 12/02/2022] Open
Abstract
Small RNAs that originate from transfer RNA (tRNA) species, tRNA-derived fragments (tRFs), play diverse biological functions but little is known for their association with aging. Moreover, biochemical aspects of tRNAs limit discovery of functional tRFs by high throughput sequencing. In particular, genes encoding tRNAs exist as multiple copies throughout genome, and mature tRNAs have various modified bases, contributing to ambiguities for RNA sequencing-based analysis of tRFs. Here, we report age-dependent changes of tRFs in Caenorhabditis elegans. We first analyzed published RNA sequencing data by using a new strategy for tRNA-associated sequencing reads. Our current method used unique mature tRNAs as a reference for the sequence alignment, and properly filtered out false positive enrichment for tRFs. Our analysis successfully distinguished de novo mutation sites from differences among homologous copies, and identified potential RNA modification sites. Overall, the majority of tRFs were upregulated during aging and originated from 5′-ends, which we validated by using Northern blot analysis. Importantly, we revealed that the major source of tRFs upregulated during aging was the tRNAs with abundant gene copy numbers. Our analysis suggests that tRFs are useful biomarkers of aging particularly when they originate from abundant homologous gene copies.
Collapse
|
4
|
Abstract
Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Shi J, Han D, Zhang R, Li J, Zhang R. Molecular and Serological Assays for SARS-CoV-2: Insights from Genome and Clinical Characteristics. Clin Chem 2020; 66:1030-1046. [PMID: 32437513 PMCID: PMC7314174 DOI: 10.1093/clinchem/hvaa122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Background The ongoing outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a challenge for worldwide public health. A reliable laboratory assay is essential both to confirm suspected patients and to exclude patients infected with other respiratory viruses, thereby facilitating the control of global outbreak scenarios. Content In this review, we focus on the genomic, transmission and clinical characteristics of SARS-CoV-2, and comprehensively summarize the principles and related details of assays for SARS-CoV-2. We also explore the quality assurance measures for these assays. Summary SARS-CoV-2 has some unique gene sequences and specific transmission and clinical features that can inform the conduct of molecular and serological assays in many aspects, including the design of primers, the selection of specimens and testing strategies at different disease stages. Appropriate quality assurance measures for molecular and serological assays are needed to maintain testing proficiency. Because serological assays have the potential to identify later stages of the infection and to confirm highly suspected cases with negative molecular assay results, a combination of these two assays is needed to achieve a reliable capacity to detect SARS-CoV-2.
Collapse
Affiliation(s)
- Jiping Shi
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P. R. China.,Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P. R. China
| | - Dongsheng Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P. R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Runling Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P. R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P. R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing, P. R. China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P. R. China.,Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P. R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing, P. R. China
| |
Collapse
|
6
|
Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, Takano Y, Uematsu K, Ikuta T, Ito M, Matsui Y, Miyazaki M, Murata K, Saito Y, Sakai S, Song C, Tasumi E, Yamanaka Y, Yamaguchi T, Kamagata Y, Tamaki H, Takai K. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 2020; 577:519-525. [PMID: 31942073 PMCID: PMC7015854 DOI: 10.1038/s41586-019-1916-6] [Citation(s) in RCA: 390] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022]
Abstract
The origin of eukaryotes remains unclear1-4. Current data suggest that eukaryotes may have emerged from an archaeal lineage known as 'Asgard' archaea5,6. Despite the eukaryote-like genomic features that are found in these archaea, the evolutionary transition from archaea to eukaryotes remains unclear, owing to the lack of cultured representatives and corresponding physiological insights. Here we report the decade-long isolation of an Asgard archaeon related to Lokiarchaeota from deep marine sediment. The archaeon-'Candidatus Prometheoarchaeum syntrophicum' strain MK-D1-is an anaerobic, extremely slow-growing, small coccus (around 550 nm in diameter) that degrades amino acids through syntrophy. Although eukaryote-like intracellular complexes have been proposed for Asgard archaea6, the isolate has no visible organelle-like structure. Instead, Ca. P. syntrophicum is morphologically complex and has unique protrusions that are long and often branching. On the basis of the available data obtained from cultivation and genomics, and reasoned interpretations of the existing literature, we propose a hypothetical model for eukaryogenesis, termed the entangle-engulf-endogenize (also known as E3) model.
