1
|
Cheng G, An X, Dai Y, Li C, Li Y. Genomic Insights into Cobweb Disease Resistance in Agaricus bisporus: A Comparative Analysis of Resistant and Susceptible Strains. J Fungi (Basel) 2025; 11:200. [PMID: 40137238 PMCID: PMC11942895 DOI: 10.3390/jof11030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Agaricus bisporus, a globally cultivated edible fungus, faces significant challenges from fungal diseases like cobweb disease caused by Cladobotryum mycophilum, which severely impacts yield. This study aimed to explore the genetic basis of disease resistance in A. bisporus by comparing the genomes of a susceptible strain (AB7) and a resistant strain (AB58). Whole-genome sequencing of AB7 was performed using PacBio Sequel SMRT technology, and comparative genomic analyses were conducted alongside AB58 and other fungal hosts of C. mycophilum. Comparative genomic analyses revealed distinct resistance features in AB58, including enriched regulatory elements, specific deletions in AB7 affecting carbohydrate-active enzymes (CAZymes), and unique cytochrome P450 (CYP) profiles. Notably, AB58 harbored more cytochrome P450 genes related to fatty acid metabolism and unique NI-siderophore synthetase genes, contributing to its enhanced environmental adaptability and disease resistance. Pan-genome analysis highlighted significant genetic diversity, with strain-specific genes enriched in pathways like aflatoxin biosynthesis and ether lipid metabolism, suggesting distinct evolutionary adaptations. These findings provide valuable insights into the genetic basis underlying disease resistance in A. bisporus, offering a foundation for future breeding strategies to improve fungal crop resilience.
Collapse
Affiliation(s)
- Guohui Cheng
- Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Xiaoya An
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Yueting Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| | - Yu Li
- Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.A.); (Y.D.)
| |
Collapse
|
2
|
Yang C, Jiang X, Ma L, Xiao D, Liu X, Ying Z, Li Y, Lin Y. Transcriptomic and Metabolomic Profiles Provide Insights into the Red-Stipe Symptom of Morel Fruiting Bodies. J Fungi (Basel) 2023; 9:jof9030373. [PMID: 36983541 PMCID: PMC10058789 DOI: 10.3390/jof9030373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The cultivation of true morels (Morchella spp., Morchellaceae, Ascomycota) has rapidly expanded in recent years, especially in China. Red stipe is a symptom wherein the stipe of morel fruiting bodies becomes red-gray, resulting in the gradual death of the affected fruiting bodies. The impact of red-stipe symptom occurrence on the development and nutritional quality of morel fruiting bodies remains unclear. Herein, morel ascocarps with the red-stipe symptom (R) and normal (N), artificially cultivated in the Fujian Province of China, were selected for the transcriptome and metabolome analysis to study the physiological and biochemical responses of morel fruiting bodies to the red-stipe symptom. Transcriptome data revealed several differentially expressed genes between the R and N groups significantly enriched in the tyrosine, riboflavin, and glycerophospholipid metabolism pathways. Similarly, the differentially accumulated metabolites were mainly assigned to metabolic pathways, including tyrosine, the biosynthesis of plant secondary metabolites, and the biosynthesis of amino acids. Moreover, the transcriptome and metabolome data combination revealed that tyrosine metabolism was the most enriched pathway, which was followed by ATP-binding cassette (ABC) transport, alanine, aspartate, and glutamate metabolism. Overall, the integration of transcriptomic and metabolomic data of M. sextelata affected by red-stipe symptoms identified several important genes, metabolites, and pathways. These findings further improve our understanding of the mechanisms underlying the red-stipe symptom development of M. sextelata and provide new insights into how to optimize its cultivation methods.
