1
|
Wa Y, Zhao X, Zhang C, Qu H, Chen D, Chen X, Huang Y, Gu R. The transcriptional regulation effects of histidine, isoleucine and glutamate on free exopolysaccharide biosynthesis of Streptococcus thermophilus 937. Front Microbiol 2025; 15:1476940. [PMID: 39845036 PMCID: PMC11751036 DOI: 10.3389/fmicb.2024.1476940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction The free exopolysaccharide (f-EPS) produced by Streptococcus thermophilus is a natural texture modifier and has a variety of prebiotic activities. Our previous studies showed f-EPS production from S. thermophilus 937 was increased 2-fold in the presence of 15 mM of glutamate, isoleucine, and histidine in the chemically defined medium. Methods In this study, we used transcriptomics and qPCR to further explore the specific mechanism of the enhanced effect of 3 amino acids on the f-EPS biosynthesis of S. thermophilus 937. Results The mRNA-seq analysis and targeted pathway analysis indicated that genes associated with histidine/valine/leucine/ isoleucine/phenylalanine/tyrosine/tryptophan synthesis, galactose metabolism, purine metabolism and quorum sensing in S. thermophilus 937 were significantly upregulated under increasing concentrations of histidine, isoleucine and glutamate in chemically defined medium (CDM). qPCR results showed that the significant upregulation of galactose metabolism- and nucleotide sugar synthesis-related genes was attributed to the increase in glutamate concentration, and glutamate could induce the expression of galR. The upregulation of epsA, epsB, and epsD transcript levels was caused by the increase in histidine concentration. The upregulation of transcript levels of genes related to phenylalanine/tyrosine/tryptophan/histidine/ valine/leucine/isoleucine synthesis was caused by the increase in isoleucine concentrations. Discussion This indicates that 3 amino acids have different mechanisms for enhancing the biosynthesis of f-EPS in S. thermophilus 937.
Collapse
Affiliation(s)
- Yunchao Wa
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Zhao
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenchen Zhang
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hengxian Qu
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dawei Chen
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Chen
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yujun Huang
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruixia Gu
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Hou C, Song X, Xiong Z, Wang G, Xia Y, Ai L. Genome-scale reconstruction of the metabolic network in Streptococcus thermophilus S-3 and assess urea metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1458-1469. [PMID: 37814322 DOI: 10.1002/jsfa.13026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/16/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengjie Hou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Huang C, Luo Y, Zeng B, Chen Y, Liu Y, Chen W, Liao X, Liu Y, Wang Y, Wang X. Branched-chain amino acids prevent obesity by inhibiting the cell cycle in an NADPH-FTO-m 6A coordinated manner. J Nutr Biochem 2023; 122:109437. [PMID: 37666478 DOI: 10.1016/j.jnutbio.2023.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Obesity has become a major health crisis in the past decades. Branched-chain amino acids (BCAA), a class of essential amino acids, exerted beneficial health effects with regard to obesity and its related metabolic dysfunction, although the underlying reason is unknown. Here, we show that BCAA supplementation alleviates high-fat diet (HFD)-induced obesity and insulin resistance in mice and inhibits adipogenesis in 3T3-L1 cells. Further, we find that BCAA prevent the mitotic clonal expansion (MCE) of preadipocytes by reducing cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2) expression. Mechanistically, BCAA decrease the concentration of nicotinamide adenine dinucleotide phosphate (NADPH) in adipose tissue and 3T3-L1 cells by reducing glucose-6-phosphate dehydrogenase (G6PD) expression. The reduced NADPH attenuates the expression of fat mass and obesity-associated (FTO) protein, a well-known m6A demethylase, to increase the N6-methyladenosine (m6A) levels of Ccna2 and Cdk2 mRNA. Meanwhile, the high m6A levels of Ccna2 and Cdk2 mRNA are recognized by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), which results in mRNA decay and reduction of their protein expressions. Overall, our data demonstrate that BCAA inhibit obesity and adipogenesis by reducing CDK2 and CCNA2 expression via an NADPH-FTO-m6A coordinated manner in vivo and in vitro, which raises a new perspective on the role of m6A in the BCAA regulation of obesity and adipogenesis.