Collapse
Affiliation(s)
- Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Nozomi Nakahara
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yuki Morono
- Kochi Institute for Core Sample Research, X-star, JAMSTEC, Nankoku, Japan
| | - Miyuki Ogawara
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshinori Takano
- Biogeochemistry Program, Research Institute for Marine Resources Utilization, JAMSTEC, Yokosuka, Japan
| | - Katsuyuki Uematsu
- Department of Marine and Earth Sciences, Marine Work Japan, Yokosuka, Japan
| | - Tetsuro Ikuta
- Research Institute for Global Change, JAMSTEC, Yokosuka, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, X-star, JAMSTEC, Nankoku, Japan
| | - Yohei Matsui
- Research Institute for Marine Resources Utilization, JAMSTEC, Yokosuka, Japan
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | | - Yumi Saito
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Sanae Sakai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Eiji Tasumi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yuko Yamanaka
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Japan
| |
Collapse
|
7
|
Nakahara N, Nobu MK, Takaki Y, Miyazaki M, Tasumi E, Sakai S, Ogawara M, Yoshida N, Tamaki H, Yamanaka Y, Katayama A, Yamaguchi T, Takai K, Imachi H. Aggregatilinea lenta gen. nov., sp. nov., a slow-growing, facultatively anaerobic bacterium isolated from subseafloor sediment, and proposal of the new order Aggregatilineales ord. nov. within the class Anaerolineae of the phylum Chloroflexi. Int J Syst Evol Microbiol 2019; 69:1185-1194. [PMID: 30775966 DOI: 10.1099/ijsem.0.003291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel slow-growing, facultatively anaerobic, filamentous bacterium, strain MO-CFX2T, was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediment collected off the Shimokita Peninsula of Japan. Cells were multicellular filamentous, non-motile and Gram-stain-negative. The filaments were generally more than 20 µm (up to approximately 200 µm) long and 0.5-0.6 µm wide. Cells possessed pili-like structures on the cell surface and a multilayer structure in the cytoplasm. Growth of the strain was observed at 20-37 °C (optimum, 30 °C), pH 5.5-8.0 (pH 6.5-7.0), and 0-30 g l-1 NaCl (5 g l-1 NaCl). Under optimum growth conditions, doubling time and maximum cell density were estimated to be approximately 19 days and ~105 cells ml-1, respectively. Strain MO-CFX2T grew chemoorganotrophically on a limited range of organic substrates in anaerobic conditions. The major cellular fatty acids were saturated C16 : 0 (47.9 %) and C18 : 0 (36.9 %), and unsaturated C18 : 1ω9c (6.0 %) and C16 : 1ω7 (5.1 %). The G+C content of genomic DNA was 63.2 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-CFX2T shares a notably low sequence identity with its closest relatives, which were Thermanaerothrix daxensis GNS-1T and Thermomarinilinea lacunifontana SW7T (both 85.8 % sequence identity). Based on these phenotypic and genomic properties, we propose the name Aggregatilinea lenta gen. nov., sp. nov. for strain MO-CFX2T (=KCTC 15625T, =JCM 32065T). In addition, we also propose the associated family and order as Aggregatilineaceae fam. nov. and Aggregatilineales ord. nov., respectively.