Collapse
Affiliation(s)
- Chi Yang
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaoling Jiang
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Lu Ma
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Donglai Xiao
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaoyu Liu
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Zhenghe Ying
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Yaru Li
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Yanquan Lin
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| |
Collapse
|
3
|
Yu Y, Tan H, Liu T, Liu L, Tang J, Peng W. Dual RNA-Seq Analysis of the Interaction Between Edible Fungus Morchella sextelata and Its Pathogenic Fungus Paecilomyces penicillatus Uncovers the Candidate Defense and Pathogenic Factors. Front Microbiol 2021; 12:760444. [PMID: 34925269 PMCID: PMC8675245 DOI: 10.3389/fmicb.2021.760444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Morels (Morchella spp.) are economically important mushrooms cultivated in many countries. However, their production and quality are hindered by white mold disease because of Paecilomyces penicillatus infection. In this study, we aimed to understand the genetic mechanisms of interactions between P. penicillatus and Morchella. M. sextelata, the most prevalent species of Morchella in China, was inoculated with P. penicillatus; then, the expression profiles of both fungi were determined simultaneously at 3 and 6 days post-inoculation (dpi) using a dual RNA-Seq approach. A total of 460 and 313 differentially expressed genes (DEGs) were identified in P. penicillatus and M. sextelata, respectively. The CAZymes of β-glucanases and mannanases, as well as subtilase family, were upregulated in P. penicillatus, which might be involved in the degradation of M. sextelata cell walls. Chitin recognition protein, caffeine-induced death protein, and putative apoptosis-inducing protein were upregulated, while cyclin was downregulated in infected M. sextelata. This indicates that P. penicillatus could trigger programmed cell death in M. sextelata after infection. Laccase-2, tyrosinases, and cytochrome P450s were also upregulated in M. sextelata. The increased expression levels of these genes suggest that M. sextelata could detoxify the P. penicillatus toxins and also form a melanin barrier against P. penicillatus invasion. The potential pathogenic mechanisms of P. penicillatus on M. sextelata and the defense mechanisms of M. sextelata against P. penicillatus were well described.
Collapse
Affiliation(s)
- Yang Yu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Hao Tan
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China.,School of Bioengineering, Jiangnan University, Wuxi, China
| | - Tianhai Liu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lixu Liu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jie Tang
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Weihong Peng
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
4
|
Maurice S, Arnault G, Nordén J, Botnen SS, Miettinen O, Kauserud H. Fungal sporocarps house diverse and host-specific communities of fungicolous fungi. THE ISME JOURNAL 2021; 15:1445-1457. [PMID: 33432137 PMCID: PMC8115690 DOI: 10.1038/s41396-020-00862-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Sporocarps (fruit bodies) are the sexual reproductive stage in the life cycle of many fungi. They are highly nutritious and consequently vulnerable to grazing by birds and small mammals, and invertebrates, and can be infected by microbial and fungal parasites and pathogens. The complexity of communities thriving inside sporocarps is largely unknown. In this study, we revealed the diversity, taxonomic composition and host preference of fungicolous fungi (i.e., fungi that feed on other fungi) in sporocarps. We carried out DNA metabarcoding of the ITS2 region from 176 sporocarps of 11 wood-decay fungal host species, all collected within a forest in northeast Finland. We assessed the influence of sporocarp traits, such as lifespan, morphology and size, on the fungicolous fungal community. The level of colonisation by fungicolous fungi, measured as the proportion of non-host ITS2 reads, varied between 2.8-39.8% across the 11 host species and was largely dominated by Ascomycota. Host species was the major determinant of the community composition and diversity of fungicolous fungi, suggesting that host adaptation is important for many fungicolous fungi. Furthermore, the alpha diversity was consistently higher in short-lived and resupinate sporocarps compared to long-lived and pileate ones, perhaps due to a more hostile environment for fungal growth in the latter too. The fungicolous fungi represented numerous lineages in the fungal tree of life, among which a significant portion was poorly represented with reference sequences in databases.