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yaojun Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Yang S, Bai M, Kwok LY, Zhong Z, Sun Z. The intricate symbiotic relationship between lactic acid bacterial starters in the milk fermentation ecosystem. Crit Rev Food Sci Nutr 2023; 65:728-745. [PMID: 37983125 DOI: 10.1080/10408398.2023.2280706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Fermentation is one of the most effective methods of food preservation. Since ancient times, food has been fermented using lactic acid bacteria (LAB). Fermented milk is a very intricate fermentation ecosystem, and the microbial metabolism of fermented milk largely determines its metabolic properties. The two most frequently used dairy starter strains are Streptococcus thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). To enhance both the culture growth rate and the flavor and quality of the fermented milk, it has long been customary to combine S. thermophilus and L. bulgaricus in milk fermentation due to their mutually beneficial and symbiotic relationship. On the one hand, the symbiotic relationship is reflected by the nutrient co-dependence of the two microbes at the metabolic level. On the other hand, more complex interaction mechanisms, such as quorum sensing between cells, are involved. This review summarizes the application of LAB in fermented dairy products and discusses the symbiotic mechanisms and interactions of milk LAB starter strains from the perspective of nutrient supply and intra- and interspecific quorum sensing. This review provides updated information and knowledge on microbial interactions in a fermented milk ecosystem.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Mei Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
5
|
Chen L, Liu R, Li S, Wu M, Yu H, Ge Q. Metabolism of hydrogen peroxide by Lactobacillus plantarum NJAU-01: A proteomics study. Food Microbiol 2023; 112:104246. [PMID: 36906310 DOI: 10.1016/j.fm.2023.104246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
This study aimed to investigate the time-course effect of Lactobacillus plantarum NJAU-01 in scavenging exogenous hydrogen peroxide (H2O2). The results showed that L. plantarum NJAU-01 at 107 CFU/mL was able to eliminate a maximum of 4 mM H2O2 within a prolonged lag phase and resume to proliferate during the following culture. Redox state in the start-lag phase (0 h, without the addition of H2O2), indicated by glutathione and protein sulfhydryl, was impaired in the lag phase (3 h and 12 h) and then gradually recovered during subsequent growing stages (20 h and 30 h). By using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and proteomics analysis, a total of 163 proteins such as PhoP family transcriptional regulator, glutamine synthetase, peptide methionine sulfoxide reductase, thioredoxin reductase, ribosomal proteins, acetolactate synthase, ATP binding subunit ClpX, phosphoglycerate kinase, UvrABC system protein A and UvrABC system protein B were identified as differential proteins across the entire growth phase. Those proteins were mainly involved in H2O2 sensing, protein synthesis, repairing proteins and DNA lesions, amino sugar and nucleotide sugar metabolism. Our data suggest that biomolecules of L. plantarum NJAU-01 are oxidized to passively consume H2O2 and are restored by the enhanced protein and/or gene repair systems.
Collapse
Affiliation(s)
- Lei Chen
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China.
| | - Suyun Li
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China.
| |
Collapse
|
6
|
Aleman RS, Paz D, Cedillos R, Tabora M, Olson DW, Aryana K. Attributes of Culture Bacteria as Influenced by Ingredients That Help Treat Leaky Gut. Microorganisms 2023; 11:microorganisms11040893. [PMID: 37110316 PMCID: PMC10144211 DOI: 10.3390/microorganisms11040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Consumers are becoming aware of functional ingredients such as medicinal herbs, polyphenols, mushrooms, amino acids, proteins, and probiotics more than ever before. Like yogurt and its probiotics, L-glutamine, quercetin, slippery elm bark, marshmallow root, N-acetyl-D-glucosamine, licorice root, maitake mushrooms, and zinc orotate have demonstrated health benefits through gut microbiota. The impact of these ingredients on yogurt starter culture bacteria characteristics is not well known. The objective of this study was to determine the influence of these ingredients on the probiotic characteristics, tolerance to gastric juices and lysozyme, protease activity, and viability of Streptococcus thermophilus STI-06 and Lactobacillus bulgaricus LB-12. Acid tolerance was determined at 0, 30, 60, 90, and 120 min of incubation, whereas bile tolerance was analyzed at 0, 4, and 8 h. The microbial growth was determined at 0, 2, 4, 6, 8, 10, 12, 14, and 16 h of incubation, while protease activity was evaluated at 0, 12, and 24 h. The application of marshmallow root, licorice root, and slippery elm bark improved bile tolerance and acid tolerance of S. thermophilus. These ingredients did not impact the bile tolerance, acid tolerance, and simulated gastric juice tolerance characteristics of L. bulgaricus over 8 h and 120 min (respectively) of incubation. Similarly, the growth of S. thermophilus and L. bulgaricus was not affected by any of these functional ingredients. The application of marshmallow root, N-acetyl-D-glucosamine, and maitake mushroom significantly increased the protease activity of S. thermophilus, whereas the protease activity of L. bulgaricus was not affected by any ingredient. Compared to the control, marshmallow root and quercetin samples had higher mean log counts and log counts for S. thermophilus on the simulated gastric juice and lysozyme resistance in vitro test, respectively. For L. bulgaricus, licorice root, quercetin, marshmallow root, and slippery elm bark samples had higher log counts than the control samples.
