1
|
Tanaka A, Ryder MH, Suzuki T, Uesaka K, Yamaguchi N, Amimoto T, Otani M, Nakayachi O, Arakawa K, Tanaka N, Takemoto D. Production of Agrocinopine A by Ipomoea batatas Agrocinopine Synthase in Transgenic Tobacco and Its Effect on the Rhizosphere Microbial Community. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:73-84. [PMID: 34585955 DOI: 10.1094/mpmi-05-21-0114-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Agrobacterium tumefaciens is a bacterial pathogen that causes crown gall disease on a wide range of eudicot plants by genetic transformation. Besides T-DNA integrated by natural transformation of plant vegetative tissues by pathogenic Agrobacterium spp., previous reports have indicated that T-DNA sequences originating from an ancestral Agrobacterium sp. are present in the genomes of all cultivated sweet potato (Ipomoea batatas) varieties analyzed. Expression of an Agrobacterium-derived agrocinopine synthase (ACS) gene was detected in leaf and root tissues of sweet potato, suggesting that the plant can produce agrocinopine, a sugar-phosphodiester opine considered to be utilized by some strains of Agrobacterium spp. in crown gall. To validate the product synthesized by Ipomoea batatas ACS (IbACS), we introduced IbACS into tobacco under a constitutive promoter. High-voltage paper electrophoresis followed by alkaline silver nitrate staining detected the production of an agrocinopine-like substance in IbACS1-expressing tobacco, and further mass spectrometry and nuclear magnetic resonance analyses of the product confirmed that IbACS can produce agrocinopine A from natural plant substrates. The partially purified compound was biologically active in an agrocinopine A bioassay. A 16S ribosomal RNA amplicon sequencing and meta-transcriptome analysis revealed that the rhizosphere microbial community of tobacco was affected by the expression of IbACS. A new species of Leifsonia (actinobacteria) was isolated as an enriched bacterium in the rhizosphere of IbACS1-expressing tobacco. This Leifsonia sp. can catabolize agrocinopine A produced in tobacco, indicating that the production of agrocinopine A attracts rhizosphere bacteria that can utilize this sugar-phosphodiester. These results suggest a potential role of IbACS conserved among sweet potato cultivars in manipulating their microbial community.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Maarten H Ryder
- School of Agriculture, Food & Wine, The University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 478-8501, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Nobuo Yamaguchi
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tomoko Amimoto
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Motoyasu Otani
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan
| | - Osamu Nakayachi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Nobukazu Tanaka
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
2
|
Meyer T, Thiour-Mauprivez C, Wisniewski-Dyé F, Kerzaon I, Comte G, Vial L, Lavire C. Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in Tumors. FRONTIERS IN PLANT SCIENCE 2019; 10:978. [PMID: 31417593 PMCID: PMC6683767 DOI: 10.3389/fpls.2019.00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
The study of pathogenic agents in their natural niches allows for a better understanding of disease persistence and dissemination. Bacteria belonging to the Agrobacterium genus are soil-borne and can colonize the rhizosphere. These bacteria are also well known as phytopathogens as they can cause tumors (crown gall disease) by transferring a DNA region (T-DNA) into a wide range of plants. Most reviews on Agrobacterium are focused on virulence determinants, T-DNA integration, bacterial and plant factors influencing the efficiency of genetic transformation. Recent research papers have focused on the plant tumor environment on the one hand, and genetic traits potentially involved in bacterium-plant interactions on the other hand. The present review gathers current knowledge about the special conditions encountered in the tumor environment along with the Agrobacterium genetic determinants putatively involved in bacterial persistence inside a tumor. By integrating recent metabolomic and transcriptomic studies, we describe how tumors develop and how Agrobacterium can maintain itself in this nutrient-rich but stressful and competitive environment.