Collapse
Affiliation(s)
- Sundy Maurice
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway.
| | - Gontran Arnault
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Jenni Nordén
- Norwegian Institute for Nature Research, Gaustadalléen 21, 0349, Oslo, Norway
| | - Synnøve Smebye Botnen
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Otto Miettinen
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014, Helsinki, Finland
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| |
Collapse
|
5
|
Wang Q, Guo M, Xu R, Zhang J, Bian Y, Xiao Y. Transcriptional Changes on Blight Fruiting Body of Flammulina velutipes Caused by Two New Bacterial Pathogens. Front Microbiol 2020; 10:2845. [PMID: 31921028 PMCID: PMC6917577 DOI: 10.3389/fmicb.2019.02845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/22/2019] [Indexed: 11/13/2022] Open
Abstract
A blight disease of Flammulina velutipes was identified with symptoms of growth cessation of young fruiting bodies, short stipe, and brown spots on the pileus. The pathogenic bacteria were identified as Arthrobacter arilaitensis and Pseudomonas yamanorum by Koch's postulate, gram staining, morphological and 16S ribosomal RNA gene sequence analyses. Either of the pathogenic bacteria or both of them can cause the same symptoms. Transcriptome changes in blighted F. velutipes were investigated between diseased and normal samples. Compared to the control group, 1,099 differentially expressed genes (DEGs) were overlapping in the bacteria-infected groups. The DEGs were significantly enriched in pathways such as xenobiotic metabolism by cytochrome P450 and tyrosine metabolism. Based on weighted correlation network analysis (WGCNA), the module most correlated to the pathogen-treated F. velutipes samples and candidate hub genes in the co-regulatory network were identified. Furthermore, a potential diseased mechanism involved in cell wall non-extension, phenolic substrate oxidation, and stress defense response was proposed based on the up-regulation of differentially expressed genes encoding chitin deacetylase, tyrosinase, cytochrome P450, MFS transporter, and clavaminate synthase-like protein. This study provides insights into the underlying reactions of young fruiting body of F. velutipes suffering from blight disease and facilitates the understanding of the pathogenic procedure of bacteriosis in edible mushrooms.
Collapse
Affiliation(s)
- Qing Wang
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Mengpei Guo
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Ruiping Xu
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Jingcheng Zhang
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Yinbing Bian
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Yang Xiao
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Preston GM, Carrasco J, Gea FJ, Navarro MJ. Biological Control of Microbial Pathogens in Edible Mushrooms. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
McGee CF, Byrne H, Irvine A, Wilson J. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus. Mycologia 2017; 109:475-484. [PMID: 28759322 DOI: 10.1080/00275514.2017.1349498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Commercial cultivation of the button mushroom Agaricus bisporus is performed through the inoculation of a semipasteurized composted material. Pasteurization of the compost material prior to inoculation results in a substrate with a fungal community that becomes dominated by A. bisporus. However, little is known about the composition and activity in the wider fungal community beyond the presence of A. bisporus in compost throughout the mushroom cropping process. In this study, the fungal cropping compost community was characterized by sequencing nuc rDNA ITS1-5.8S-ITS2 amplified from extractable DNA and RNA. The fungal community generated from DNA extracts identified a diverse community containing 211 unique species, although only 51 were identified from cDNA. Agaricus bisporus was found to dominate in the DNA-derived fungal community for the duration of the cropping process. However, analysis of cDNA extracts found A. bisporus to dominate only up to the first crop flush, after which activity decreased sharply and a much broader fungal community became active. This study has highlighted the diverse fungal community that is present in mushroom compost during cropping.
