1
|
Basu S, Rabara RC, Negi S, Shukla P. Engineering PGPMOs through Gene Editing and Systems Biology: A Solution for Phytoremediation? Trends Biotechnol 2018; 36:499-510. [DOI: 10.1016/j.tibtech.2018.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/17/2023]
|
2
|
Peck LS. Organisms and responses to environmental change. Mar Genomics 2011; 4:237-43. [DOI: 10.1016/j.margen.2011.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 11/24/2022]
|
3
|
Liang B, Jiang J, Zhang J, Zhao Y, Li S. Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role. Crit Rev Microbiol 2011; 38:95-110. [DOI: 10.3109/1040841x.2011.618114] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Van Houdt R, Monchy S, Leys N, Mergeay M. New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie van Leeuwenhoek 2009; 96:205-26. [DOI: 10.1007/s10482-009-9345-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|
5
|
Peters M, Tomikas A, Nurk A. Organization of the horizontally transferred pheBA operon and its adjacent genes in the genomes of eight indigenous Pseudomonas strains. Plasmid 2005; 52:230-6. [PMID: 15518880 DOI: 10.1016/j.plasmid.2004.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/12/2004] [Indexed: 11/27/2022]
Abstract
Horizontal transfer of genes encoding phenol degradation (pheBA) in the environment has been previously described. Complete or partial phe-operon was redetected in plasmids of several indigenous Pseudomonas strains isolated from the river water. The sequences of up- and downstream regions of the acquired phe-DNA in eight different plasmids were analyzed. In all cases, miniature insertional elements or putative transposase genes were found suggesting transposase dependent pheBA integration into plasmids. In three cases, an open reading frame encoding homologue to the transcription regulator protein (CatR) of the pheBA operon was determined.
Collapse
Affiliation(s)
- Maire Peters
- Institute of Molecular and Cell Biology, University of Tartu and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia.
| | | | | |
Collapse
|
6
|
Providenti MA, Mampel J, MacSween S, Cook AM, Wyndham RC. Comamonas testosteroni BR6020 possesses a single genetic locus for extradiol cleavage of protocatechuate. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2157-2167. [PMID: 11495993 DOI: 10.1099/00221287-147-8-2157] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A key intermediate for biodegradation of various distinct aromatic growth substrates in Comamonas testosteroni is protocatechuate (Pca), which is metabolized by the 4,5-extradiol (meta) ring fission pathway. A locus harbouring genes from C. testosteroni BR6020 was cloned, dubbed pmd, which encodes the enzymes that degrade Pca. The identity of pmdAB, encoding respectively the alpha- and beta-subunit of the Pca ring-cleavage enzyme, was confirmed by N-terminal sequencing and molecular mass determination of both subunits from the separated enzyme. Disruption of pmdA resulted in a strain unable to grow on Pca and a variety of aromatic substrates funnelled through this compound (m- and p-hydroxybenzoate, p-sulfobenzoate, phthalate, isophthalate, terephthalate, vanillate, isovanillate and veratrate). Growth on benzoate and o-aminobenzoate (anthranilate) was not affected in this strain, indicating that these substrates are metabolized via a different lower pathway. Tentative functions for the products of other pmd genes were assigned based on sequence identity and/or similarity to proteins from other proteobacteria involved in uptake or metabolism of aromatic compounds. This study provides evidence for a single lower pathway in C. testosteroni for metabolism of Pca, which is generated by different upper pathways acting on a variety of aromatic substrates.
Collapse
Affiliation(s)
- Miguel A Providenti
- Faculty of Biology, The University, D-78457, Konstanz, Germany2
- Institute of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, CanadaK1S 5B61
| | - Jörg Mampel
- Faculty of Biology, The University, D-78457, Konstanz, Germany2
| | - Scott MacSween
- Institute of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, CanadaK1S 5B61
| | - Alasdair M Cook
- Faculty of Biology, The University, D-78457, Konstanz, Germany2
| | - R Campbell Wyndham
- Institute of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, CanadaK1S 5B61
| |
Collapse
|
7
|
Providenti MA, Wyndham RC. Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl Environ Microbiol 2001; 67:3530-41. [PMID: 11472929 PMCID: PMC93053 DOI: 10.1128/aem.67.8.3530-3541.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Comamonas testosteroni BR60 (formerly Alcaligenes sp. strain BR60), catabolism of the pollutant 3-chlorobenzoate (3CBA) is initiated by enzymes encoded by cbaABC, an operon found on composite transposon Tn5271 of plasmid pBRC60. The cbaABC gene product CbaABC converts 3CBA to protocatechuate (PCA) and 5-Cl-PCA, which are then metabolized by the chromosomal PCA meta (extradiol) ring fission pathway. In this study, cbaA was found to possess a sigma(70) type promoter. O(2) uptake experiments with whole cells and expression studies with cbaA-lacZ constructs showed that cbaABC was induced by 3CBA. Benzoate, which is not a substrate of the 3CBA pathway, was a gratuitous inducer, and CbaR, a MarR family repressor coded for by a divergently transcribed gene upstream of cbaABC, could modulate induction mediated by benzoate. Purified CbaR bound specifically to two regions of the cbaA promoter (P(cbaA)); site I, a high-affinity site, is between the transcriptional start point (position +1) and the start codon of cbaA, while site II, a lower-affinity site, overlaps position +1. 3CBA at concentrations as low as 40 microM interfered with binding to P(cbaA). PCA also interfered with binding, while benzoate only weakly disrupted binding. Unexpectedly, benzoate with a hydroxyl or carboxyl at position 3 improved CbaR binding. Data are also presented that suggest that an unidentified regulator is encoded on the chromosome that induces cbaABC in response to benzoate and 3CBA.
