1
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
2
|
Girão M, Freitas S, Martins TP, Urbatzka R, Carvalho MF, Leão PN. Decylprodigiosin: a new member of the prodigiosin family isolated from a seaweed-associated Streptomyces. Front Pharmacol 2024; 15:1347485. [PMID: 38576493 PMCID: PMC10991731 DOI: 10.3389/fphar.2024.1347485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Bioprospecting actinobacterial secondary metabolism from untapped marine sources may lead to the discovery of biotechnologically-relevant compounds. While studying the diversity and bioactive potential of Actinomycetota associated with Codium tomentosum, a green seaweed collected in the northern Portuguese cost, strain CT-F61, identified as Streptomyces violaceoruber, was isolated. Its extracts displayed a strong anticancer activity on breast carcinoma T-47D and colorectal carcinoma HCT116 cells, being effective as well against a panel of human and fish pathogenic bacteria. Following a bioactivity-guided isolation pipeline, a new analogue of the red-pigmented family of the antibiotics prodigiosins, decylprodigiosin (1), was identified and chemically characterized. Despite this family of natural products being well-known for a long time, we report a new analogue and the first evidence for prodigiosins being produced by a seaweed-associated actinomycete.
Collapse
Affiliation(s)
- Mariana Girão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- School of Medicine and Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Sara Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Maria F. Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- School of Medicine and Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| |
Collapse
|
3
|
Han R, Xiang R, Li J, Wang F, Wang C. High-level production of microbial prodigiosin: A review. J Basic Microbiol 2021; 61:506-523. [PMID: 33955034 DOI: 10.1002/jobm.202100101] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Prodigiosin is a natural red pigment derived primarily from secondary metabolites of microorganisms, especially Serratia marcescens. It can also be chemically synthesized. Prodigiosin has been proven to have antitumor, antibacterial, antimalaria, anti-insect, antialgae, and immunosuppressive activities, and is gaining increasing important in the global market because of its great potential application value in clinical medicine development, environmental treatment, preparation of food additives, and so on. Due to the low efficiency of prodigiosin chemical synthesis, high-level prodigiosin of production by microorganisms are necessary for prodigiosin applications. In this paper, the production of prodigiosin by microorganism in recent decades is reviewed. The methods and strategies for increasing the yield of prodigiosin are discussed from the aspects of medium composition, additives, factors affecting production conditions, strain modification, and fermentation methods.
Collapse
Affiliation(s)
- Rui Han
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Roujin Xiang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Jinglin Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Fengqing Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Chuan Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
4
|
Stringent Starvation Protein Regulates Prodiginine Biosynthesis via Affecting Siderophore Production in Pseudoalteromonas sp. Strain R3. Appl Environ Microbiol 2021; 87:AEM.02949-20. [PMID: 33483309 DOI: 10.1128/aem.02949-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Abstract
Prodiginines are a family of red-pigmented secondary metabolites with multiple biological activities. The biosynthesis of prodiginines is affected by various physiological and environmental factors. Thus, prodiginine biosynthesis regulation is highly complex and multifaceted. Although the regulatory mechanism for prodiginine biosynthesis has been extensively studied in Serratia and Streptomyces species, little is known about that in the marine betaproteobacterium Pseudoalteromonas In this study, we report that stringent starvation protein A (SspA), an RNA polymerase-associated regulatory protein, is required for the biosynthesis of prodiginine in Pseudoalteromonas sp. strain R3. The strain lacking sspA (ΔsspA) fails to produce prodiginine, which resulted from the downregulation of the prodiginine biosynthetic gene (pig) cluster. The effect of SspA on prodiginine biosynthesis is independent of histone-like nucleoid structuring protein (H-NS) and RpoS (σS). Further analysis demonstrates that the ΔsspA strain has a significant decrease in the transcription of the siderophore biosynthesis gene (pvd) cluster, leading to the inhibition of siderophore production and iron uptake. The ΔsspA strain regains the ability to synthesize prodiginine by cocultivation with siderophore producers or the addition of iron. Therefore, we conclude that SspA-regulated prodiginine biosynthesis is due to decreased siderophore levels and iron deficiency. We further show that the iron homeostasis master regulator Fur is also essential for pig transcription and prodiginine biosynthesis. Overall, our results suggest that SspA indirectly regulates the biosynthesis of prodiginine, which is mediated by the siderophore-dependent iron uptake pathway.IMPORTANCE The red-pigmented prodiginines are attracting increasing interest due to their broad biological activities. As with many secondary metabolites, the biosynthesis of prodiginines is regulated by both environmental and physiological factors. At present, studies on the regulation of prodiginine biosynthesis are mainly restricted to Serratia and Streptomyces species. This work focused on the regulatory mechanism of prodiginine biosynthesis in Pseudoalteromonas sp. R3. We found that stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis via affecting the siderophore-dependent iron uptake pathway. The connections among SspA, iron homeostasis, and prodiginine biosynthesis were investigated. These findings uncover a novel regulatory mechanism for prodigiosin biosynthesis.