Collapse
Affiliation(s)
- C F McGee
- a Monaghan Mushrooms R&D Department , Group Headquarters , Tyholland , County Monaghan , Ireland
| | - H Byrne
- a Monaghan Mushrooms R&D Department , Group Headquarters , Tyholland , County Monaghan , Ireland
| | - A Irvine
- a Monaghan Mushrooms R&D Department , Group Headquarters , Tyholland , County Monaghan , Ireland
| | - J Wilson
- a Monaghan Mushrooms R&D Department , Group Headquarters , Tyholland , County Monaghan , Ireland
| |
Collapse
|
8
|
Sonnenberg ASM, Baars JJP, Gao W, Visser RGF. Developments in breeding of Agaricus bisporus var. bisporus: progress made and technical and legal hurdles to take. Appl Microbiol Biotechnol 2017; 101:1819-1829. [PMID: 28130632 PMCID: PMC5309338 DOI: 10.1007/s00253-017-8102-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 01/06/2023]
Abstract
True breeding of button mushrooms has hardly been done in the last decades, despite this species being one of the most cultivated mushrooms worldwide. Research done in the last 20 years has identified and characterised new germplasm and improved our understanding of the genetic base for some traits. A substantial collection of wild-collected strains is now available and partly characterised for a number of important traits such as disease resistance and yield. Most of the variations found in a number of important agronomic traits have a considerable heritability and are thus useful for breeding. Genetic marker technology has also developed considerably for this mushrooms in the last decade and used to identify quantitative trait loci (QTL) for important agronomic traits. This progress has, except for one example, not resulted so far into new commercially varieties. One of the reasons lies in the typical life cycle of the button mushroom Agaricus bisporus var. bisporus which hampers breeding. Joint investment is needed to solve technical problems in breeding. Special attention is needed for the protection of new varieties. Due to its typical life cycle, it is very easy to generate so called "look-a-likes" from protected cultivars by screening fertile single spore cultures. A consensus has been reached within the mushroom (breeding) industry to consider this method as the generation of essentially derived varieties as defined in plant breeding.
Collapse
Affiliation(s)
- Anton S M Sonnenberg
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, Netherlands.
| | - Johan J P Baars
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, Netherlands
| | - Wei Gao
- Institute of Agricultural Resources and Regional Planning of CAAS, Zhongguancun South Street 12, Beijing, 100081, China
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, Netherlands
| |
Collapse
|
9
|
Li C, Gong W, Zhang L, Yang Z, Nong W, Bian Y, Kwan HS, Cheung MK, Xiao Y. Association Mapping Reveals Genetic Loci Associated with Important Agronomic Traits in Lentinula edodes, Shiitake Mushroom. Front Microbiol 2017; 8:237. [PMID: 28261189 PMCID: PMC5314409 DOI: 10.3389/fmicb.2017.00237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
Association mapping is a robust approach for the detection of quantitative trait loci (QTLs). Here, by genotyping 297 genome-wide molecular markers of 89 Lentinula edodes cultivars in China, the genetic diversity, population structure and genetic loci associated with 11 agronomic traits were examined. A total of 873 alleles were detected in the tested strains with a mean of 2.939 alleles per locus, and the Shannon's information index was 0.734. Population structure analysis revealed two robustly differentiated groups among the Chinese L. edodes cultivars (FST = 0.247). Using the mixed linear model, a total of 43 markers were detected to be significantly associated with four traits. The number of markers associated with traits ranged from 9 to 26, and the phenotypic variations explained by each marker varied from 12.07% to 31.32%. Apart from five previously reported markers, the remaining 38 markers were newly reported here. Twenty-one markers were identified as simultaneously linked to two to four traits, and five markers were associated with the same traits in cultivation tests performed in two consecutive years. The 43 traits-associated markers were related to 97 genes, and 24 of them were related to 10 traits-associated markers detected in both years or identified previously, 13 of which had a >2-fold expression change between the mycelium and primordium stages. Our study has provided candidate markers for marker-assisted selection (MAS) and useful clues for understanding the genetic architecture of agronomic traits in the shiitake mushroom.
