1
|
Calfee BC, Bowden EC, Zinser ER. Rival phytoplankton contribute to the cross protection of Prochlorococcus from oxidative stress. Appl Environ Microbiol 2025; 91:e0112824. [PMID: 40207967 DOI: 10.1128/aem.01128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/19/2025] [Indexed: 04/11/2025] Open
Abstract
The marine cyanobacterium Prochlorococcus numerically dominates the phytoplankton communities in all lower latitude, open ocean environments. Having lost the catalase gene, Prochlorococcus is highly susceptible to exogenous hydrogen peroxide (H2O2) produced at the ocean's surface. Protection by H2O2-scavenging heterotrophic "helper" bacteria has been demonstrated in laboratory cultures and implicated as an important mechanism of Prochlorococcus survival in the ocean. Importantly, some other phytoplankton can also scavenge H2O2, suggesting these competing microbes may inadvertently protect Prochlorococcus. In this study, we assessed the ability of co-occurring phytoplankton, the cyanobacterium Synechococcus and picoeukaryotes Micromonas and Ostreococcus, to protect Prochlorococcus from H2O2 exposure when cocultured at ecologically relevant abundances. All three genera could significantly degrade H2O2 and diminish Prochlorococcus mortality during H2O2 exposures simulating photochemical production and rainfall events. We suggest that these phytoplankton groups contribute significantly to the H2O2 microbial sink of the open ocean, thus complicating their relationships with and perhaps contributing to the evolutionary history of Prochlorococcus.IMPORTANCEThe marine cyanobacterium Prochlorococcus is the most abundant photosynthetic organism on the planet and is crucially involved in microbial community dynamics and biogeochemical cycling in most tropical and subtropical ocean waters. This success is due, in part, to the detoxification of the reactive oxygen species hydrogen peroxide (H2O2) performed by "helper" organisms. Earlier work identified heterotrophic bacteria as helpers, and here, we demonstrate that rival cyanobacteria and picoeukaryotic phytoplankton can also contribute to the survival of Prochlorococcus during exposure to H2O2. Whereas heterotrophic bacteria helper organisms can benefit directly from promoting the survival of carbon-fixing Prochlorococcus cells, phytoplankton helpers may suffer a twofold injury: production of H2O2 degrading enzymes constrains already limited resources in oligotrophic environments, and the activity of these enzymes bolsters the abundance of their numerically dominant competitor. These findings build toward a better understanding of the intricate dynamics and interactions that shape microbial community structure in the open ocean.
Collapse
Affiliation(s)
- Benjamin C Calfee
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Emily C Bowden
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Erik R Zinser
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Hartig AM, Dai W, Zhang K, Kapoor K, Rottinghaus AG, Moon TS, Parker KM. Influence of Environmental Conditions on the Escape Rates of Biocontained Genetically Engineered Microbes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22657-22667. [PMID: 39668804 PMCID: PMC11750180 DOI: 10.1021/acs.est.4c10893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The development of genetically engineered microbes (GEMs) has resulted in an urgent need to control their persistence in the environment. The use of biocontainment such as kill switches is a critical approach to prevent the unintended proliferation of GEMs; however, the effectiveness of kill switches─reported as escape rates, i.e., the ratio of the number of viable microbes when the kill switch is triggered relative to the number when it is not triggered─is typically assessed under laboratory conditions that do not resemble environmental conditions under which biocontainment must perform. In this study, we discovered that the escape rate of an Escherichia coli GEM biocontained with a CRISPR-based kill switch triggered by anhydrotetracycline (aTc) increased by 3-4 orders of magnitude when deployed in natural surface waters as compared to rich laboratory media. We identified that environmental conditions (e.g., pH, nutrient levels) may contribute to elevated escape rates in multiple ways, including by altering the chemical speciation of the kill switch trigger to reduce its uptake and providing limited nutrients required for the kill switch to function. Our study demonstrated that conditions in the intended environment must be considered in order to design effective GEM biocontainment strategies.