Collapse
|
5
|
Abstract
Vibrio gazogenes ATCC 43942 has the potential to synthesize a plethora of metabolites which are of clinical and agricultural significance in response to environmental triggers. The complete genomic sequence of Vibrio gazogenes ATCC 43942 is reported herein, contributing to the knowledge base of strains in the Vibrio genus.
Collapse
|
6
|
Gallardo K, Candia JE, Remonsellez F, Escudero LV, Demergasso CS. The Ecological Coherence of Temperature and Salinity Tolerance Interaction and Pigmentation in a Non-marine Vibrio Isolated from Salar de Atacama. Front Microbiol 2016; 7:1943. [PMID: 27990141 PMCID: PMC5130992 DOI: 10.3389/fmicb.2016.01943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/18/2016] [Indexed: 12/17/2022] Open
Abstract
The occurrence of microorganisms from the Vibrio genus in saline lakes from northern Chile had been evidenced using Numerical Taxonomy decades before and, more recently, by phylogenetic analyses of environmental samples and isolates. Most of the knowledge about this genus came from marine isolates and showed temperature and salinity to be integral agents in shaping the niche of the Vibrio populations. The stress tolerance phenotypes of Vibrio sp. Teb5a1 isolated from Salar de Atacama was investigated. It was able to grow without NaCl and tolerated up to 100 g/L of the salt. Furthermore, it grew between 17° and 49°C (optimum 30°C) in the absence of NaCl, and the range was expanded into cold temperature (4–49°C) in the presence of the salt. Other additional adaptive strategies were observed in response to the osmotic stress: pigment production, identified as the known antibacterial prodigiosin, swimming and swarming motility and synthesis of a polar flagellum. It is possible to infer that environmental congruence might explain the cellular phenotypes observed in Vibrio sp. considering that coupling between temperature and salinity tolerance, the production of antibacterial agents at higher temperatures, flagellation and motility increase the chance of Vibrio sp. to survive in salty environments with high daily temperature swings and UV radiation.
Collapse
Affiliation(s)
- Karem Gallardo
- Centro de Biotecnología, Universidad Católica del Norte Antofagasta, Chile
| | - Jonathan E Candia
- Centro de Biotecnología, Universidad Católica del Norte Antofagasta, Chile
| | - Francisco Remonsellez
- Departamento de Ingeniería Química, Universidad Católica del Norte Antofagasta, Chile
| | - Lorena V Escudero
- Centro de Biotecnología, Universidad Católica del NorteAntofagasta, Chile; Centro de Investigación Científico Tecnológico para la MineríaAntofagasta, Chile
| | | |
Collapse
|
7
|
Gummadidala PM, Chen YP, Beauchesne KR, Miller KP, Mitra C, Banaszek N, Velez-Martinez M, Moeller PDR, Ferry JL, Decho AW, Chanda A. Aflatoxin-Exposure of Vibrio gazogenes as a Novel System for the Generation of Aflatoxin Synthesis Inhibitors. Front Microbiol 2016; 7:814. [PMID: 27375561 PMCID: PMC4891353 DOI: 10.3389/fmicb.2016.00814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023] Open
Abstract
Aflatoxin is a mycotoxin and a secondary metabolite, and the most potent known liver carcinogen that contaminates several important crops, and represents a significant threat to public health and the economy. Available approaches reported thus far have been insufficient to eliminate this threat, and therefore provide the rational to explore novel methods for preventing aflatoxin accumulation in the environment. Many terrestrial plants and microbes that share ecological niches and encounter the aflatoxin producers have the ability to synthesize compounds that inhibit aflatoxin synthesis. However, reports of natural aflatoxin inhibitors from marine ecosystem components that do not share ecological niches with the aflatoxin producers are rare. Here, we show that a non-pathogenic marine bacterium, Vibrio gazogenes, when exposed to low non-toxic doses of aflatoxin B1, demonstrates a shift in its metabolic output and synthesizes a metabolite fraction that inhibits aflatoxin synthesis without affecting hyphal growth in the model aflatoxin producer, Aspergillus parasiticus. The molecular mass of the predominant metabolite in this fraction was also different from the known prodigiosins, which are the known antifungal secondary metabolites synthesized by this Vibrio. Gene expression analyses using RT-PCR demonstrate that this metabolite fraction inhibits aflatoxin synthesis by down-regulating the expression of early-, middle-, and late- growth stage aflatoxin genes, the aflatoxin pathway regulator, aflR and one global regulator of secondary metabolism, laeA. Our study establishes a novel system for generation of aflatoxin synthesis inhibitors, and emphasizes the potential of the under-explored Vibrio’s silent genome for generating new modulators of fungal secondary metabolism.
