1
|
Jaros D, Köbsch J, Rohm H. Exopolysaccharides from Basidiomycota: Formation, isolation and techno-functional properties. Eng Life Sci 2018; 18:743-752. [PMID: 32624868 PMCID: PMC6999363 DOI: 10.1002/elsc.201800117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 09/06/2018] [Indexed: 01/17/2023] Open
Abstract
This Mini Review gives an overview of and respective references for the production and properties of exopolysaccharides from Basidiomycota in submerged cultivation. Media and conditions that are usually applied in laboratory culture are summarized, and the lack of studies related to up-scaling is addressed. Procedures for isolation and purification of the exopolysaccharides from the fermentation media are reviewed, and challenges related to exopolysaccharide quantification are discussed. Finally, the techno-functional properties of the respective exopolysaccharides, and potential applications in foods are addressed.
Collapse
Affiliation(s)
- Doris Jaros
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| | - Johannes Köbsch
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| | - Harald Rohm
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| |
Collapse
|
2
|
Mogilnaya O, Ronzhin N, Artemenko K, Bondar V. Nanodiamonds as an effective adsorbent for immobilization of extracellular peroxidases from luminous fungus Neonothopanus nambi to construct a phenol detection system. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1472586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Olga Mogilnaya
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia
| | - Nikita Ronzhin
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia
| | - Karina Artemenko
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia
| | - Vladimir Bondar
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia
| |
Collapse
|
3
|
Nguyen PQ, Courchesne NMD, Duraj-Thatte A, Praveschotinunt P, Joshi NS. Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704847. [PMID: 29430725 PMCID: PMC6309613 DOI: 10.1002/adma.201704847] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/25/2017] [Indexed: 05/20/2023]
Abstract
Vast potential exists for the development of novel, engineered platforms that manipulate biology for the production of programmed advanced materials. Such systems would possess the autonomous, adaptive, and self-healing characteristics of living organisms, but would be engineered with the goal of assembling bulk materials with designer physicochemical or mechanical properties, across multiple length scales. Early efforts toward such engineered living materials (ELMs) are reviewed here, with an emphasis on engineered bacterial systems, living composite materials which integrate inorganic components, successful examples of large-scale implementation, and production methods. In addition, a conceptual exploration of the fundamental criteria of ELM technology and its future challenges is presented. Cradled within the rich intersection of synthetic biology and self-assembling materials, the development of ELM technologies allows the power of biology to be leveraged to grow complex structures and objects using a palette of bio-nanomaterials.
Collapse
Affiliation(s)
- Peter Q. Nguyen
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Noémie-Manuelle Dorval Courchesne
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Anna Duraj-Thatte
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Pichet Praveschotinunt
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Neel S. Joshi
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Mogilnaya OA, Ronzhin NO, Bondar VS. Extracellular Peroxidase Activity and Light Emission of the Mycelium of the Basidiomycete Neonothopanus nambi in the Presence of β-Glucosidase. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Glyoxal oxidases: their nature and properties. World J Microbiol Biotechnol 2017; 33:87. [DOI: 10.1007/s11274-017-2254-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/29/2017] [Indexed: 01/30/2023]
|
6
|