Collapse
Affiliation(s)
- Thibault Meyer
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Clémence Thiour-Mauprivez
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
- Biocapteurs-Analyses-Environment, Universite de Perpignan Via Domitia, Perpignan, France
- Laboratoire de Biodiversite et Biotechnologies Microbiennes, USR 3579 Sorbonne Universites (UPMC) Paris 6 et CNRS Observatoire Oceanologique, Paris, France
| | | | - Isabelle Kerzaon
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Ludovic Vial
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Céline Lavire
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| |
Collapse
|
3
|
The Ecology of Agrobacterium vitis and Management of Crown Gall Disease in Vineyards. Curr Top Microbiol Immunol 2019; 418:15-53. [PMID: 29556824 DOI: 10.1007/82_2018_85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Agrobacterium vitis is the primary causal agent of grapevine crown gall worldwide. Symptoms of grapevine crown gall disease include tumor formation on the aerial plant parts, whereas both tumorigenic and nontumorigenic strains of A. vitis cause root necrosis. Genetic and genomic analyses indicated that A. vitis is distinguishable from the members of the Agrobacterium genus and its transfer to the genus Allorhizobium was suggested. A. vitis is genetically diverse, with respect to both chromosomal and plasmid DNA. Its pathogenicity is mainly determined by a large conjugal tumor-inducing (Ti) plasmid characterized by a mosaic structure with conserved and variable regions. Traditionally, A. vitis Ti plasmids and host strains were differentiated into octopine/cucumopine, nopaline, and vitopine groups, based on opine markers. However, tumorigenic and nontumorigenic strains of A. vitis may carry other ecologically important plasmids, such as tartrate- and opine-catabolic plasmids. A. vitis colonizes vines endophytically. It is also able to survive epiphytically on grapevine plants and is detected in soil exclusively in association with grapevine plants. Because A. vitis persists systemically in symptomless grapevine plants, it can be efficiently disseminated to distant geographical areas via international trade of propagation material. The use of healthy planting material in areas with no history of the crown gall represents the crucial measure of disease management. Moreover, biological control and production of resistant grape varieties are encouraging as future control measures.
Collapse
|
4
|
Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Curr Top Microbiol Immunol 2018; 418:55-86. [PMID: 29556826 DOI: 10.1007/82_2018_83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agrobacterium populations live in different habitats (bare soil, rhizosphere, host plants), and hence face different environmental constraints. They have evolved the capacity to exploit diverse resources and to escape plant defense and competition from other microbiota. By modifying the genome of their host, Agrobacterium populations exhibit the remarkable ability to construct and exploit the ecological niche of the plant tumors that they incite. This niche is characterized by the accumulation of specific, low molecular weight compounds termed opines that play a critical role in Agrobacterium 's lifestyle. We present and discuss the functions, advantages, and costs associated with this niche construction and exploitation.
Collapse
|
5
|
Barton IS, Fuqua C, Platt TG. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol 2018; 20:16-29. [PMID: 29105274 PMCID: PMC5764771 DOI: 10.1111/1462-2920.13976] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023]
Abstract
Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes.
Collapse
Affiliation(s)
- Ian S. Barton
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
6
|
Vladimirov IA, Matveeva TV, Lutova LA. Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415020167] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Platt TG, Morton ER, Barton IS, Bever JD, Fuqua C. Ecological dynamics and complex interactions of Agrobacterium megaplasmids. FRONTIERS IN PLANT SCIENCE 2014; 5:635. [PMID: 25452760 PMCID: PMC4231840 DOI: 10.3389/fpls.2014.00635] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/27/2014] [Indexed: 05/15/2023]
Abstract
As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their virulence functions on a horizontally transmissible genetic element. The tumor-inducing (Ti) plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium tumefaciens. This includes the vir genes which drive genetic transformation of host cells and the catabolic genes needed to utilize the opines produced by infected plants. The Ti plasmid also encodes, an opine-dependent quorum sensing system that tightly regulates Ti plasmid copy number and its conjugal transfer to other agrobacteria. Many natural agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid depends on the environmental context. Away from diseased hosts, plasmid costs are low but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not incur virulence costs but can benefit from opines are favored on infected plants and in most other environments, and these are frequently isolated from nature. Many agrobacteria also harbor an At plasmid which can stably coexist with a Ti plasmid. At plasmid genes are less well characterized but in general facilitate metabolic activities in the rhizosphere and bulk soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58, revealed that harboring its At plasmid is much more costly than harboring it's Ti plasmid, but conversely the At plasmid is extremely difficult to cure. The interactions between these co-resident plasmids are complex, and depend on environmental context. However, the presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high frequency with which they are found together.
Collapse
Affiliation(s)
| | | | | | | | - Clay Fuqua
- Department of Biology, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
8
|
Bergeron J, Macleod RA, Dion P. Specificity of octopine uptake by Rhizobium and pseudomonas strains. Appl Environ Microbiol 2010; 56:1453-8. [PMID: 16348194 PMCID: PMC184429 DOI: 10.1128/aem.56.5.1453-1458.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The octopine-utilizing strain Agrobacterium tumefaciens B6S3 and three nonagrobacteria which had the capacity to utilize this opine were compared for octopine uptake. The characteristics of uptake by Rhizobium meliloti A3 and strain B6S3 were similar. In both bacteria, uptake activity was inducible by octopine and by the related opine octopinic acid, and competition assays showed that these two opine substrates were accepted by the same uptake system with an equivalent affinity. Cells of Pseudomonas putida 203 accumulated octopine against a concentration gradient, and this activity was induced specifically by octopine. While strain 203 did not utilize octopinic acid, a spontaneous mutant with a combined capacity for octopine and octopinic acid utilization was obtained. Both opines induced octopine uptake by this mutant, but octopinic acid was not a substrate for the induced system. Thus, the Pseudomonas uptake system exhibited a different specificity for octopine than the corresponding Agrobacterium system. The nonfluorescent pseudomonad GU187j, which utilized the three related opines octopine, octopinic acid, and nopaline, was constitutive for octopine uptake. Strain GU187j possessed a system which accepted these three opines, but not arginine or ornithine, with a similar affinity.