Collapse
Affiliation(s)
- M A Providenti
- Institute of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | |
Collapse
|
8
|
Clément P, Pieper DH, González B. Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2141-2148. [PMID: 11495991 DOI: 10.1099/00221287-147-8-2141] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ralstonia eutropha JMP134(pJP4) is able to grow on minimal media containing the pollutants 3-chlorobenzoate (3-CB) or 2,4-dichlorophenoxyacetate (2,4-D). tfd genes from the 88 kb plasmid pJP4 encode enzymes involved in the degradation of these compounds. During growth of strain JMP134 in liquid medium containing 3-CB, a derivative strain harbouring a approximately 95 kb plasmid was isolated. This derivative, designated JMP134(pJP4-F3), had an improved ability to grow on 3-CB, but had lost the ability to grow on 2,4-D. Sequence analysis of pJP4-F3 indicated that the plasmid had undergone a deletion of approximately 16 kb, which included the tfdA-tfdS intergenic region, spanning the tfdA gene to a previously unreported IS1071 element. The loss of the tfdA gene explains the failure of the derivative to grow on 2,4-D. A approximately 23 kb duplication of the region spanning tfdR-tfdD(II)C(II)E(II)F(II)-tfdB(II)-tfdK-ISJP4-tfdT-tfdC(I)D(I)E(I)F(I)-tfdB(I), giving rise to a 51-kb-long inverted repeat, was also observed. The increase in gene copy number for the tfdCD(DC)EF gene cluster may provide an explanation for the derivative strain's improved growth on 3-CB. These observations are additional examples of the metabolic plasticity of R. eutropha JMP134, one of the more versatile pollutant-degrading bacteria.
Collapse
Affiliation(s)
- Pascale Clément
- Laboratorio de Microbiologı́a, Departamento de Genética Molecular y Microbiologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Casilla 114-D, Santiago, Chile1
| | - Dietmar H Pieper
- Division of Microbiology, National Research Centre for Biotechnology - GBF, Braunschweig, Germany2
| | - Bernardo González
- Laboratorio de Microbiologı́a, Departamento de Genética Molecular y Microbiologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Casilla 114-D, Santiago, Chile1
| |
Collapse
|
9
|
Boon N, Goris J, De Vos P, Verstraete W, Top EM. Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol 2001; 67:1107-15. [PMID: 11229899 PMCID: PMC92702 DOI: 10.1128/aem.67.3.1107-1115.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Accepted: 12/05/2000] [Indexed: 11/20/2022] Open
Abstract
We examined the diversity of the plasmids and of the gene tdnQ, involved in the oxidative deamination of aniline, in five bacterial strains that are able to metabolize both aniline and 3-chloroaniline (3-CA). Three strains have been described and identified previously, i.e., Comamonas testosteroni I2 and Delftia acidovorans CA28 and BN3.1. Strains LME1 and B8c were isolated in this study from linuron-treated soil and from a wastewater treatment plant, respectively, and were both identified as D. acidovorans. Both Delftia and Comamonas belong to the family Comamonadaceae. All five strains possess a large plasmid of ca. 100 kb, but the plasmids from only four strains could be transferred to a recipient strain by selection on aniline or 3-CA as a sole source of carbon and/or nitrogen. Plasmid transfer experiments and Southern hybridization revealed that the plasmid of strain I2 was responsible for total aniline but not 3-CA degradation, while the plasmids of strains LME1 and B8c were responsible only for the oxidative deamination of aniline. Several transconjugant clones that had received the plasmid from strain CA28 showed different degradative capacities: all transconjugants could use aniline as a nitrogen source, while only some of the transconjugants could deaminate 3-CA. For all four plasmids, the IS1071 insertion sequence of Tn5271 was found to be located on a 1.4-kb restriction fragment, which also hybridized with the tdnQ probe. This result suggests the involvement of this insertion sequence element in the dissemination of aniline degradation genes in the environment. By use of specific primers for the tdnQ gene from Pseudomonas putida UCC22, the diversity of the PCR-amplified fragments in the five strains was examined by denaturing gradient gel electrophoresis (DGGE). With DGGE, three different clusters of the tdnQ fragment could be distinguished. Sequencing data showed that the tdnQ sequences of I2, LME1, B8c, and CA28 were very closely related, while the tdnQ sequences of BN3.1 and P. putida UCC22 were only about 83% identical to the other sequences. Northern hybridization revealed that the tdnQ gene is transcribed only in the presence of aniline and not when only 3-CA is present.
Collapse
Affiliation(s)
- N Boon
- Laboratory of Microbial Ecology and Technology, Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|