Polyclonal Antibody Development Against Purified CC-NBS-LRR like Protein Fragment from Mature Lageneria siceraria Seeds and Immunolocalization. Protein J 2016; 35:379-390. [DOI: 10.1007/s10930-016-9683-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass. Appl Environ Microbiol 2016; 82:2411-2423. [PMID: 26873317 DOI: 10.1128/aem.03761-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Auxiliary activities family 3 subfamily 2 (AA3_2) from the CAZy database comprises various functions related to ligninolytic enzymes, such as fungal aryl alcohol oxidases (AAO) and glucose oxidases, both of which are flavoenzymes. The recent study of the Pycnoporus cinnabarinus CIRM BRFM 137 genome combined with its secretome revealed that four AA3_2 enzymes are secreted during biomass degradation. One of these AA3_2 enzymes, scf184803.g17, has recently been produced heterologously in Aspergillus niger Based on the enzyme's activity and specificity, it was assigned to the glucose dehydrogenases (PcinnabarinusGDH [PcGDH]). Here, we analyze the distribution of the other three AA3_2 enzymes (scf185002.g8, scf184611.g7, and scf184746.g13) to assess their putative functions. These proteins showed the highest homology with aryl alcohol oxidase from Pleurotus eryngii Biochemical characterization demonstrated that they were also flavoenzymes harboring flavin adenine dinucleotide (FAD) as a cofactor and able to oxidize a wide variety of phenolic and nonphenolic aryl alcohols and one aliphatic polyunsaturated primary alcohol. Though presenting homology with fungal AAOs, these enzymes exhibited greater efficiency in reducing electron acceptors (quinones and one artificial acceptor) than molecular oxygen and so were defined as aryl-alcohol:quinone oxidoreductases (AAQOs) with two enzymes possessing residual oxidase activity (PcAAQO2 and PcAAQO3). Structural comparison of PcAAQO homology models with P. eryngii AAO demonstrated a wider substrate access channel connecting the active-site cavity to the solvent, explaining the absence of activity with molecular oxygen. Finally, the ability of PcAAQOs to reduce radical intermediates generated by laccase from P. cinnabarinus was demonstrated, shedding light on the ligninolytic system of this fungus.
Collapse
|
8
|
Carro J, Serrano A, Ferreira P, Martínez AT. Fungal Aryl-Alcohol Oxidase in Lignocellulose Degradation and Bioconversion. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2016. [DOI: 10.1007/978-3-319-43679-1_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Aylward FO, Khadempour L, Tremmel DM, McDonald BR, Nicora CD, Wu S, Moore RJ, Orton DJ, Monroe ME, Piehowski PD, Purvine SO, Smith RD, Lipton MS, Burnum-Johnson KE, Currie CR. Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants. PLoS One 2015; 10:e0134752. [PMID: 26317212 PMCID: PMC4552819 DOI: 10.1371/journal.pone.0134752] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
Leaf-cutter ants are prolific and conspicuous constituents of Neotropical ecosystems that derive energy from specialized fungus gardens they cultivate using prodigious amounts of foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain plant biomass-degrading enzymes that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as ants incorporate it into the fungus garden. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous plant biomass-degrading enzymes likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three quarters of all biomass-degrading enzymes identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 40 of these enzymes enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.
Collapse
Affiliation(s)
- Frank O Aylward
- Department of Bacteriology, University of Wisconson-Madison, Madison, Wisconsin, United States of America; Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Lily Khadempour
- Department of Bacteriology, University of Wisconson-Madison, Madison, Wisconsin, United States of America; Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Daniel M Tremmel
- Department of Bacteriology, University of Wisconson-Madison, Madison, Wisconsin, United States of America; Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bradon R McDonald
- Department of Bacteriology, University of Wisconson-Madison, Madison, Wisconsin, United States of America; Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Si Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Samuel O Purvine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Mary S Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kristin E Burnum-Johnson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconson-Madison, Madison, Wisconsin, United States of America; Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 2012; 93:1395-410. [DOI: 10.1007/s00253-011-3836-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022]
|
11
|
Catalytic activity of aryl alcohol oxidase immobilized in 3D-mesoporous silicates. J Biosci Bioeng 2009; 108:310-3. [DOI: 10.1016/j.jbiosc.2009.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022]
|
12
|