Collapse
Affiliation(s)
- J Bergeron
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Ste-Foy, Québec, Canada G1K 7P4, and Department of Microbiology, Macdonald College, McGill University, Ste-Anne de Bellevue, Québec, Canada H9X 1C0
| | | | | |
Collapse
|
9
|
Moore LW, Chilton WS, Canfield ML. Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors. Appl Environ Microbiol 2010; 63:201-7. [PMID: 16535484 PMCID: PMC1389099 DOI: 10.1128/aem.63.1.201-207.1997] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of opines from 43 naturally occurring crown gall tumors on several plant species was analyzed for the presence of agropine, chrysopine, iminodiacid, an unidentified leucinopine-like iminodiacid (IDA-B), mannopine, octopine, nopaline, DL- and LL-succinamopine, leucinopine and heliopine. Opine utilization patterns of agrobacteria and fluorescent pseudomonads resident in a tumor were then analyzed and compared for agreement with the opine isolated from that tumor. Nopaline was the most common opine found and was detected in tumors from cherry, blackberry, grape, and plum. Octopine was not found, although octopine-catabolizing bacteria were isolated from several tumors. A new, previously undescribed iminodiacid of the succinamopine-leucinopine type (provisionally designated IDA-B) was isolated from tumors of wild blackberry. Field tumors from apple, blueberry and grape yielded no detectable opines, even though opine-utilizing bacteria were present. Bacterial isolates from plum and cherry showed the best correspondence between the opine in tumors (nopaline) and the presence of bacteria that catabolized that opine. However, several unusual opine catabolic combinations were identified, including isolates that catabolized a variety of opines but were nonpathogenic. More variability was observed among isolates from field tumors on the remaining plant species. We isolated novel mannopine-nopaline type agrobacteria from field tumors of cherry, plum and blackberry that induced tumors containing either mannopine (plus agropine) or nopaline, but not both. Epidemiologically, the galled plants from an area were not of clonal origin (same Ti plasmid), indicating that the field tumors from a small area were incited by more than one type of Ti plasmid.
Collapse
|
10
|
Beauchamp CJ, Kloepper JW, Shaw JJ, Chalifour FP. Root colonization of faba bean (Vicia faba L.) and pea (Pisum sativum L.) by Rhizobium leguminosarum bv. viciae in the presence of nitrate-nitrogen. Can J Microbiol 2001; 47:1068-74. [PMID: 11822831 DOI: 10.1139/w01-113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is a lack of knowledge concerning the effect of nitrate-nitrogen (NO3(-)-N) at levels known to inhibit nodule formation and functioning on root colonization of dinitrogen-fixing legumes. Firstly, this study investigated potential differences between Rhizobium leguminosarum bv. viciae 175F9 and its bioluminescent-labeled strain 175F9.lux on root colonization of faba bean (Vicia faba L.) and pea (Pisum sativum L.). These two strains similarly colonized the roots of both hosts. Secondly, this study evaluated the effects of 0 and 10 mol x m(-3) NO3(-)-N on root colonization of faba bean and pea by strain 175F9.lux, over time. Averaged over both hosts and harvest dates, the presence of NO3(-)-N increased the rhizobial population and the root length colonized. In addition, our results showed that bioluminescence activity increased from 7 to 14 days after sowing and was not correlated to rhizobial population. Finally, to demonstrate that an increase in bioluminescence activity was not an indirect effect of nitrate on R. leguminosarum bv. viciae 175F9.lux, this study investigated the effects of increasing carbon (mannitol) and nitrogen (NO3(-)-N) concentrations on the rhizobial population and bioluminescence activity. The carbon source was more important than the nitrogen source to increase the rhizobial population and bioluminescence activity, which increased with increasing mannitol concentration, but not with increasing nitrate concentration. Results from this study demonstrated that NO3(-)-N increased rhizobial population, especially for faba bean, and the length of root colonized.
