1
|
Morita Y, Yoshida A, Ye S, Tomita T, Yoshida M, Kosono S, Nishiyama M. Protein-protein interaction-mediated regulation of lysine biosynthesis of Thermus thermophilus through the function-unknown protein LysV. J GEN APPL MICROBIOL 2023; 69:91-101. [PMID: 37357393 DOI: 10.2323/jgam.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Thermus thermophilus biosynthesizes lysine via α-aminoadipate as an intermediate using the amino-group carrier protein, LysW, to transfer the attached α-aminoadipate and its derivatives to biosynthetic enzymes. A gene named lysV, which encodes a hypothetical protein similar to LysW, is present in the lysine biosynthetic gene cluster. Although the knockout of lysV did not affect lysine auxotrophy, lysV homologs are conserved in the lysine biosynthetic gene clusters of microorganisms belonging to the phylum Deinococcus-Thermus, suggesting a functional role for LysV in lysine biosynthesis. Pulldown assays and crosslinking experiments detected interactions between LysV and all of the biosynthetic enzymes requiring LysW for reactions, and the activities of most of all these enzymes were affected by LysV. These results suggest that LysV modulates the lysine biosynthesis through protein-protein interactions.
Collapse
Affiliation(s)
- Yutaro Morita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Ayako Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Siyan Ye
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takeo Tomita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Minoru Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science
| | - Saori Kosono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
2
|
Aryal UK, Ding Z, Hedrick V, Sobreira TJP, Kihara D, Sherman LA. Analysis of Protein Complexes in the Unicellular Cyanobacterium Cyanothece ATCC 51142. J Proteome Res 2018; 17:3628-3643. [PMID: 30216071 DOI: 10.1021/acs.jproteome.8b00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The unicellular cyanobacterium Cyanothece ATCC 51142 is capable of oxygenic photosynthesis and biological N2 fixation (BNF), a process highly sensitive to oxygen. Previous work has focused on determining protein expression levels under different growth conditions. A major gap of our knowledge is an understanding on how these expressed proteins are assembled into complexes and organized into metabolic pathways, an area that has not been thoroughly investigated. Here, we combined size-exclusion chromatography (SEC) with label-free quantitative mass spectrometry (MS) and bioinformatics to characterize many protein complexes from Cyanothece 51142 cells grown under a 12 h light-dark cycle. We identified 1386 proteins in duplicate biological replicates, and 64% of those proteins were identified as putative complexes. Pairwise computational prediction of protein-protein interaction (PPI) identified 74 822 putative interactions, of which 2337 interactions were highly correlated with published protein coexpressions. Many sequential glycolytic and TCA cycle enzymes were identified as putative complexes. We also identified many membrane complexes that contain cytoplasmic domains. Subunits of NDH-1 complex eluted in a fraction with an approximate mass of ∼669 kDa, and subunits composition revealed coexistence of distinct forms of NDH-1 complex subunits responsible for respiration, electron flow, and CO2 uptake. The complex form of the phycocyanin beta subunit was nonphosphorylated, and the monomer form was phosphorylated at Ser20, suggesting phosphorylation-dependent deoligomerization of the phycocyanin beta subunit. This study provides an analytical platform for future studies to reveal how these complexes assemble and disassemble as a function of diurnal and circadian rhythms.
Collapse
|
3
|
Fichman Y, Gerdes SY, Kovács H, Szabados L, Zilberstein A, Csonka LN. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev Camb Philos Soc 2014; 90:1065-99. [PMID: 25367752 DOI: 10.1111/brv.12146] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022]
Abstract
Proline is not only an essential component of proteins but it also has important roles in adaptation to osmotic and dehydration stresses, redox control, and apoptosis. Here, we review pathways of proline biosynthesis in the three domains of life. Pathway reconstruction from genome data for hundreds of eubacterial and dozens of archaeal and eukaryotic organisms revealed evolutionary conservation and variations of this pathway across different taxa. In the most prevalent pathway of proline synthesis, glutamate is phosphorylated to γ-glutamyl phosphate by γ-glutamyl kinase, reduced to γ-glutamyl semialdehyde by γ-glutamyl phosphate reductase, cyclized spontaneously to Δ(1)-pyrroline-5-carboxylate and reduced to proline by Δ(1)-pyrroline-5-carboxylate reductase. In higher plants and animals the first two steps are catalysed by a bi-functional Δ(1) -pyrroline-5-carboxylate synthase. Alternative pathways of proline formation use the initial steps of the arginine biosynthetic pathway to ornithine, which can be converted to Δ(1)-pyrroline-5-carboxylate by ornithine aminotransferase and then reduced to proline or converted directly to proline by ornithine cyclodeaminase. In some organisms, the latter pathways contribute to or could be fully responsible for the synthesis of proline. The conservation of proline biosynthetic enzymes and significance of specific residues for catalytic activity and allosteric regulation are analysed on the basis of protein structural data, multiple sequence alignments, and mutant studies, providing novel insights into proline biosynthesis in organisms. We also discuss the transcriptional control of the proline biosynthetic genes in bacteria and plants.