Collapse
Affiliation(s)
- Chuang Li
- Institute of Applied Mycology, Huazhong Agricultural University Hubei, China
| | - Wenbing Gong
- Institute of Applied Mycology, Huazhong Agricultural UniversityHubei, China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural SciencesChangsha, China
| | - Lin Zhang
- Institute of Applied Mycology, Huazhong Agricultural University Hubei, China
| | - Zhiquan Yang
- College of Informatics, Huazhong Agricultural University Hubei, China
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong Hong Kong, Hong Kong
| | - Yinbing Bian
- Institute of Applied Mycology, Huazhong Agricultural University Hubei, China
| | - Hoi-Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong Hong Kong, Hong Kong
| | - Man-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong Hong Kong, Hong Kong
| | - Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University Hubei, China
| |
Collapse
|
10
|
Gao W, Baars JJP, Maliepaard C, Visser RGF, Zhang J, Sonnenberg ASM. Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushrooms). AMB Express 2016; 6:67. [PMID: 27620731 PMCID: PMC5016490 DOI: 10.1186/s13568-016-0239-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/01/2016] [Indexed: 11/13/2022] Open
Abstract
The demand for button mushrooms of high quality is increasing. Superior button mushroom varieties require the combination of multiple traits to maximize productivity and quality. Very often these traits are correlated and should, therefore, be evaluated together rather than as single traits. In order to unravel the genetic architecture of multiple traits of Agaricus bisporus and the genetic correlations among traits, we have investigated a total of six agronomic and quality traits through multi-trait QTL analyses in a mixed-model. Traits were evaluated in three heterokaryon sets. Significant phenotypic correlations were observed among traits. For instance, earliness (ER) correlated to firmness (FM), cap color, and compost colonization, and FM correlated to scales (SC). QTLs of different traits located on the same chromosomes genetically explains the phenotypic correlations. QTL detected on chromosome 10 mainly affects three traits, i.e., ER, FM and SC. It explained 31.4 % phenotypic variation of SC on mushroom cap (heterokaryon Set 1), 14.9 % that of the FM (heterokaryon Set 3), and 14.2 % that of ER (heterokaryon Set 3). High value alleles from the wild parental line showed beneficial effects for several traits, suggesting that the wild germplasm is a valuable donor in terms of those traits. Due to the limitations of recombination pattern, we only made a start at understanding the genetic base for several agronomic and quality traits in button mushrooms.
Collapse
|
11
|
Sonnenberg ASM, Gao W, Lavrijssen B, Hendrickx P, Sedaghat-Tellgerd N, Foulongne-Oriol M, Kong WS, Schijlen EGWM, Baars JJP, Visser RGF. A detailed analysis of the recombination landscape of the button mushroom Agaricus bisporus var. bisporus. Fungal Genet Biol 2016; 93:35-45. [PMID: 27288752 DOI: 10.1016/j.fgb.2016.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/13/2016] [Accepted: 06/01/2016] [Indexed: 11/28/2022]
Abstract
The button mushroom (Agaricus bisporus) is one of the world's most cultivated mushroom species, but in spite of its economic importance generation of new cultivars by outbreeding is exceptional. Previous genetic analyses of the white bisporus variety, including all cultivars and most wild isolates revealed that crossing over frequencies are low, which might explain the lack of introducing novel traits into existing cultivars. By generating two high quality whole genome sequence assemblies (one de novo and the other by improving the existing reference genome) of the first commercial white hybrid Horst U1, a detailed study of the crossover (CO) landscape was initiated. Using a set of 626 SNPs in a haploid offspring of 139 single spore isolates and whole genome sequencing on a limited number of homo- and heterokaryotic single spore isolates, we precisely mapped all COs showing that they are almost exclusively restricted to regions of about 100kb at the chromosome ends. Most basidia of A. bisporus var. bisporus produce two spores and pair preferentially via non-sister nuclei. Combined with the COs restricted to the chromosome ends, these spores retain most of the heterozygosity of the parent thus explaining how present-day white cultivars are genetically so close to the first hybrid marketed in 1980. To our knowledge this is the first example of an organism which displays such specific CO landscape.
Collapse
Affiliation(s)
- Anton S M Sonnenberg
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands.