Collapse
Affiliation(s)
- C J Beauchamp
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|
11
|
Hong SB, Farrand SK. Functional role of the Ti plasmid-encoded catabolic mannopine cyclase in mannityl opine catabolism by Agrobacterium spp. J Bacteriol 1994; 176:3576-83. [PMID: 8206835 PMCID: PMC205546 DOI: 10.1128/jb.176.12.3576-3583.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Catabolic mannopine (MOP) cyclase encoded by Ti or Ri plasmids lactonizes MOP to agropine (AGR). The gene of the octopine-type Ti plasmid pTi15955 encoding the catabolic MOP cyclase enzyme previously was localized to a 1.6-kb segment within a cosmid clone, pYDH208. A subclone containing only this region complemented the AGR catabolism-negative phenotype conferred by a derivative of the octopine-type plasmid pTiB6S3 containing a Tn7 insertion in the region encoding the MOP cyclase enzyme. Uptake assays of strains harboring pRiA4 or pArA4a, along with complementation analyses, indicate that MOP cyclase is not sufficient for catabolism of AGR but that the strains must also express an AGR transport system. To determine the requirement for MOP cyclase in opine catabolism unequivocally, a site-specific, nonpolar deletion mutation abolishing only MOP cyclase activity was introduced into pYDH208, a cosmid clone that confers utilization of MOP, AGR, and mannopinic acid (MOA). Strains harboring this MOP cyclase-negative mutant clone, pYDPH208, did not utilize AGR but continued to utilize MOP. Growth on AGR was restored in this strain upon introduction of clones encoding the pTi15955-derived catabolic or anabolic MOP cyclase genes. The induction pattern of MOA catabolism shown by strain NT1 harboring the MOP cyclase-deficient pYDPH208 suggests that AGR is converted into MOP by MOP cyclase and that MOP, but not AGR, induces catabolism of MOA. Genetic and biochemical analyses of MOP and AGR metabolism suggest that only the conversion of AGR to MOP is directly involved in catabolism of AGR, even though the reaction catalyzed by MOP cyclase predominantly lies in the lactonization of MOP to AGR.
Collapse
Affiliation(s)
- S B Hong
- Department of Plant Pathology, University of Illinois at Urbana-Champaign 61801
| | | |
Collapse
|
12
|
Nautiyal CS, Dion P, Chilton WS. Mannopine and mannopinic acid as substrates for Arthrobacter sp. strain MBA209 and Pseudomonas putida NA513. J Bacteriol 1991; 173:2833-41. [PMID: 1902209 PMCID: PMC207864 DOI: 10.1128/jb.173.9.2833-2841.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The characteristics of mannopine and mannopinic acid utilization by Agrobacterium tumefaciens B6S3, Arthrobacter sp. strain MBA209, and Pseudomonas putida NA513 were studied. Strain B6S3 utilized the four mannityl opines, mannopine, mannopinic acid, agropine, and agropinic acid. It also utilized several mannityl opine analogs, which were modified in either the sugar or the amino acid moiety. It utilized mannopine more rapidly after preincubation on mannopine, mannopinic acid, or glutamine than after pregrowth on glucose, mannose, or mannitol. Strains MBA209 and NA513 utilized mannopine and mannopinic acid, but not the other two mannityl opines. They utilized few mannityl opine analogs, sometimes because of failure to utilize the products of initial cleavage of the analog. Utilization of mannopine and mannopinic acid by strain NA513 was strictly dependent on prior growth on these substrates. A spontaneous regulatory variant of strain NA513 remained unable to utilize most of the mannityl opine analogs. Glutamine, mannose, and several analogs had no inhibitory effect on [14C]mannopine utilization by strain NA513.
Collapse
Affiliation(s)
- C S Nautiyal
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Ste-Foy, Québec, Canada
| | | | | |
Collapse
|
13
|
Nautiyal CS, Dion P. Characterization of the Opine-Utilizing Microflora Associated with Samples of Soil and Plants. Appl Environ Microbiol 1990; 56:2576-2579. [PMID: 16348265 PMCID: PMC184770 DOI: 10.1128/aem.56.8.2576-2579.1990] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms utilizing an opine as the sole carbon source were recovered from crown gall tumors, soil, and surface-disinfected potato tubers. The effect of the opines octopine, nopaline, succinamopine, and mannopine as selective substrates was compared with that of the auxin indoleacetic acid. Selection on octopine and indoleacetic acid favored the fluorescent pseudomonads, whereas mannopine allowed the frequent recovery of agrobacteria. Coryneforms which utilized succinamopine or mannopine were detected in soil, but not in tumors. Fungi growing on succinamopine or mannopine and a mannopine-utilizing Pseudomonas putida were isolated from tumor and soil, respectively.
Collapse
Affiliation(s)
- C S Nautiyal
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Canada G1K 7P4
| | | |
Collapse
|