Hietala AM, Nagy NE, Steffenrem A, Kvaalen H, Fossdal CG, Solheim H. Spatial patterns in hyphal growth and substrate exploitation within norway spruce stems colonized by the pathogenic white-rot fungus Heterobasidion parviporum. Appl Environ Microbiol 2009; 75:4069-78. [PMID: 19376909 PMCID: PMC2698336 DOI: 10.1128/aem.02392-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 04/06/2009] [Indexed: 11/20/2022] Open
Abstract
In Norway spruce, a fungistatic reaction zone with a high pH and enrichment of phenolics is formed in the sapwood facing heartwood colonized by the white-rot fungus Heterobasidion parviporum. Fungal penetration of the reaction zone eventually results in expansion of this xylem defense. To obtain information about mechanisms operating upon heartwood and reaction zone colonization by the pathogen, hyphal growth and wood degradation were investigated using real-time PCR, microscopy, and comparative wood density analysis of naturally colonized trees with extensive stem decay. The hyphae associated with delignified wood at stump level were devoid of any extracellular matrix, whereas incipient decay at the top of decay columns was characterized by a carbohydrate-rich hyphal sheath attaching hyphae to tracheid walls. The amount of pathogen DNA peaked in aniline wood, a narrow darkened tissue at the colony border apparently representing a compromised region of the reaction zone. Vigorous production of pathogen conidiophores occurred in this region. Colonization of aniline wood was characterized by hyphal growth within polyphenolic lumen deposits in tracheids and rays, and the hyphae were fully encased in a carbohydrate-rich extracellular matrix. Together, these data indicate that the interaction of the fungus with the reaction zone involves a local concentration of fungal biomass that forms an efficient translocation channel for nutrients. Finally, the enhanced production of the hyphal sheath may be instrumental in lateral expansion of the decay column beyond the reaction zone boundary.
Collapse
Affiliation(s)
- Ari M Hietala
- Norwegian Forest and Landscape Institute, As, Norway.
| | | | | | | | | | | |
Collapse
|
13
|
Stajic´ M, Vukojevic´ J, Duletic´-Lauševic´ S. Biology ofPleurotus eryngiiand role in biotechnological processes: a review. Crit Rev Biotechnol 2009; 29:55-66. [DOI: 10.1080/07388550802688821] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Raghukumar C, D'Souza-Ticlo D, Verma A. Treatment of Colored Effluents with Lignin-Degrading Enzymes: An Emerging Role of Marine-Derived Fungi. Crit Rev Microbiol 2008; 34:189-206. [DOI: 10.1080/10408410802526044] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Daniel G, Volc J, Filonova L, Plíhal O, Kubátová E, Halada P. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 2007; 73:6241-53. [PMID: 17660304 PMCID: PMC2075019 DOI: 10.1128/aem.00977-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/23/2007] [Indexed: 11/20/2022] Open
Abstract
A novel alcohol oxidase (AOX) has been purified from mycelial pellets of the wood-degrading basidiomycete Gloeophyllum trabeum and characterized as a homooctameric nonglycosylated protein with native and subunit molecular masses of 628 and 72.4 kDa, containing noncovalently bonded flavin adenine dinucleotide. The isolated AOX cDNA contained an open reading frame of 1,953 bp translating into a polypeptide of 651 amino acids displaying 51 to 53% identity with other published fungal AOX amino acid sequences. The enzyme catalyzed the oxidation of short-chain primary aliphatic alcohols with a preference for methanol (K(m) = 2.3 mM, k(cat) = 15.6 s(-1)). Using polyclonal antibodies and immunofluorescence staining, AOX was localized on liquid culture hyphae and extracellular slime in sections from degraded wood and on cotton fibers. Transmission electron microscopy immunogold labeling localized the enzyme in the hyphal periplasmic space and wall and on extracellular tripartite membranes and slime, while there was no labeling of hyphal peroxisomes. AOX was further shown to be associated with membranous or slime structures secreted by hyphae in wood fiber lumina and within the secondary cell walls of degraded wood fibers. The differences in AOX targeting compared to the known yeast peroxisomal localization were traced to a unique C-terminal sequence of the G. trabeum oxidase, which is apparently responsible for the protein's different translocation. The extracellular distribution and the enzyme's abundance and preference for methanol, potentially available from the demethylation of lignin, all point to a possible role for AOX as a major source of H(2)O(2), a component of Fenton's reagent implicated in the generally accepted mechanisms for brown rot through the production of highly destructive hydroxyl radicals.