Collapse
Affiliation(s)
- Nozomi Nakahara
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.,Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan
| | - Masayuki Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Eiji Tasumi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Sanae Sakai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Miyuki Ogawara
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Naoko Yoshida
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Yuko Yamanaka
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
8
|
FunctionAnnotator, a versatile and efficient web tool for non-model organism annotation. Sci Rep 2017; 7:10430. [PMID: 28874813 PMCID: PMC5585236 DOI: 10.1038/s41598-017-10952-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Along with the constant improvement in high-throughput sequencing technology, an increasing number of transcriptome sequencing projects are carried out in organisms without decoded genome information and even on environmental biological samples. To study the biological functions of novel transcripts, the very first task is to identify their potential functions. We present a web-based annotation tool, FunctionAnnotator, which offers comprehensive annotations, including GO term assignment, enzyme annotation, domain/motif identification and predictions for subcellular localization. To accelerate the annotation process, we have optimized the computation processes and used parallel computing for all annotation steps. Moreover, FunctionAnnotator is designed to be versatile, and it generates a variety of useful outputs for facilitating other analyses. Here, we demonstrate how FunctionAnnotator can be helpful in annotating non-model organisms. We further illustrate that FunctionAnnotator can estimate the taxonomic composition of environmental samples and assist in the identification of novel proteins by combining RNA-Seq data with proteomics technology. In summary, FunctionAnnotator can efficiently annotate transcriptomes and greatly benefits studies focusing on non-model organisms or metatranscriptomes. FunctionAnnotator, a comprehensive annotation web-service tool, is freely available online at: http://fa.cgu.edu.tw/. This new web-based annotator will shed light on field studies involving organisms without a reference genome.
Collapse
|
9
|
Shcherbakova V, Yoshimura Y, Ryzhmanova Y, Taguchi Y, Segawa T, Oshurkova V, Rivkina E. Archaeal communities of Arctic methane-containing permafrost. FEMS Microbiol Ecol 2016; 92:fiw135. [DOI: 10.1093/femsec/fiw135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2016] [Indexed: 01/06/2023] Open
|
10
|
MetaTrans: an open-source pipeline for metatranscriptomics. Sci Rep 2016; 6:26447. [PMID: 27211518 PMCID: PMC4876386 DOI: 10.1038/srep26447] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/29/2016] [Indexed: 01/08/2023] Open
Abstract
To date, meta-omic approaches use high-throughput sequencing technologies, which produce a huge amount of data, thus challenging modern computers. Here we present MetaTrans, an efficient open-source pipeline to analyze the structure and functions of active microbial communities using the power of multi-threading computers. The pipeline is designed to perform two types of RNA-Seq analyses: taxonomic and gene expression. It performs quality-control assessment, rRNA removal, maps reads against functional databases and also handles differential gene expression analysis. Its efficacy was validated by analyzing data from synthetic mock communities, data from a previous study and data generated from twelve human fecal samples. Compared to an existing web application server, MetaTrans shows more efficiency in terms of runtime (around 2 hours per million of transcripts) and presents adapted tools to compare gene expression levels. It has been tested with a human gut microbiome database but also proposes an option to use a general database in order to analyze other ecosystems. For the installation and use of the pipeline, we provide a detailed guide at the following website (www.metatrans.org).
Collapse
|
11
|
Imachi H, Sakai S, Kubota T, Miyazaki M, Saito Y, Takai K. Sedimentibacter acidaminivorans sp. nov., an anaerobic, amino-acid-utilizing bacterium isolated from marine subsurface sediment. Int J Syst Evol Microbiol 2016; 66:1293-1300. [PMID: 26739306 DOI: 10.1099/ijsem.0.000878] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A novel, anaerobic bacterium, strain MO-SEDIT, was isolated from a methanogenic microbial community, which was originally obtained from marine subsurface sediments collected from off the Shimokita Peninsula of Japan. Cells were Gram-stain-negative, non-motile, non-spore-forming rods, 0.4-1.4 μm long by 0.4-0.6 μm wide. The cells also formed long filaments of up to about 11 μm. The strain grew on amino acids (i.e. valine, leucine, isoleucine, methionine, glycine, phenylalanine, tryptophan, lysine and arginine), pyruvate and melezitose in the presence of yeast extract. Growth was observed at 4-37 °C (optimally at 30 °C), at pH 6.0 and 8.5 (optimally at 7.0-7.5) and in 0-60 g l- 1 NaCl (optimally 20 g NaCl l- 1). The G+C content of the DNA was 32.0 mol%. The polar lipids of strain MO-SEDIT were phosphatidylglycerol, phosphatidyl lipids and unknown lipids. The major cellular fatty acids (>10 % of the total) were C14 : 0, C16 : 1ω9 and C16 : 0 dimethyl aldehyde. Comparative sequence analysis of the 16S rRNA gene showed that strain MO-SEDIT was affiliated with the genus Sedimentibacter within the phylum Firmicutes. It was related most closely to the type strain of Sedimentibacter saalensis (94 % sequence similarity). Based on the phenotypic and genetic characteristics, strain MO-SEDIT is considered to represent a novel species of the genus Sedimentibacter, for which the name Sedimentibacter acidaminivorans sp. nov. is proposed. The type strain is MO-SEDIT ( = JCM 17293T = DSM 24004T).