Collapse
|
7
|
Genome-Scale Metabolic Modeling Combined with Transcriptome Profiling Provides Mechanistic Understanding of Streptococcus thermophilus CH8 Metabolism. Appl Environ Microbiol 2022; 88:e0078022. [PMID: 35924931 PMCID: PMC9477255 DOI: 10.1128/aem.00780-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptococcus thermophilus is a lactic acid bacterium adapted toward growth in milk and is a vital component of starter cultures for milk fermentation. Here, we combine genome-scale metabolic modeling and transcriptome profiling to obtain novel metabolic insights into this bacterium. Notably, a refined genome-scale metabolic model (GEM) accurately representing S. thermophilus CH8 metabolism was developed. Modeling the utilization of casein as a nitrogen source revealed an imbalance in amino acid supply and demand, resulting in growth limitation due to the scarcity of specific amino acids, in particular sulfur amino acids. Growth experiments in milk corroborated this finding. A subtle interdependency of the redox balance and the secretion levels of the key metabolites lactate, formate, acetoin, and acetaldehyde was furthermore identified with the modeling approach, providing a mechanistic understanding of the factors governing the secretion product profile. As a potential effect of high expression of arginine biosynthesis genes, a moderate secretion of ornithine was observed experimentally, augmenting the proposed hypothesis of ornithine/putrescine exchange as part of the protocooperative interaction between S. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in yogurt. This study provides a foundation for future community modeling of food fermentations and rational development of starter strains with improved functionality. IMPORTANCEStreptococcus thermophilus is one the main organisms involved in the fermentation of milk and, increasingly, also in the fermentation of plant-based foods. The construction of a functional high-quality genome-scale metabolic model, in conjunction with in-depth transcriptome profiling with a focus on metabolism, provides a valuable resource for the improved understanding of S. thermophilus physiology. An example is the model-based prediction of the most significant route of synthesis for the characteristic yogurt flavor compound acetaldehyde and identification of metabolic principles governing the synthesis of other flavor compounds. Moreover, the systematic assessment of amino acid supply and demand during growth in milk provides insights into the key challenges related to nitrogen metabolism that is imposed on S. thermophilus and any other organism associated with the milk niche.
Collapse
|
8
|
Zhang R, Mu H, Li Z, Zeng J, Zhou Q, Li H, Wang S, Li X, Zhao X, Sun L, Chen W, Dong J, Yang R. Oral administration of branched-chain amino acids ameliorates high-fat diet-induced metabolic-associated fatty liver disease via gut microbiota-associated mechanisms. Front Microbiol 2022; 13:920277. [PMID: 35935188 PMCID: PMC9354786 DOI: 10.3389/fmicb.2022.920277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Branched-chain amino acids (BCAAs), essential amino acids for the human body, are mainly obtained from food. High levels of BCAAs in circulation are considered as potential markers of metabolic-associated fatty liver disease (MAFLD) in humans. However, there are conflicting reports about the effects of supplement of BCAAs on MAFLD, and research on BCAAs and gut microbiota is not comprehensive. Here, C57BL/6J mice were fed with a high-fat diet with or without BCAAs to elucidate the effects of BCAAs on the gut microbiota and metabolic functions in a mouse model of MAFLD. Compared to high-fat diet (HFD) feeding, BCAA supplementation significantly reduced the mouse body weight, ratio of liver/body weight, hepatic lipid accumulation, serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and alanine aminotransferase (ALT), and the expressions of the lipogenesis-related enzymes Fas, Acc, and Scd-1 and increased expressions of the lipolysis-related enzymes Cpt1A and Atgl in the liver. BCAAs supplementation also counteracted HFD-induced elevations in serum BCAAs levels by stimulating the enzymatic activity of BCKDH. Furthermore, BCAAs supplementation markedly improved the gut bacterial diversity and altered the gut microbiota composition and abundances, especially those of genera, in association with MAFLD and BCAAs metabolism. These data suggest that BCAA treatment improves HFD-induced MAFLD through mechanisms involving intestinal microbes.