Collapse
Affiliation(s)
- Phani M Gummadidala
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Yung Pin Chen
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | | | - Kristen P Miller
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Chandrani Mitra
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Nora Banaszek
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Michelle Velez-Martinez
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Peter D R Moeller
- National Ocean Service, Hollings Marine Laboratory, Charleston SC, USA
| | - John L Ferry
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC, USA
| | - Alan W Decho
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| | - Anindya Chanda
- Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina, Columbia SC, USA
| |
Collapse
|
8
|
Domröse A, Klein AS, Hage-Hülsmann J, Thies S, Svensson V, Classen T, Pietruszka J, Jaeger KE, Drepper T, Loeschcke A. Efficient recombinant production of prodigiosin in Pseudomonas putida. Front Microbiol 2015; 6:972. [PMID: 26441905 PMCID: PMC4569968 DOI: 10.3389/fmicb.2015.00972] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022] Open
Abstract
Serratia marcescens and several other bacteria produce the red-colored pigment prodigiosin which possesses bioactivities as an antimicrobial, anticancer, and immunosuppressive agent. Therefore, there is a great interest to produce this natural compound. Efforts aiming at its biotechnological production have so far largely focused on the original producer and opportunistic human pathogen S. marcescens. Here, we demonstrate efficient prodigiosin production in the heterologous host Pseudomonas putida. Random chromosomal integration of the 21 kb prodigiosin biosynthesis gene cluster of S. marcescens in P. putida KT2440 was employed to construct constitutive prodigiosin production strains. Standard cultivation parameters were optimized such that titers of 94 mg/L culture were obtained upon growth of P. putida at 20°C using rich medium under high aeration conditions. Subsequently, a novel, fast and effective protocol for prodigiosin extraction and purification was established enabling the straightforward isolation of prodigiosin from P. putida growth medium. In summary, we describe here a highly efficient method for the heterologous biosynthetic production of prodigiosin which may serve as a basis to produce large amounts of this bioactive natural compound and may provide a platform for further in-depth studies of prodiginine biosynthesis.
Collapse
Affiliation(s)
- Andreas Domröse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Andreas S Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Vera Svensson
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany ; Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany ; Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| |
Collapse
|
9
|
Chawrai SR, Williamson NR, Mahendiran T, Salmond GPC, Leeper FJ. Characterisation of PigC and HapC, the prodigiosin synthetases from Serratia sp. and Hahella chejuensis with potential for biocatalytic production of anticancer agents. Chem Sci 2012. [DOI: 10.1039/c1sc00588j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Borić M, Danevčič T, Stopar D. Prodigiosin from Vibrio sp. DSM 14379; a new UV-protective pigment. MICROBIAL ECOLOGY 2011; 62:528-36. [PMID: 21547449 DOI: 10.1007/s00248-011-9857-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/08/2011] [Indexed: 05/04/2023]
Abstract
Pigments such as melanin, scytonemin and carotenoids protect microbial cells against the harmful effects of ultraviolet (UV) radiation. The role in UV protection has never been assigned to the prodigiosin pigment. In this work, we demonstrate that prodigiosin provides a significant level of protection against UV stress in Vibrio sp. DSM 14379. In the absence of pigment production, Vibrio sp. was significantly more susceptible to UV stress, and there was no difference in UV survival between the wild-type strain and non-pigmented mutant. The pigment's protective role was more important at higher doses of UV irradiation and correlated with pigment concentration in the cell. Pigmented cells survived high UV exposure (324 J/m(2)) around 1,000-fold more successfully compared to the non-pigmented mutant cells. Resistance to UV stress was conferred to the non-pigmented mutant by addition of exogenous pigment extract to the growth medium. A level of UV protection equivalent to that exhibited by the wild-type strain was attained by the non-pigmented mutant once the prodigiosin concentration had reached comparable levels to those found in the wild-type strain. In co-culture experiments, prodigiosin acted as a UV screen, protecting both the wild-type and non-pigmented mutants. Our results suggest a new ecophysiological role for prodigiosin.