| | - Wei Gao
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Brian Lavrijssen
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Patrick Hendrickx
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Narges Sedaghat-Tellgerd
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Marie Foulongne-Oriol
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, F-33883 Villenave d'Ornon, France
| | - Won-Sik Kong
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Elio G W M Schijlen
- PRI Bioscience, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Johan J P Baars
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii. Fungal Genet Biol 2016; 92:50-64. [PMID: 27166667 DOI: 10.1016/j.fgb.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 04/27/2016] [Accepted: 05/07/2016] [Indexed: 01/01/2023]
Abstract
Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type factors, and 28 insertion/deletion (InDel) markers were mapped. The map consisted of 12 linkage groups (LGs) spanning 1047.8cM, with an average interval length of 4.09cM. Four independent populations (Pd3, Pd8, Pd14, and Pd15) derived from crossing between four monokaryons from KNR2532 as a tester strain and 98 monokaryons from KNR2312 were used to characterize quantitative trait loci (QTL) for nine traits such as yield, quality, cap color, and earliness. Using composite interval mapping (CIM), 71 QTLs explaining between 5.82% and 33.17% of the phenotypic variations were identified. Clusters of more than five QTLs for various traits were identified in three genomic regions, on LGs 1, 7 and 9. Regardless of the population, 6 of the 9 traits studied and 18 of the 71 QTLs found in this study were identified in the largest cluster, LG1, in the range from 65.4 to 110.4cM. The candidate genes for yield encoding transcription factor, signal transduction, mycelial growth and hydrolase are suggested by using manual and computational analysis of genome sequence corresponding to QTL region with the highest likelihood odds (LOD) for yield. The genetic map and the QTLs established in this study will help breeders and geneticists to develop selection markers for agronomically important characteristics of mushrooms and to identify the corresponding genes.
Collapse
|
13
|
Foulongne-Oriol M, Rocha de Brito M, Cabannes D, Clément A, Spataro C, Moinard M, Dias ES, Callac P, Savoie JM. The Genetic Linkage Map of the Medicinal Mushroom Agaricus subrufescens Reveals Highly Conserved Macrosynteny with the Congeneric Species Agaricus bisporus. G3 (BETHESDA, MD.) 2016; 6:1217-26. [PMID: 26921302 PMCID: PMC4856074 DOI: 10.1534/g3.115.025718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/21/2016] [Indexed: 01/15/2023]
Abstract
Comparative linkage mapping can rapidly facilitate the transfer of genetic information from model species to orphan species. This macrosynteny analysis approach has been extensively used in plant species, but few example are available in fungi, and even fewer in mushroom crop species. Among the latter, the Agaricus genus comprises the most cultivable or potentially cultivable species. Agaricus bisporus, the button mushroom, is the model for edible and cultivable mushrooms. We have developed the first genetic linkage map for the basidiomycete A. subrufescens, an emerging mushroom crop known for its therapeutic properties and potential medicinal applications. The map includes 202 markers distributed over 16 linkage groups (LG), and covers a total length of 1701 cM, with an average marker spacing of 8.2 cM. Using 96 homologous loci, we also demonstrated the high level of macrosynteny with the genome of A. bisporus The 13 main LG of A. subrufescens were syntenic to the 13 A. bisporus chromosomes. A disrupted synteny was observed for the three remaining A. subrufescens LG. Electronic mapping of a collection of A. subrufescens expressed sequence tags on A. bisporus genome showed that the homologous loci were evenly spread, with the exception of a few local hot or cold spots of homology. Our results were discussed in the light of Agaricus species evolution process. The map provides a framework for future genetic or genomic studies of the medicinal mushroom A. subrufescens.
Collapse
Affiliation(s)
| | - Manuela Rocha de Brito
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France Departamento de Biologia, UFLA, Universidade Federal de Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil
| | - Delphine Cabannes
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Aurélien Clément
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Cathy Spataro
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Magalie Moinard
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Eustáquio Souza Dias
- Departamento de Biologia, UFLA, Universidade Federal de Lavras, C.P. 3037, 37200-000, Lavras, MG, Brazil
| | - Philippe Callac
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Jean-Michel Savoie
- INRA, UR1264 MycSA, Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| |
Collapse
|
14
|
Gong WB, Li L, Zhou Y, Bian YB, Kwan HS, Cheung MK, Xiao Y. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes. Appl Microbiol Biotechnol 2016; 100:5437-52. [PMID: 26875873 DOI: 10.1007/s00253-016-7347-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 11/28/2022]
Abstract
To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.