Collapse
Affiliation(s)
- Ranran Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Institute of Geriatrics, Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Hongna Mu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ziyun Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Zeng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Hongxia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Siming Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xianghui Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xianghui Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Wenxiang Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Institute of Geriatrics, Peking University Fifth School of Clinical Medicine, Beijing, China
- *Correspondence: Ruiyue Yang,
| |
Collapse
|
9
|
Awussi AA, Roux E, Humeau C, Hafeez Z, Maigret B, Chang OK, Lecomte X, Humbert G, Miclo L, Genay M, Perrin C, Dary-Mourot A. Role of the Sortase A in the Release of Cell-Wall Proteinase PrtS in the Growth Medium of Streptococcus thermophilus 4F44. Microorganisms 2021; 9:microorganisms9112380. [PMID: 34835505 PMCID: PMC8623714 DOI: 10.3390/microorganisms9112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Growth of the lactic acid bacterium Streptococcus thermophilus in milk depends on its capacity to hydrolyze proteins of this medium through its surface proteolytic activity. Thus, strains exhibiting the cell envelope proteinase (CEP) PrtS are able to grow in milk at high cellular density. Due to its LPNTG motif, which is possibly the substrate of the sortase A (SrtA), PrtS is anchored to the cell wall in most S. thermophilus strains. Conversely, a soluble extracellular PrtS activity has been reported in the strain 4F44. It corresponds, in fact, to a certain proportion of PrtS that is not anchored to the cell wall but rather is released in the growth medium. The main difference between PrtS of strain 4F44 (PrtS4F44) and other PrtS concerns the absence of a 32-residue imperfect duplication in the prodomain of the CEP, postulated as being required for the maturation and correct subsequent anchoring of PrtS. In fact, both mature (without the prodomain at the N-terminal extremity) and immature (with the prodomain) forms are found in the soluble PrtS4F44 form along with an intact LPNTG at their C-terminal extremity. Investigations we present in this work show that (i) the imperfect duplication is not implied in PrtS maturation; (ii) the maturase PrtM is irrelevant in PrtS maturation which is probably automaturated; and (iii) SrtA allows for the PrtS anchoring in S. thermophilus but the SrtA of strain 4F44 (SrtA4F44) displays an altered activity.
Collapse
Affiliation(s)
- Ahoefa Ablavi Awussi
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Emeline Roux
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | | | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Bernard Maigret
- CNRS, Inria, LORIA, Université de Lorraine, F-54000 Nancy, France;
| | - Oun Ki Chang
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
- Hazard Substance Analysis Division, Gwangju Regional Office of Food and Drug Safety, Gwangju 10031, Korea
| | - Xavier Lecomte
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Gérard Humbert
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Laurent Miclo
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Magali Genay
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Clarisse Perrin
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Annie Dary-Mourot
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
- Correspondence:
| |
Collapse
|
10
|
Milk Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102: Proteolytic Profile and ACE-Inhibitory Activity. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Health benefits of probiotics and production of inhibitors of angiotensin converting enzyme (ACE) released during milk fermentation are well known. That is why in this investigation the proteolytic profile and ACE inhibitory capacity of peptide fractions from protein hydrolysis of milk during fermentation processes was analyzed. Milk fermentation was carried out inoculating 106 CFU of L. rhamnosus GG, S. thermophilus SY-102 and with both bacteria. The proteolytic profile was determined using: TNBS, SDS-PAGE and SEC-HPLC techniques. In vitro ACE inhibition capacity was measured. The pH of 4.5 was reached at 56 h when the milk was fermented with L. rhamnosus, at 12 h with S. thermophillus and at 41 h in the co-culture. Production of free amino groups corresponded with the profile of low molecular weight peptides observed by SDS-PAGE and SEC-HPLC. Co-culture fermentation showed both the highest concentration of low molecular weight peptides and the ACE inhibitory activity (>80%). Results indicated that the combination of lactic cultures could be useful in manufacture of fermented milk with an added value that goes beyond basic nutrition, such as the production of ACE-inhibitory peptides.