Collapse
Affiliation(s)
- Maja Borić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
11
|
Chang CC, Chen WC, Ho TF, Wu HS, Wei YH. Development of natural anti-tumor drugs by microorganisms. J Biosci Bioeng 2011; 111:501-11. [PMID: 21277252 DOI: 10.1016/j.jbiosc.2010.12.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/27/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
Abstract
Discoveries of tumor-resistant pharmacological drugs have mainly resulted from screening of natural products and their analogs. Some are also discovered incidentally when studying organisms. The great biodiversity of microorganisms raises the possibility of producing secondary metabolites (e.g., mevastatin, lovastatin, epothilone, salinosporamide A) to cope with adverse environments. Recently, natural plant pigments with anti-tumor activities such as β-carotene, lycopene, curcumin and anthocyanins have been proposed. However, many plants have a long life cycle. Therefore, pigments from microorganisms represent another option for the development of novel anti-tumor drugs. Prodigiosin (PG) is a natural red pigment produced by microorganisms, i.e., Serratia marcescens and other gram-negative bacteria. The anti-tumor potential of PG has been widely demonstrated. The families of PG (PGs), which share a common pyrrolylpyrromethene (PPM) skeleton, are produced by various bacteria. PGs are bioactive pigments and are known to exert immunosuppressive properties, in vitro apoptotic effects, and in vivo anti-tumor activities. Currently the most common strain used for producing PGs is S. marcescens. However, few reports have discussed PGs production. This review therefore describes the development of an anti-tumor drug, PG, that can be naturally produced by microorganisms, and evaluates the microbial production system, fermentation strategies, purification and identification processes. The application potential of PGs is also discussed.
Collapse
Affiliation(s)
- Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Sertan-de Guzman AA, Predicala RZ, Bernardo EB, Neilan BA, Elardo SP, Mangalindan GC, Tasdemir D, Ireland CM, Barraquio WL, Concepcion GP. Pseudovibrio denitrificans strain Z143-1, a heptylprodigiosin-producing bacterium isolated from a Philippine tunicate. FEMS Microbiol Lett 2008; 277:188-96. [PMID: 18031339 DOI: 10.1111/j.1574-6968.2007.00950.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microbial isolate Z143-1 found to be associated with an unidentified tunicate was characterized due to its significant antimicrobial activity. Z143-1 is similar to Pseudovibrio ascidiaceicola and Pseudovibrio denitrificans in morphological, physiological and biochemical characteristics, except for its ability to ferment glucose and produce a characteristic red pigment. Fatty acid methyl ester analysis revealed a predominance of the fatty acid 18:1 omega7c at 80.55%, at levels slightly lower than the Pseudovibrio denitrificans type strain DN34(T) (87.7%). The mol% G+C of Z143-1 is 54.02, relatively higher than the Pseudovibrio denitrificans type strain DN34(T) and Pseudovibrio ascidiaceicola with mol% G+C of 51.7 and 51.4, respectively. However, phylogenetic analysis of the 16S rRNA gene sequence of Z143-1 showed 100% similarity with the Pseudovibrio denitrificans type strain DN34(T). In this study, the bacterium Z143-1 is reported as a new strain of Pseudovibrio denitrificans. While there is no report of a secondary metabolite for Pseudovibrio denitrificans, Z143-1 produces the red pigment heptylprodigiosin, also known as 16-methyl-15-heptyl-prodiginine, which shows anti-Staphylococcus aureus activity.