Collapse
Affiliation(s)
- Wen-Bing Gong
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Lei Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Yan Zhou
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yin-Bing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Hoi-Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Man-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
15
|
Deciphering the ability of Agaricus bisporus var. burnettii to produce mushrooms at high temperature (25°C). Fungal Genet Biol 2014; 73:1-11. [DOI: 10.1016/j.fgb.2014.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/18/2014] [Accepted: 08/31/2014] [Indexed: 01/02/2023]
|
16
|
Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genet Biol 2013; 55:6-21. [DOI: 10.1016/j.fgb.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 02/07/2023]
|
17
|
Bailey AM, Collopy PD, Thomas DJ, Sergeant MR, Costa AMSB, Barker GLA, Mills PR, Challen MP, Foster GD. Transcriptomic analysis of the interactions between Agaricus bisporus and Lecanicillium fungicola. Fungal Genet Biol 2013; 55:67-76. [PMID: 23665188 DOI: 10.1016/j.fgb.2013.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 11/24/2022]
Abstract
Agaricus bisporus is susceptible to a number of diseases, particularly those caused by fungi, with Lecanicillium fungicola being the most serious. Control of this disease is important for the security of crop production, however given the lack of knowledge about fungal-fungal interactions, such disease control is rather limited. Exploiting the recently released genome sequence of A. bisporus, here we report studies simultaneously investigating both the host and the pathogen, focussing on transcriptional changes associated with the cap spotting lesions typically seen in this interaction. Forward-suppressive subtractive hybridisation (SSH) analysis identified 68 A. bisporus unigenes induced during infection. Chitin deacetylase showed the strongest response, with almost 1000-fold up-regulation during infection, so was targeted for down-regulation by silencing to see if it was involved in defence against L. fungicola. Transgenic lines were made expressing hairpin RNAi constructs, however no changes in susceptibility to L. fungicola were observed. Amongst the other up-regulated genes there were none with readily apparent roles in resisting infection in this susceptible interaction. Reverse-SSH identified 72 unigenes from A. bisporus showing reduced expression, including two tyrosinases, several genes involved in nitrogen metabolism and a hydrophobin. The forward-SSH analysis of infected mushrooms also yielded 64 unigenes which were not of A. bisporus origin and thus derived from L. fungicola. An EST analysis of infection-mimicking conditions generated an additional 623 unigenes from L. fungicola including several oxidoreductases, cell wall degrading enzymes, ABC and MFS transporter proteins and various other genes believed to play roles in other pathosystems. Together, this analysis shows how both the pathogen and the host modify their gene expression during an infection-interaction, shedding some light on the disease process, although we note that some 40% of unigenes from both organisms encode hypothetical proteins with no ascribed function which highlights how much there is still to discover about this interaction.
Collapse
Affiliation(s)
- Andy M Bailey
- School of Biological Sciences, University of Bristol, Woodland Rd., Bristol BS8 1UG, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Melanin biosynthesis pathway in Agaricus bisporus mushrooms. Fungal Genet Biol 2012; 55:42-53. [PMID: 23123422 DOI: 10.1016/j.fgb.2012.10.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/25/2012] [Accepted: 10/04/2012] [Indexed: 11/22/2022]
Abstract
With the full genome sequence of Agaricus bisporus available, it was possible to investigate the genes involved in the melanin biosynthesis pathway of button mushrooms. Based on different BLAST and alignments, genes were identified in the genome which are postulated to be involved in this pathway. Seven housekeeping genes were tested of which 18S rRNA was the only housekeeping gene that was stably expressed in various tissues of different developmental stages. Gene expression was determined for most gene homologs (26 genes) involved in the melanin pathway. Of the analysed genes, those encoding polyphenol oxidase (PPO), the PPO co-factor L-chain (unique for A. bisporus), and a putative transcription factor (photoregulator B) were among the highest expressed in skin tissue. An in depth look was taken at the clustering of several PPO genes and the PPO co-factor gene on chromosome 5, which showed that almost 25% of the protein encoding genes in this cluster have a conserved NACHT and WD40 domain or a P-loop nucleoside triphosphate hydrolase. This article will be the start for an in depth study of the melanin pathway and its role in quality losses of this economically important product.