Collapse
|
11
|
Functional Analysis of Keto-Acid Reductoisomerase ILVC in the Entomopathogenic Fungus Metarhizium robertsii. J Fungi (Basel) 2021; 7:jof7090737. [PMID: 34575775 PMCID: PMC8471054 DOI: 10.3390/jof7090737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Ketol-acid reductoisomerase (ILVC) is the second enzyme in the branched-chain amino acid (BCAA) biosynthesis, which regulates many physiological activities in a variety of organisms from bacteria to fungi and plants. In this work, function mechanisms of ILVC in Metarhizium robertsii Metchnikoff (Hypocreales: Clavicipitaceae) were explored with site-directed mutagenesis, reductase activity assays and transcriptomics analysis. The reductase activity assays showed that ILVC from phytopathogenic fungi exhibited significantly higher activities than those from entomopathogenic fungi but lower than those from yeast. Site-directed mutagenesis and enzymatic activities of MrILVC with different active-site mutants (Arg-113, Ser-118, Asp-152, Asp-260, and Glu-264) confirmed that active sites of MrILVC are conserved with plant and bacterial ILVCs. Deleting MrilvC causes the complete failures of vegetative growth and conidial germination, feeding with branched-chain amino acids (BCAAs) recovers the fungal growth but not conidial germination, while both characteristics are restored when supplemented with yeast extract. Compared to ΔMrilvC cultured in czapek agar (CZA), plenty of genes involved in the biosynthesis of antibiotics and amino acids were up- or down-regulated in the wild type or ΔMrilvC feeding with either BCAAs or yeast extract. Further analysis showed some genes, such as catalase A, participate in mycelial growth and conidial germination was down-regulated in ΔMrilvC from CZA, revealing that MrILVC might control the fungal development by gene regulation and BCAAs or yeast extract could play partial roles of MrILVC. This study will advance our understanding of ILVC function mechanisms in fungi.
Collapse
|
12
|
Serotonin Exposure Improves Stress Resistance, Aggregation, and Biofilm Formation in the Probiotic Enterococcus faecium NCIMB10415. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of the microbiota–gut–brain axis in maintaining a healthy status is well recognized. In this bidirectional flux, the influence of host hormones on gut bacteria is crucial. However, data on commensal/probiotics are scarce since most reports analyzed the effects of human bioactive compounds on opportunistic strains, highlighting the risk of increased pathogenicity under stimulation. The present investigation examined the modifications induced by 5HT, a tryptophan-derived molecule abundant in the intestine, on the probiotic Enterococcus faecium NCIMB10415. Specific phenotypic modifications concerning the probiotic potential and possible effects of treated bacteria on dendritic cells were explored together with the comparative soluble proteome evaluation. Increased resistance to bile salts and ampicillin in 5HT-stimulated conditions relate with overexpression of specific proteins (among which Zn-beta-lactamases, a Zn-transport protein and a protein involved in fatty acid incorporation into the membrane). Better auto-aggregating properties and biofilm-forming aptitude are consistent with enhanced QS peptide transport. Concerning interaction with the host, E. faecium NCIMB10415 enhanced dendritic cell maturation, but no significant differences were observed between 5HT-treated and untreated bacteria; meanwhile, after 5HT exposure, some moonlight proteins possibly involved in tissue adhesion were found in higher abundance. Finally, the finding in stimulated conditions of a higher abundance of VicR, a protein involved in two-component signal transduction system (VicK/R), suggests the existence of a possible surface receptor (VicK) for 5HT sensing in the strain studied. These overall data indicate that E. faecium NCIMB10415 modifies its physiology in response to 5HT by improving bacterial interactions and resistance to stressors.