Collapse
Affiliation(s)
- Yosef Fichman
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv 6997803, Israel
| | - Svetlana Y Gerdes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, U.S.A
| | - Hajnalka Kovács
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Aviah Zilberstein
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv 6997803, Israel
| | - Laszlo N Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
4
|
Pérez-Arellano I, Carmona-Álvarez F, Gallego J, Cervera J. Molecular Mechanisms Modulating Glutamate Kinase Activity. Identification of the Proline Feedback Inhibitor Binding Site. J Mol Biol 2010; 404:890-901. [DOI: 10.1016/j.jmb.2010.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 11/16/2022]
|
5
|
Glutamate kinase from Thermotoga maritima: characterization of a thermophilic enzyme for proline biosynthesis. Extremophiles 2010; 14:409-15. [PMID: 20544237 DOI: 10.1007/s00792-010-0320-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Glutamate kinase (GK), an enzyme involved in osmoprotection in plants and microorganisms, catalyses the first and controlling step of proline biosynthesis. The proB gene encoding GK was cloned from the hyperthermophilic bacterium Thermotoga maritima and overexpressed in Escherichia coli, and the resulting protein was purified to homogeneity in three simple steps. T. maritima GK behaved as a tetramer, showing maximal activity at 83 degrees C, and was inhibited by ADP and proline. Although T. maritima GK exhibited high amino acid similarity to the mesophilic E. coli GK, it was less dependent of Mg ions and was not aggregated in the presence of proline. Moreover, it displayed a greater thermostability and higher catalytic efficiency than its mesophilic counterpart at elevated temperatures.
Collapse
|
6
|
Pérez-Arellano I, Carmona-Alvarez F, Martínez AI, Rodríguez-Díaz J, Cervera J. Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci 2010; 19:372-82. [PMID: 20091669 DOI: 10.1002/pro.340] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pyrroline-5-carboxylate synthase (P5CS) is a bifunctional enzyme that exhibits glutamate kinase (GK) and gamma-glutamyl phosphate reductase (GPR) activities. The enzyme is highly relevant in humans because it belongs to a combined route for the interconversion of glutamate, ornithine and proline. The deficiency of P5CS activity in humans is associated with a rare, inherited metabolic disease. It is well established that some bacteria and plants accumulate proline in response to osmotic stress. The alignment of P5CSs from different species and analysis of the solved structures of GK and GPR reveal high sequence and structural conservation. The information acquired from different mutant enzymes with increased osmotolerant properties, together with the position of the insertion found in the longer human isoform, permit the delimitation of the regulatory site of GK and P5CS and the proposal of a model of P5CS architecture. Additionally, the GK moiety of the human enzyme has been modeled and the known clinical mutations and polymorphisms have been mapped.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Molecular Recognition Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | |
Collapse
|
7
|
Sekine T, Kawaguchi A, Hamano Y, Takagi H. Desensitization of feedback inhibition of the Saccharomyces cerevisiae gamma-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol 2007; 73:4011-9. [PMID: 17449694 PMCID: PMC1932739 DOI: 10.1128/aem.00730-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. The yeast Saccharomyces cerevisiae induces trehalose or glycerol synthesis but does not increase intracellular proline levels during various stresses. Using a proline-accumulating mutant, we previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. This mutant was recently shown to carry an allele of PRO1 which encodes the Asp154Asn mutant gamma-glutamyl kinase (GK), the first enzyme of the proline biosynthetic pathway. Here, enzymatic analysis of recombinant proteins revealed that the GK activity of S. cerevisiae is subject to feedback inhibition by proline. The Asp154Asn mutant was less sensitive to feedback inhibition than wild-type GK, leading to proline accumulation. To improve the enzymatic properties of GK, PCR random mutagenesis in PRO1 was employed. The mutagenized plasmid library was introduced into an S. cerevisiae non-proline-utilizing strain, and proline-overproducing mutants were selected on minimal medium containing the toxic proline analogue azetidine-2-carboxylic acid. We successfully isolated several mutant GKs that, due to extreme desensitization to inhibition, enhanced the ability to synthesize proline better than the Asp154Asn mutant. The amino acid changes were localized at the region between positions 142 and 154, probably on the molecular surface, suggesting that this region is involved in allosteric regulation. Furthermore, we found that yeast cells expressing Ile150Thr and Asn142Asp/Ile166Val mutant GKs were more tolerant to freezing stress than cells expressing the Asp154Asn mutant.