Collapse
|
19
|
Berendsen RL, Schrier N, Kalkhove SIC, Lugones LG, Baars JJP, Zijlstra C, de Weerdt M, Wösten HAB, Bakker PAHM. Absence of induced resistance in Agaricus bisporus against Lecanicillium fungicola. Antonie van Leeuwenhoek 2012; 103:539-50. [PMID: 23100063 DOI: 10.1007/s10482-012-9836-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
Lecanicillium fungicola causes dry bubble disease and is an important problem in the cultivation of Agaricus bisporus. Little is known about the defense of mushrooms against pathogens in general and L. fungicola in particular. In plants and animals, a first attack by a pathogen often induces a systemic response that results in an acquired resistance to subsequent attacks by the same pathogen. The development of functionally similar responses in these two eukaryotic kingdoms indicates that they are important to all multi-cellular organisms. We investigated if such responses also occur in the interaction between the white button mushroom and L. fungicola. A first infection of mushrooms of the commercial A. bisporus strain Sylvan A15 by L. fungicola did not induce systemic resistance against a subsequent infection. Similar results were obtained with the A. bisporus strain MES01497, which was demonstrated to be more resistant to dry bubble disease. Apparently, fruiting bodies of A. bisporus do not express induced resistance against L. fungicola.
Collapse
Affiliation(s)
- Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Foulongne-Oriol M. Genetic linkage mapping in fungi: current state, applications, and future trends. Appl Microbiol Biotechnol 2012; 95:891-904. [PMID: 22743715 DOI: 10.1007/s00253-012-4228-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Genetic mapping is a basic tool for eukaryotic genomic research. Linkage maps provide insights into genome organization and can be used for genetic studies of traits of interest. A genetic linkage map is a suitable support for the anchoring of whole genome sequences. It allows the localization of genes of interest or quantitative trait loci (QTL) and map-based cloning. While genetic mapping has been extensively used in plant or animal models, this discipline is more recent in fungi. The present article reviews the current status of genetic linkage map research in fungal species. The process of linkage mapping is detailed, from the development of mapping populations to the construction of the final linkage map, and illustrated based on practical examples. The range of specific applications in fungi is browsed, such as the mapping of virulence genes in pathogenic species or the mapping of agronomically relevant QTL in cultivated edible mushrooms. Future prospects are finally discussed in the context of the most recent advances in molecular techniques and the release of numerous fungal genome sequences.
Collapse
|
21
|
Quantitative trait locus mapping of yield-related components and oligogenic control of the cap color of the button mushroom, Agaricus bisporus. Appl Environ Microbiol 2012; 78:2422-34. [PMID: 22267676 DOI: 10.1128/aem.07516-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As in other crops, yield is an important trait to be selected for in edible mushrooms, but its inheritance is poorly understood. Therefore, we have investigated the complex genetic architecture of yield-related traits in Agaricus bisporus through the mapping of quantitative trait loci (QTL), using second-generation hybrid progeny derived from a cross between a wild strain and a commercial cultivar. Yield, average weight per mushroom, number of fruiting bodies per m(2), earliness, and cap color were evaluated in two independent experiments. A total of 23 QTL were detected for 7 yield-related traits. These QTL together explained between 21% (two-flushes yield) and 59% (earliness) of the phenotypic variation. Fifteen QTL (65%) were consistent between the two experiments. Four regions underlying significant QTL controlling yield, average weight, and number were detected on linkage groups II, III, IV, and X, suggesting a pleiotropic effect or tight linkage. Up to six QTL were identified for earliness. The PPC1 locus, together with two additional genomic regions, explained up to 90% of the phenotypic variation of the cap color. Alleles from the wild parent showed beneficial effects for some yield traits, suggesting that the wild germ plasm is a valuable source of variation for several agronomic traits. Our results constitute a key step toward marker-assisted selection and provide a solid foundation to go further into the biological mechanisms controlling productive traits in the button mushroom.
Collapse
|