Collapse
Affiliation(s)
- Anna M. Hartig
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Wentao Dai
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Ke Zhang
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Krisha Kapoor
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Austin G. Rottinghaus
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis Missouri 63130, United States
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, United States
| | - Kimberly M. Parker
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| |
Collapse
|
3
|
Prochlorococcus Exudate Stimulates Heterotrophic Bacterial Competition with Rival Phytoplankton for Available Nitrogen. mBio 2022; 13:e0257121. [PMID: 35012332 PMCID: PMC8749424 DOI: 10.1128/mbio.02571-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine cyanobacterium Prochlorococcus numerically dominates the phytoplankton community of the nutrient-limited open ocean, establishing itself as the most abundant photosynthetic organism on Earth. This ecological success has been attributed to lower cell quotas for limiting nutrients, superior resource acquisition, and other advantages associated with cell size reduction and genome streamlining. In this study, we tested the prediction that Prochlorococcus outcompetes its rivals for scarce nutrients and that this advantage leads to its numerical success in nutrient-limited waters. Strains of Prochlorococcus and its sister genus Synechococcus grew well in both mono- and cocultures when nutrients were replete. However, in nitrogen-limited medium, Prochlorococcus outgrew Synechococcus but only when heterotrophic bacteria were also present. In the nitrogen-limited medium, the heterotroph Alteromonas macleodii outcompeted Synechococcus for nitrogen but only if stimulated by the exudate released by Prochlorococcus or if a proxy organic carbon source was provided. Genetic analysis of Alteromonas suggested that it outcompetes Synechococcus for nitrate and/or nitrite, during which cocultured Prochlorococcus grows on ammonia or other available nitrogen species. We propose that Prochlorococcus can stimulate antagonism between heterotrophic bacteria and potential phytoplankton competitors through a metabolic cross-feeding interaction, and this stimulation could contribute to the numerical success of Prochlorococcus in nutrient-limited regions of the ocean. IMPORTANCE In nutrient-poor habitats, competition for limited resources is thought to select for organisms with an enhanced ability to scavenge nutrients and utilize them efficiently. Such adaptations characterize the cyanobacterium Prochlorococcus, the most abundant photosynthetic organism in the nutrient-limited open ocean. In this study, the competitive superiority of Prochlorococcus over a rival cyanobacterium, Synechococcus, was captured in laboratory culture. Critically, this outcome was achieved only when key aspects of the open ocean were simulated: a limited supply of nitrogen and the presence of heterotrophic bacteria. The results indicate that Prochlorococcus promotes its numerical dominance over Synechococcus by energizing the heterotroph's ability to outcompete Synechococcus for available nitrogen. This study demonstrates how interactions between trophic groups can influence interactions within trophic groups and how these interactions likely contribute to the success of the most abundant photosynthetic microorganism.
Collapse
|
4
|
Powers LG, Mills HJ, Palumbo AV, Zhang C, Delaney K, Sobecky PA. Introduction of a plasmid-encoded phoA gene for constitutive overproduction of alkaline phosphatase in three subsurface Pseudomonas isolates. FEMS Microbiol Ecol 2012; 41:115-23. [PMID: 19709245 DOI: 10.1111/j.1574-6941.2002.tb00972.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract Three bacterial isolates, Pseudomonas fluorescens F1, Pseudomonas rhodesiae R1 and Pseudomonas veronii V1 were genetically modified by introduction of a plasmid, pJH123, with a phoA hybrid gene that directed constitutive overproduction of the enzyme alkaline phosphatase. The presence of the plasmid in the bacterial hosts elevated extracytoplasmic alkaline phosphatase production from 100- to 820-fold. The growth and survival of the plasmid-bearing hosts in sterilized soil slurries was comparable to parental control strains. In the absence of antibiotic selection, pJH123 was maintained in two of the three hosts (P. fluorescens F1 and P. veronii V1) during incubation in minimal medium. The effects of the genetically enhanced pseudomonads on the liberation of inorganic phosphate (PO(4) (3-)) were determined in sterilized soil slurries following the addition of an organophosphorus compound, glycerol-3-phosphate. A significant accumulation of PO(4) (3-) was measured in soil slurries amended with 10 mM glycerol-3-phosphate and any of the three phosphatase-enhanced pseudomonad isolates. In contrast, soil slurries containing unmodified parental strains did not exhibit significant PO(4) (3-) accumulation. Two of the three enhanced phosphate-liberating strains released sufficient PO(4) (3-) that cell-free supernatants from sterilized soil slurry incubations removed significant amounts of uranium (as much as 69%) from solution.