Collapse
Affiliation(s)
- Tomoko Sekine
- Department of Bioscience, Fukui Prefectural University, Japan
| | | | | | | |
Collapse
|
8
|
Kosuge T, Hoshino T. The alpha-aminoadipate pathway for lysine biosynthesis is widely distributed among Thermus strains. J Biosci Bioeng 2005; 88:672-5. [PMID: 16232683 DOI: 10.1016/s1389-1723(00)87099-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1999] [Accepted: 08/24/1999] [Indexed: 11/21/2022]
Abstract
We previously reported that lysine is synthesized through the alpha-aminoadipate pathway in Thermus thermophilus HB27 (T. Kosuge and T. Hoshino, FEMS Microbiol. Lett., 169, 361-367, 1998), which was the first report demonstrating the synthesis of lysine through the alpha-aminoadipate pathway in Bacteria. LYS20 and LYS4, which respectively encode homocitrate synthase and homoaconitate hydratase have already been identified as the lysine biosynthetic genes in T. thermophilus HB27. In the present work, we examined eight other Thermus strains for the existence of genes belonging to the alpha-aminoadipate pathway. BamHI- or BglII-digested total DNAs from the eight strains were analyzed by Southern hybridization using LYS20 or LYS4 as a DNA probe. DNA fragments that hybridized with one or both of the genes were detected in seven of the Thermus strains but not in T. ruber. The sizes of the fragments that hybridized with the LYS20 and LYS4 probes were the same among T. thermophilus HB27, T. thermophilus HB8, "T. caldophilus" GK24, and four "T. flavus" strains. For example, a similar 4.3-kb fragment was detected in each of the above seven strains. In this fragment, four open reading frames were found downstream of the LYS4 gene in T. thermophilus HB27. Gene disruption experiments revealed that three open reading frames are involved in lysine biosynthesis in T. thermophilus HB27. These results strongly suggest that the lysine biosynthetic gene cluster for the alpha-aminoadipate pathway is widely distributed in the genus Thermus.
Collapse
Affiliation(s)
- T Kosuge
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | |
Collapse
|
9
|
Terao Y, Nakamori S, Takagi H. Gene dosage effect of L-proline biosynthetic enzymes on L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 2004; 69:6527-32. [PMID: 14602584 PMCID: PMC262311 DOI: 10.1128/aem.69.11.6527-6532.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that L-proline has cryoprotective activity in Saccharomyces cerevisiae. A freeze-tolerant mutant with L-proline accumulation was recently shown to carry an allele of the PRO1 gene encoding gamma-glutamyl kinase, which resulted in a single amino acid substitution (Asp154Asn). Interestingly, this mutation enhanced the activities of gamma-glutamyl kinase and gamma-glutamyl phosphate reductase, both of which catalyze the first two steps of L-proline synthesis and which together may form a complex in vivo. Here, we found that the Asp154Asn mutant gamma-glutamyl kinase was more thermostable than the wild-type enzyme, which suggests that this mutation elevated the apparent activities of two enzymes through a stabilization of the complex. We next examined the gene dosage effect of three L-proline biosynthetic enzymes, including Delta(1)-pyrroline-5-carboxylate reductase, which converts Delta(1)-pyrroline-5-carboxylate into L-proline, on L-proline accumulation and freeze tolerance in a non-L-proline-utilizing strain. Overexpression of the wild-type enzymes has no influence on L-proline accumulation, which suggests that the complex is very unstable in nature. However, co-overexpression of the mutant gamma-glutamyl kinase and the wild-type gamma-glutamyl phosphate reductase was effective for L-proline accumulation, probably due to a stabilization of the complex. These results indicate that both enzymes, not Delta(1)-pyrroline-5-carboxylate reductase, are rate-limiting enzymes in yeast cells. A high tolerance for freezing clearly correlated with higher levels of L-proline in yeast cells. Our findings also suggest that, in addition to its cryoprotective activity, intracellular L-proline could protect yeast cells from damage by oxidative stress. The approach described here provides a valuable method for breeding novel yeast strains that are tolerant of both freezing and oxidative stresses.