Collapse
MESH Headings
- Animals
- Bacterial Typing Techniques
- Base Composition
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Genes, rRNA
- Glucose/metabolism
- Molecular Sequence Data
- Philippines
- Phylogeny
- Pigments, Biological/biosynthesis
- Prodigiosin/analogs & derivatives
- Prodigiosin/chemistry
- Prodigiosin/isolation & purification
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Rhodobacteraceae/chemistry
- Rhodobacteraceae/classification
- Rhodobacteraceae/genetics
- Rhodobacteraceae/isolation & purification
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Urochordata/microbiology
Collapse
|
13
|
Yamazaki G, Nishimura S, Ishida A, Kanagasabhapathy M, Zhou X, Nagata S, Morohoshi T, Ikeda T. Effect of salt stress on pigment production of Serratia rubidaea N-1: a potential indicator strain for screening quorum sensing inhibitors from marine microbes. J GEN APPL MICROBIOL 2006; 52:113-7. [PMID: 16778355 DOI: 10.2323/jgam.52.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Go Yamazaki
- Department of Environmental Science, Faculty of Science, Kumamoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Farmer JJ, Hickman-Brenner FW, Fanning GR, Gordon CM, Brenner DJ. Characterization of Vibrio metschnikovii and Vibrio gazogenes by DNA-DNA hybridization and phenotype. J Clin Microbiol 1988; 26:1993-2000. [PMID: 3182990 PMCID: PMC266804 DOI: 10.1128/jcm.26.10.1993-2000.1988] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vibrio metschnikovii and Vibrio gazogenes are two new Vibrio species that have been little studied. Thirteen strains of V. metschnikovii were highly related to the type strain, NCTC 8443, by DNA-DNA hybridization. Relatedness values were 83 to 90% at 60 degrees C and 75 to 84% at the more stringent 75 degrees C. Divergence values ranged from 0.7 to 1.9. Strains of V. metschnikovii were oxidase negative and did not reduce nitrate to nitrite. The other phenotypic characteristics agreed with published data. Twenty-three strains of V. gazogenes were isolated from salt marshes and marshy areas on the coast of North and South Carolina. A new medium, marine agar supplemented with an additional 2.5% agar, reduced the problem of swarming by marine Vibrio species and enhanced the isolation of V. gazogenes and other organisms. By DNA-DNA hybridization, 22 of 23 strains were 76% or more related to the type strain of V. gazogenes, ATCC 29988. However, four DNA hybridization subgroups were defined on the basis of divergence values and/or phenotype. Strains of DNA group 1 were more highly related to each other, and this group contained the type strain and six other strains. Strains of DNA group 2 were more highly related to each other, and this group contained reference strain ATCC 43942 and 14 other strains. Strains of DNA group 1 did not ferment melibiose or D-sorbitol (one strain was sorbitol positive), but strains of DNA group 2 fermented both sugars. A revised phenotypic description of V. gazogenes based on 24 strains was written on the basis of reactions (within 2 days of incubation) at 25 degrees C in media supplemented with Na+, K+, and Mg2+. Positive results (100% positive unless indicated) included motility; gas production during fermentation (96% at 2 days, 100% at 3 to 7 days); growth in nutrient broth with the addition of 1% NaCl (88%), 2% NaCl, 3.5% NaCl, 6% NaCl, 8% NaCl, and 10% NaCl (92%); dry red or orange colonies on marine agar; and fermentation of L-arabinose, cellobiose, D-galactose (88%), D-glucose, lactose (88%), maltose, D-mannitol (96%), D-mannose, salicin, sucrose, trehalose, and D-xylose. Negative results included oxidase; nitrate reduction to nitrite (4% positive); indole production; lysine decarboxylase; ornithine decarboxylase; arginine dihydrolase; swarming; growth on TCBS agar; growth in nutrient broth with 0% NaCl, 0.1% NaCl, 0.2% NaCl, 0.3% NaCl, and 0.4% NaCl (8% positive); and fermentation of adonitol, D-arabitol, dulcitol, erythritol, D-galacturonate, i-inositol, alpha-methyl-D-glucoside, raffinose, and L-rhamnose. Variable results were found for the Voges-Proskauer reaction (62% positive), growth in nutrient broth plus 0.5% NaCl (29%) and 12% NaCL (42%), and fermentation of melibiose (71%) and D-sorbitol (71%).
Collapse
Affiliation(s)
- J J Farmer
- Enteric Bacteriology Section, Centers for Disease Control, Atlanta, Georgia 30333
| | | | | | | | | |
Collapse
|
15
|
Larsen JL. Vibrio anguillarum: prevalence of typical and atypical strains in marine recipients with special reference to carbohydrate pollution. Acta Vet Scand 1986. [PMID: 3836565 DOI: 10.1186/bf03546517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
16
|
Larsen JL. Vibrio anguillarum: prevalence of typical and atypical strains in marine recipients with special reference to carbohydrate pollution. Acta Vet Scand 1985; 26:449-60. [PMID: 3836565 PMCID: PMC8202720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Primary isolates of Vibrio anguillarum-like organisms could be separated into typical V. anguillarum (VA) and atypical V. anguillarum (AVA) by biochemical tests. The prevalence of the fish pathogenic V. anguillarum was highly influenced by carbohydrate pollution as compared to the AVA. Water an sediment counts of VA generally increased at the polluted sites during April-May and persisted at a level of approx. 100/ml water and 1,000/g sediment until October-November. A further increase in VA counts could be registered locally at the time when the sugar beet processing season started (September-October). At the control site VA counts increased during June-July to a level of 10/ml persisting until August, while the only increase in sediment counts occurred in September (100/g). The maximum counts in water and sediment were at the control site 10/ml and 100/g and the polluted sites 100,000/ml and 50,000/g, respectively.
Collapse
|