Collapse
Affiliation(s)
- Leigh G Powers
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
5
|
Urgun-Demirtas M, Stark B, Pagilla K. Use of Genetically Engineered Microorganisms (GEMs) for the Bioremediation of Contaminants. Crit Rev Biotechnol 2008; 26:145-64. [PMID: 16923532 DOI: 10.1080/07388550600842794] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This paper presents a critical review of the literature on the application of genetically engineered microorganisms (GEMs) in bioremediation. The important aspects of using GEMs in bioremediation, such as development of novel strains with desirable properties through pathway construction and the modification of enzyme specificity and affinity, are discussed in detail. Particular attention is given to the genetic engineering of bacteria using bacterial hemoglobin (VHb) for the treatment of aromatic organic compounds under hypoxic conditions. The application of VHb technology may advance treatment of contaminated sites, where oxygen availability limits the growth of aerobic bioremediating bacteria, as well as the functioning of oxygenases required for mineralization of many organic pollutants. Despite the many advantages of GEMs, there are still concerns that their introduction into polluted sites to enhance bioremediation may have adverse environmental effects, such as gene transfer. The extent of horizontal gene transfer from GEMs in the environment, compared to that of native organisms including benefits regarding bacterial bioremediation that may occur as a result of such transfer, is discussed. Recent advances in tracking methods and containment strategies for GEMs, including several biological systems that have been developed to detect the fate of GEMs in the environment, are also summarized in this review. Critical research questions pertaining to the development and implementation of GEMs for enhanced bioremediation have been identified and posed for possible future research.
Collapse
Affiliation(s)
- Meltem Urgun-Demirtas
- Department of Chemical and Environmental Engineering, Illinois Institute of Technology, Chicago, 60616, USA
| | | | | |
Collapse
|
6
|
Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M. Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:5701-7. [PMID: 17874776 DOI: 10.1021/es070567g] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Uranium contamination is an environmental concern at the Department of Energy's Field Research Center in Oak Ridge, Tennessee. In this study, we investigated whether phosphate biomineralization, or the aerobic precipitation of U(VI)-phosphate phases facilitated by the enzymatic activities of microorganisms, offers an alternative to the more extensively studied anaerobic U(VI) bioreduction. Three heterotrophic bacteria isolated from FRC soils were studied for their ability to grow and liberate phosphate in the presence of U(VI) and an organophosphate between pH 4.5 and 7.0. The objectives were to determine whether the strains hydrolyzed sufficient phosphate to precipitate uranium, to determine whether low pH might have an effect on U(VI) precipitation, and to identify the uranium solid phase formed during biomineralization. Two bacterial strains hydrolyzed sufficient organophosphate to precipitate 7395% total uranium after 120 h of incubation in simulated groundwater. The highest rates of uranium precipitation and phosphatase activity were observed between pH 5.0 and 7.0. EXAFS spectra identified the uranyl phosphate precipitate as an autunite/meta-autunite group mineral. The results of this study indicate that aerobic heterotrophic bacteria within a uranium-contaminated environment that can hydrolyze organophosphate, especially in low pH conditions, may play an important role in the bioremediation of uranium.
Collapse
Affiliation(s)
- Melanie J Beazley
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0340, USA
| | | | | | | | | |
Collapse
|
7
|
Min M, Kawabata Z, Ishii N, Takata R, Furukawa K. Fate of a PCBS degrading recombinantpseudomonas putidaAC30(PMFB2) and its effect on the densities of microbes in marine microcosms contaminated with PCBS. ACTA ACUST UNITED AC 1998. [DOI: 10.1080/00207239808711185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Sobecky PA, Mincer TJ, Chang MC, Toukdarian A, Helinski DR. Isolation of broad-host-range replicons from marine sediment bacteria. Appl Environ Microbiol 1998; 64:2822-30. [PMID: 9687436 PMCID: PMC106778 DOI: 10.1128/aem.64.8.2822-2830.1998] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Naturally occurring plasmids isolated from heterotrophic bacterial isolates originating from coastal California marine sediments were characterized by analyzing their incompatibility and replication properties. Previously, we reported on the lack of DNA homology between plasmids from the culturable bacterial population of marine sediments and the replicon probes specific for a number of well-characterized incompatibility and replication groups (P. A. Sobecky, T. J. Mincer, M. C. Chang, and D. R. Helinski, Appl. Environ. Microbiol. 