Collapse
Affiliation(s)
- Yukiyasu Terao
- Department of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan
| | | | | |
Collapse
|
10
|
Fujita T, Maggio A, Garcia-Rios M, Stauffacher C, Bressan RA, Csonka LN. Identification of regions of the tomato gamma-glutamyl kinase that are involved in allosteric regulation by proline. J Biol Chem 2003; 278:14203-10. [PMID: 12566437 DOI: 10.1074/jbc.m212177200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first step of proline biosynthesis is catalyzed by gamma-glutamyl kinase (GK). To better understand the feedback inhibition properties of GK, we randomly mutagenized a plasmid carrying tomato tomPRO1 cDNA, which encodes proline-sensitive GK. A pool of mutagenized plasmids was transformed into an Escherichia coli GK mutant, and proline-overproducing derivatives were selected on minimal medium containing the toxic proline analog 3,4-dehydro-dl-proline. Thirty-two mutations that conferred 3,4-dehydro-dl-proline resistance were obtained. Thirteen different single amino acid substitutions were identified at nine different residues. The residues were distributed throughout the N-terminal two-thirds of the polypeptide, but 9 mutations affecting 6 residues were in a cluster of 16 residues. GK assays revealed that these amino acid substitutions caused varying degrees of diminished sensitivity to proline feedback inhibition and also resulted in a range of increased proline accumulation in vivo. GK belongs to a family of amino acid kinases, and a predicted three-dimensional model of this enzyme was constructed on the basis of the crystal structures of three related kinases. In the model, residues that were identified as important for allosteric control were located close to each other, suggesting that they may contribute to the structure of a proline binding site. The putative allosteric binding site partially overlaps the dimerization and substrate binding domains, suggesting that the allosteric regulation of GK may involve a direct structural interaction between the proline binding site and the dimerization and catalytic domains.
Collapse
Affiliation(s)
- Tomomichi Fujita
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906-1392, USA
| | | | | | | | | | | |
Collapse
|
11
|
Morita Y, Nakamori S, Takagi H. L-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase. Appl Environ Microbiol 2003; 69:212-9. [PMID: 12513997 PMCID: PMC152471 DOI: 10.1128/aem.69.1.212-219.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously isolated a mutant which showed a high tolerance to freezing that correlated with higher levels of intracellular L-proline derived from L-proline analogue-resistant mutants. The mutation responsible for the analogue resistance and L-proline accumulation was a single nuclear dominant mutation. By introducing the mutant-derived genomic library into a non-L-proline-utilizing strain, the mutant was found to carry an allele of the wild-type PRO1 gene encoding gamma-glutamyl kinase, which resulted in a single amino acid replacement; Asp (GAC) at position 154 was replaced by Asn (AAC). Interestingly, the allele of PRO1 was shown to enhance the activities of gamma-glutamyl kinase and gamma-glutamyl phosphate reductase, both of which catalyze the first two steps of L-proline synthesis from L-glutamate and which together may form a complex in vivo. When cultured in liquid minimal medium, yeast cells expressing the mutated gamma-glutamyl kinase were found to accumulate intracellular L-proline and showed a prominent increase in cell viability after freezing at -20 degrees C compared to the viability of cells harboring the wild-type PRO1 gene. These results suggest that the altered gamma-glutamyl kinase results in stabilization of the complex or has an indirect effect on gamma-glutamyl phosphate reductase activity, which leads to an increase in L-proline production in Saccharomyces cerevisiae. The approach described in this paper could be a practical method for breeding novel freeze-tolerant yeast strains.