Collapse
|
13
|
Afshari R, Pillidge CJ, Dias DA, Osborn AM, Gill H. Biomarkers associated with cheese quality uncovered by integrative multi-omic analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Yan Z, He F, Xiao F, He H, Li D, Cong L, Lin L, Zhu H, Wu Y, Yan R, Li X, Shan H. A semi-tryptic peptide centric metaproteomic mining approach and its potential utility in capturing signatures of gut microbial proteolysis. MICROBIOME 2021; 9:12. [PMID: 33436102 PMCID: PMC7805185 DOI: 10.1186/s40168-020-00967-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Proteolysis regulation allows gut microbes to respond rapidly to dynamic intestinal environments by fast degradation of misfolded proteins and activation of regulatory proteins. However, alterations of gut microbial proteolytic signatures under complex disease status such as inflammatory bowel disease (IBD, including Crohn's disease (CD) and ulcerative colitis (UC)), have not been investigated. Metaproteomics holds the potential to investigate gut microbial proteolysis because semi-tryptic peptides mainly derive from endogenous proteolysis. RESULTS We have developed a semi-tryptic peptide centric metaproteomic mining approach to obtain a snapshot of human gut microbial proteolysis signatures. This approach employed a comprehensive meta-database, two-step multiengine database search, and datasets with high-resolution fragmentation spectra to increase the confidence of semi-tryptic peptide identification. The approach was validated by discovering altered proteolysis signatures of Escherichia coli heat shock response. Utilizing two published large-scale metaproteomics datasets containing 623 metaproteomes from 447 fecal and 176 mucosal luminal interface (MLI) samples from IBD patients and healthy individuals, we obtain potential signatures of altered gut microbial proteolysis at taxonomic, functional, and cleavage site motif levels. The functional alterations mainly involved microbial carbohydrate transport and metabolism, oxidative stress, cell motility, protein synthesis, and maturation. Altered microbial proteolysis signatures of CD and UC mainly occurred in terminal ileum and descending colon, respectively. Microbial proteolysis patterns exhibited low correlations with β-diversity and moderate correlations with microbial protease and chaperones levels, respectively. Human protease inhibitors and immunoglobulins were mainly negatively associated with microbial proteolysis patterns, probably because of the inhibitory effects of these host factors on gut microbial proteolysis events. CONCLUSIONS This semi-tryptic peptide centric mining strategy offers a label-free approach to discover signatures of in vivo gut microbial proteolysis events if experimental conditions are well controlled. It can also capture in vitro proteolysis signatures to facilitate the evaluation and optimization of experimental conditions. Our findings highlight the complex and diverse proteolytic events of gut microbiome, providing a unique layer of information beyond taxonomic and proteomic abundance. Video abstract.
Collapse
Affiliation(s)
- Zhixiang Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
| | - Feixiang He
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Fei Xiao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Huanhuan He
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Li Cong
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Lu Lin
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Huijin Zhu
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yanyan Wu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
15
|
Soybean peptides promote yoghurt fermentation and quality. Biotechnol Lett 2020; 42:1927-1937. [PMID: 32419046 DOI: 10.1007/s10529-020-02912-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES This research paper was to investigate the influence of soybean peptides addition on viable count of lactic acid bacteria, physicochemical parameters, flavor, and sensory evaluation of yoghurt. RESULTS The number of fermenting strains (Streptococcus thermophilus + Lactobacillus delbrueckii subsp. bulgaricus) cells in yoghurt (stored at 4 °C for 19 days) added with 0.2% (w/v) of soybean peptides (808.34 Da) reached 1.4 times higher bacterial number than in the control group. A total of 34 volatile substances were detected in this study, while there were 22 volatiles occurred in the control group yoghurt, 30 volatiles were detected in yoghurt added with 0.2% soybean peptides. There was no significant difference in sensory evaluation (p > 0.05) between the yoghurt with and without soybean peptides. CONCLUSIONS In our study, the addition of soybean peptides (0.2%) can be effective both in maintaining the viable bacterial count and yoghurt quality.