Collapse
Affiliation(s)
- Hiroyuki Imachi
- Research and Development Center for Marine Resources,JAMSTEC, Kanagawa 237-0061,Japan.,Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC),Yokosuka, Kanagawa 237-0061,Japan
| | - Sanae Sakai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC),Yokosuka, Kanagawa 237-0061,Japan
| | - Takaaki Kubota
- Marine Functional Biology Group,JAMSTEC, Yokosuka, Kanagawa 237-0061,Japan
| | - Masayuki Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC),Yokosuka, Kanagawa 237-0061,Japan
| | - Yayoi Saito
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC),Yokosuka, Kanagawa 237-0061,Japan.,Department of Environmental Systems Engineering, Nagaoka University of Technology,Nagaoka, Niigata 940-2188,Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC),Yokosuka, Kanagawa 237-0061,Japan
| |
Collapse
|
12
|
Small RNA Transcriptome of the Oral Microbiome during Periodontitis Progression. Appl Environ Microbiol 2015; 81:6688-99. [PMID: 26187962 DOI: 10.1128/aem.01782-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023] Open
Abstract
The oral microbiome is one of the most complex microbial communities in the human body, and due to circumstances not completely understood, the healthy microbial community becomes dysbiotic, giving rise to periodontitis, a polymicrobial inflammatory disease. We previously reported the results of community-wide gene expression changes in the oral microbiome during periodontitis progression and identified signatures associated with increasing severity of the disease. Small noncoding RNAs (sRNAs) are key players in posttranscriptional regulation, especially in fast-changing environments such as the oral cavity. Here, we expanded our analysis to the study of the sRNA metatranscriptome during periodontitis progression on the same samples for which mRNA expression changes were analyzed. We observed differential expression of 12,097 sRNAs, identifying a total of 20 Rfam sRNA families as being overrepresented in progression and 23 at baseline. Gene ontology activities regulated by the differentially expressed (DE) sRNAs included amino acid metabolism, ethanolamine catabolism, signal recognition particle-dependent cotranslational protein targeting to membrane, intron splicing, carbohydrate metabolism, control of plasmid copy number, and response to stress. In integrating patterns of expression of protein coding transcripts and sRNAs, we found that functional activities of genes that correlated positively with profiles of expression of DE sRNAs were involved in pathogenesis, proteolysis, ferrous iron transport, and oligopeptide transport. These findings represent the first integrated sequencing analysis of the community-wide sRNA transcriptome of the oral microbiome during periodontitis progression and show that sRNAs are key regulatory elements of the dysbiotic process leading to disease.
Collapse
|
13
|
Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM. Thermophiles in the genomic era: Biodiversity, science, and applications. Biotechnol Adv 2015; 33:633-47. [PMID: 25911946 DOI: 10.1016/j.biotechadv.2015.04.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/18/2014] [Accepted: 04/14/2015] [Indexed: 01/30/2023]
Abstract
Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era.
Collapse
Affiliation(s)
- M Sofía Urbieta
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900 La Plata, Argentina
| | - Edgardo R Donati
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900 La Plata, Argentina
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saleha Shahar
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Lee Li Sin
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia.