Collapse
Affiliation(s)
- Yuko Morita
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Fukui 910-1195, Japan
| | | | | |
Collapse
|
12
|
Sleator RD, Gahan CG, Hill C. Mutations in the listerial proB gene leading to proline overproduction: effects on salt tolerance and murine infection. Appl Environ Microbiol 2001; 67:4560-5. [PMID: 11571156 PMCID: PMC93203 DOI: 10.1128/aem.67.10.4560-4565.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The observed sensitivity of Listeria monocytogenes to the toxic proline analogue L-azetidine-2-carboxylic acid (AZ) suggested that proline synthesis in Listeria may be regulated by feedback inhibition of gamma-glutamyl kinase (GK), the first enzyme of the proline biosynthesis pathway, encoded by the proB gene. Taking advantage of the Epicurian coli mutator strain XL1-Red, we performed random mutagenesis of the recently described proBA operon and generated three independent mutations in the listerial proB homologue, leading to proline overproduction and salt tolerance when expressed in an E. coli (DeltaproBA) background. While each of the mutations (located within a conserved 26-amino-acid region of GK) was shown to confer AZ resistance (AZ(r)) on an L. monocytogenes proBA mutant, listerial transformants failed to exhibit the salt-tolerant phenotype observed in E. coli. Since proline accumulation has previously been linked to the virulence potential of a number of pathogenic bacteria, we analyzed the effect of proline overproduction on Listeria pathogenesis. However, our results suggest that as previously described for proline auxotrophy, proline hyperproduction has no apparent impact on the virulence potential of Listeria.
Collapse
Affiliation(s)
- R D Sleator
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
13
|
KOSUGE TAKEHIDE, GAO DAI, HOSHINO TAKAYUKI. Analysis of the Methionine Biosynthetic Pathway in the Extremely Thermophilic Eubacterium Thermus thermohilus. J Biosci Bioeng 2000. [DOI: 10.1263/jbb.90.271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Kosuge T, Gao D, Hoshino T. Analysis of the methionine biosynthetic pathway in the extremely thermophilic eubacterium Thermus thermophilus. J Biosci Bioeng 2000; 90:271-9. [PMID: 16232856 DOI: 10.1016/s1389-1723(00)80081-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2000] [Accepted: 06/07/2000] [Indexed: 11/25/2022]
Abstract
Four DNA fragments that could rescue the mutations of four Met- mutants were cloned from Thermus thermophilus HB27 and their complete nucleotide sequences were determined. Two of the four fragments respectively contained the greater parts of the metF and metH genes, the predicted amino acid sequences of which showed identities of 30.8% and 32.7% with 5,10-methylenetetrahydrofolate reductase (EC 1.7.99.5) and vitamin B12-dependent homocysteine transmethylase (EC 2.1.1.13) of Escherichia coli. The other two DNA fragments, which overlapped one another, contained two open reading frames whose predicted amino acid sequences were respectively similar to those of O-acetylhomoserine sulfhydrylase (EC 4.2.99.10, the product of the MET17 gene) and homoserine O-acetyltransferase (EC 2.3.1.31, the product of the MET2 gene) of Saccharomyces cerevisiae. The metF, metH, MET2, and MET17 genes of T. thermophilus were disrupted by introducing the heat-stable kanamycin nucleotidyltransferase gene into the genome. Each transformant showed methionine auxotrophy. Both the MET2- and MET17-disrupted mutants could grow in a minimal medium containing homocysteine but not in the same medium containing succinylhomoserine or cystathionine. In contrast, the metF- and metH-disrupted mutants could not grow in the minimal medium containing homocysteine. These results suggest that in T. thermophilus, homoserine is directly converted to homocysteine via O-acetylhomoserine and that homocysteine is methylated to synthesize methionine.
Collapse
Affiliation(s)
- T Kosuge
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|