Collapse
Affiliation(s)
- Geoffrey Daniel
- Department of Forest Products/Wood Science, Swedish University of Agricultural Sciences, P.O. Box 7008, SE-750 07 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
16
|
Ding SY, Xu Q, Ali MK, Baker JO, Bayer EA, Barak Y, Lamed R, Sugiyama J, Rumbles G, Himmel ME. Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotechniques 2006; 41:435-6, 438, 440 passim. [PMID: 17068959 DOI: 10.2144/000112244] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The innate binding specificity of different carbohydrate-binding modules (CBMs) offers a versatile approach for mapping the chemistry and structure of surfaces that contain complex carbohydrates. We have employed the distinct recognition properties of a double His-tagged recombinant CBM tagged with semiconductor quantum dots for direct imaging of crystalline cellulose at the molecular level of resolution, using transmission and scanning transmission electron microscopy. In addition, three different types of CBMs from families 3, 6, and 20 that exhibit different carbohydrate specificities were each fused with either green fluorescent protein (GFP) or red fluorescent protein (RFP) and employed for double-labeling fluorescence microscopy studies of primary cell walls and various mixtures of complex carbohydrate target molecules. CBM probes can be used for characterizing both native complex carbohydrates and engineered biomaterials.
Collapse
Affiliation(s)
- Shi-You Ding
- National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ferreira P, Ruiz-Dueñas FJ, Martínez MJ, van Berkel WJH, Martínez AT. Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme. FEBS J 2006; 273:4878-88. [PMID: 16999821 DOI: 10.1111/j.1742-4658.2006.05488.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aryl-alcohol oxidase provides H(2)O(2) for lignin biodegradation, a key process for carbon recycling in land ecosystems that is also of great biotechnological interest. However, little is known of the structural determinants of the catalytic activity of this fungal flavoenzyme, which oxidizes a variety of polyunsaturated alcohols. Different alcohol substrates were docked on the aryl-alcohol oxidase molecular structure, and six amino acid residues surrounding the putative substrate-binding site were chosen for site-directed mutagenesis modification. Several Pleurotus eryngii aryl-alcohol oxidase variants were purified to homogeneity after heterologous expression in Emericella nidulans, and characterized in terms of their steady-state kinetic properties. Two histidine residues (His502 and His546) are strictly required for aryl-alcohol oxidase catalysis, as shown by the lack of activity of different variants. This fact, together with their location near the isoalloxazine ring of FAD, suggested a contribution to catalysis by alcohol activation, enabling its oxidation by flavin-adenine dinucleotide (FAD). The presence of two aromatic residues (at positions 92 and 501) is also required, as shown by the conserved activity of the Y92F and F501Y enzyme variants and the strongly impaired activity of Y92A and F501A. By contrast, a third aromatic residue (Tyr78) does not seem to be involved in catalysis. The kinetic and spectral properties of the Phe501 variants suggested that this residue could affect the FAD environment, modulating the catalytic rate of the enzyme. Finally, L315 affects the enzyme k(cat), although it is not located in the near vicinity of the cofactor. The present study provides the first evidence for the role of aryl-alcohol oxidase active site residues.
Collapse
Affiliation(s)
- Patricia Ferreira
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Schirp A, Loge F, Aust S, Swaner P, Turner G, Wolcott M. Production and characterization of natural fiber-reinforced thermoplastic composites using wheat straw modified with the fungusPleurotus ostreatus. J Appl Polym Sci 2006. [DOI: 10.1002/app.24724] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Temporal and spatial expression of ostreolysin during development of the oyster mushroom (Pleurotus ostreatus). ACTA ACUST UNITED AC 2005. [DOI: 10.1017/s0953756204002187] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|