| |
Collapse
|
14
|
Disrupted tRNA Genes and tRNA Fragments: A Perspective on tRNA Gene Evolution. Life (Basel) 2015; 5:321-31. [PMID: 25629271 PMCID: PMC4390854 DOI: 10.3390/life5010321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 01/17/2023] Open
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs with lengths of approximately 70-100 nt. They are directly involved in protein synthesis by carrying amino acids to the ribosome. In this sense, tRNAs are key molecules that connect the RNA world and the protein world. Thus, study of the evolution of tRNA molecules may reveal the processes that led to the establishment of the central dogma: genetic information flows from DNA to RNA to protein. Thanks to the development of DNA sequencers in this century, we have determined a huge number of nucleotide sequences from complete genomes as well as from transcriptomes in many species. Recent analyses of these large data sets have shown that particular tRNA genes, especially in Archaea, are disrupted in unique ways: some tRNA genes contain multiple introns and some are split genes. Even tRNA molecules themselves are fragmented post-transcriptionally in many species. These fragmented small RNAs are known as tRNA-derived fragments (tRFs). In this review, I summarize the progress of research into the disrupted tRNA genes and the tRFs, and propose a possible model for the molecular evolution of tRNAs based on the concept of the combination of fragmented tRNA halves.
Collapse
|
15
|
Pang YLJ, Abo R, Levine SS, Dedon PC. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Res 2014; 42:e170. [PMID: 25348403 PMCID: PMC4267671 DOI: 10.1093/nar/gku945] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging evidence points to roles for tRNA modifications and tRNA abundance in cellular stress responses. While isolated instances of stress-induced tRNA degradation have been reported, we sought to assess the effects of stress on tRNA levels at a systems level. To this end, we developed a next-generation sequencing method that exploits the paucity of ribonucleoside modifications at the 3′-end of tRNAs to quantify changes in all cellular tRNA molecules. Application of this tRNA-seq method to Saccharomyces cerevisiae identified all 76 expressed unique tRNA species out of 295 coded in the yeast genome, including all isoacceptor variants, with highly precise relative (fold-change) quantification of tRNAs. In studies of stress-induced changes in tRNA levels, we found that oxidation (H2O2) and alkylation (methylmethane sulfonate, MMS) stresses induced nearly identical patterns of up- and down-regulation for 58 tRNAs. However, 18 tRNAs showed opposing changes for the stresses, which parallels our observation of signature reprogramming of tRNA modifications caused by H2O2 and MMS. Further, stress-induced degradation was limited to only a small proportion of a few tRNA species. With tRNA-seq applicable to any organism, these results suggest that translational control of stress response involves a contribution from tRNA abundance.
Collapse
Affiliation(s)
- Yan Ling Joy Pang
- Department of Biological Engineering and Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ryan Abo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stuart S Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter C Dedon
- Department of Biological Engineering and Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Wetzel C, Li S, Limbach PA. Metabolic de-isotoping for improved LC-MS characterization of modified RNAs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1114-1123. [PMID: 24760295 DOI: 10.1007/s13361-014-0889-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Mapping, sequencing, and quantifying individual noncoding ribonucleic acids (ncRNAs), including post-transcriptionally modified nucleosides, by mass spectrometry is a challenge that often requires rigorous sample preparation prior to analysis. Previously, we have described a simplified method for the comparative analysis of RNA digests (CARD) that is applicable to relatively complex mixtures of ncRNAs. In the CARD approach for transfer RNA (tRNA) analysis, two complete sets of digestion products from total tRNA are compared using the enzymatic incorporation of (16)O/(18)O isotopic labels. This approach allows one to rapidly screen total tRNAs from gene deletion mutants or comparatively sequence total tRNA from two related bacterial organisms. However, data analysis can be challenging because of convoluted mass spectra arising from the natural (13)C and (15) N isotopes present in the ribonuclease-digested tRNA samples. Here, we demonstrate that culturing in (12)C-enriched/(13)C-depleted media significantly reduces the isotope patterns that must be interpreted during the CARD experiment. Improvements in data quality yield a 35 % improvement in detection of tRNA digestion products that can be uniquely assigned to particular tRNAs. These mass spectral improvements lead to a significant reduction in data processing attributable to the ease of spectral identification of labeled digestion products and will enable improvements in the relative quantification of modified RNAs by the (16)O/(18)O differential labeling approach.
Collapse
Affiliation(s)
- Collin Wetzel
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221-0172, USA
| | | | | |
Collapse
|