63:888-895, 1997). In the present study we isolated 1.8- to 2.3-kb fragments that contain functional replication origins from one relatively large (30-kb) and three small (<10-kb) naturally occurring plasmids present in different marine isolates. 16S rRNA sequence analyses indicated that the four plasmid-bearing marine isolates belonged to the alpha and gamma subclasses of the class Proteobacteria. Three of the marine sediment isolates are related to the gamma-3 subclass organisms Vibrio splendidus and Vibrio fischeri, while the fourth isolate may be related to Roseobacter litoralis. Sequence analysis of the plasmid replication regions revealed the presence of features common to replication origins of well-characterized plasmids from clinical bacterial isolates, suggesting that there may be similar mechanisms for plasmid replication initiation in the indigenous plasmids of gram-negative marine sediment bacteria. In addition to replication in Escherichia coli DH5alpha and C2110, the host ranges of the plasmid replicons, designated repSD41, repSD121, repSD164, and repSD172, extended to marine species belonging to the genera Achromobacter, Pseudomonas, Serratia, and Vibrio. While sequence analysis of repSD41 and repSD121 revealed considerable stretches of homology between the two fragments, these regions do not display incompatibility properties against each other. The replication origin repSD41 was detected in 5% of the culturable plasmid-bearing marine sediment bacterial isolates, whereas the replication origins repSD164 and repSD172 were not detected in any plasmid-bearing bacteria other than the parental isolates. Microbial community DNA extracted from samples collected in November 1995 and June 1997 and amplified by PCR yielded positive signals when they were hybridized with probes specific for repSD41 and repSD172 replication sequences. In contrast, replication sequences specific for repSD164 were not detected in the DNA extracted from marine sediment microbial communities.
Collapse
Affiliation(s)
- P A Sobecky
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | | | | | |
Collapse
|
9
|
Sobecky PA, Mincer TJ, Chang MC, Helinski DR. Plasmids isolated from marine sediment microbial communities contain replication and incompatibility regions unrelated to those of known plasmid groups. Appl Environ Microbiol 1997; 63:888-95. [PMID: 9055407 PMCID: PMC168381 DOI: 10.1128/aem.63.3.888-895.1997] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two hundred ninety-seven bacteria carrying plasmids that range in size from 5 to 250 kb were identified from more than 1,000 aerobic heterotrophic bacteria isolated from coastal California marine sediments. While some isolates contained numerous (three to five) small (5- to 10-kb) plasmids, the majority of the natural isolates typically contained one large (40- to 100-kb) plasmid. By the method of plasmid isolation used in this study, the frequency of plasmid incidence ranged from 24 to 28% depending on the samples examined. Diversity of the plasmids occurring in the marine sediment bacterial populations was examined at the molecular level by hybridization with 14 different DNA probes specific for the incompatibility and replication (inc/rep) regions of a number of well-characterized plasmid incompatibility groups (repB/O, FIA, FII, FIB, HI1, HI2, I1, L/M, X, N, P, Q, W, and U). Interestingly, we found no DNA homology between the plasmids isolated from the culturable bacterial population of marine sediments and the replicon probes specific for numerous incompatibility groups developed by Couturier et al. (M. F. Couturier, F. Bex, P. L. Bergquist, and W. K. Maas, Microbiol. Rev. 52:375-395, 1988). Our findings suggest that plasmids in marine sediment microbial communities contain novel, as-yet-uncharacterized, incompatibility and replication regions and that the present replicon typing system, based primarily on plasmids derived from clinical isolates, may not be representative of the plasmid diversity occurring in some marine environments. Since the vast majority of marine bacteria are not culturable under laboratory conditions, we also screened microbial community DNA for the presence of broad- and narrow-host-range plasmid replication sequences. Although the replication origin of the conjugally promiscuous broad-host-range plasmid RK2 (incP) was not detectable in any of the plasmid-containing culturable marine isolates, DNA extracted from the microbial community and amplified by PCR yielded a positive signal for RK2 oriV replication sequences. The strength of the signal suggests the presence of a low level of the incP replicon within the marine microbial community. In contrast, replication sequences specific for the narrow-host-range plasmid F were not detectable in DNA extracted from marine sediment microbial communities. With the possible exception of mercuric chloride, phenotypic analysis of the 297 plasmid-bearing isolates did not demonstrate a correlation between plasmid content and antibiotic or heavy metal resistance traits.
Collapse
Affiliation(s)
- P A Sobecky
- Department of Biology, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | | | |
Collapse
|