Collapse
|
16
|
Alexandraki V, Kazou M, Blom J, Pot B, Papadimitriou K, Tsakalidou E. Comparative Genomics of Streptococcus thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Front Microbiol 2019; 10:2916. [PMID: 31956321 PMCID: PMC6951406 DOI: 10.3389/fmicb.2019.02916] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Streptococcus thermophilus is a major starter for the dairy industry with great economic importance. In this study we analyzed 23 fully sequenced genomes of S. thermophilus to highlight novel aspects of the evolution, biology and technological properties of this species. Pan/core genome analysis revealed that the species has an important number of conserved genes and that the pan genome is probably going to be closed soon. According to whole genome phylogeny and average nucleotide identity (ANI) analysis, most S. thermophilus strains were grouped in two major clusters (i.e., clusters A and B). More specifically, cluster A includes strains with chromosomes above 1.83 Mbp, while cluster B includes chromosomes below this threshold. This observation suggests that strains belonging to the two clusters may be differentiated by gene gain or gene loss events. Furthermore, certain strains of cluster A could be further subdivided in subgroups, i.e., subgroup I (ASCC 1275, DGCC 7710, KLDS SM, MN-BM-A02, and ND07), II (MN-BM-A01 and MN-ZLW-002), III (LMD-9 and SMQ-301), and IV (APC151 and ND03). In cluster B certain strains formed one distinct subgroup, i.e., subgroup I (CNRZ1066, CS8, EPS, and S9). Clusters and subgroups observed for S. thermophilus indicate the existence of lineages within the species, an observation which was further supported to a variable degree by the distribution and/or the architecture of several genomic traits. These would include exopolysaccharide (EPS) gene clusters, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs)-CRISPR associated (Cas) systems, as well as restriction-modification (R-M) systems and genomic islands (GIs). Of note, the histidine biosynthetic cluster was found present in all cluster A strains (plus strain NCTC12958T) but was absent from all strains in cluster B. Other loci related to lactose/galactose catabolism and urea metabolism, aminopeptidases, the majority of amino acid and peptide transporters, as well as amino acid biosynthetic pathways were found to be conserved in all strains suggesting their central role for the species. Our study highlights the necessity of sequencing and analyzing more S. thermophilus complete genomes to further elucidate important aspects of strain diversity within this starter culture that may be related to its application in the dairy industry.
Collapse
Affiliation(s)
- Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
17
|
Lim YH, Foo HL, Loh TC, Mohamad R, Abdul Rahim R, Idrus Z. Optimized medium via statistical approach enhanced threonine production by Pediococcus pentosaceus TL-3 isolated from Malaysian food. Microb Cell Fact 2019; 18:125. [PMID: 31331395 PMCID: PMC6643317 DOI: 10.1186/s12934-019-1173-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Threonine is an essential amino acid that is extensively used in livestock industry as feed supplement due to its pronounced effect in improving the growth performance of animals. Application of genetically engineered bacteria for amino acid production has its share of controversies after eosinophils myalgia syndrome outbreak in 1980s. This has urged for continuous search for a food grade producer as a safer alternative for industrial amino acid production. Lactic acid bacteria (LAB) appear as an exceptional candidate owing to their non-pathogenic nature and reputation of Generally Recognized as Safe (GRAS) status. Recently, we have identified a LAB, Pediococcus pentosaceus TL-3, isolated from Malaysian food as a potential threonine producer. Thus, the objective of this study was to enhance the threonine production by P. pentosaceus TL-3 via optimized medium developed by using Plackett-Burman design (PBD) and central composite design (CCD). RESULTS Molasses, meat extract, (NH4)2SO4, and MnSO4 were identified as the main medium components for threonine production by P. pentosaceus TL-3. The optimum concentration of molasses, meat extract, (NH4)2SO4 and MnSO4 were found to be 30.79 g/L, 25.30 g/L, 8.59 g/L, and 0.098 g/L respectively based on model obtained in CCD with a predicted net threonine production of 123.07 mg/L. The net threonine production by P. pentosaceus TL-3 in the optimized medium was enhanced approximately 2 folds compared to the control. CONCLUSIONS This study has revealed the potential of P. pentosaceus TL-3 as a safer alternative to produce threonine. Additionally, the current study has identified the key medium components affecting the production of threonine by P. pentosaceus TL-3, followed by optimization of their concentrations by means of statistical approach. The findings of this study could act as a guideline for the future exploration of amino acid production by LAB.
Collapse
Affiliation(s)
- Ye Heng Lim
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hooi Ling Foo
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Zulkifli Idrus
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Tabla R, Molina F, Rebollo JE, Roa I. Optimising detection of acidification kinetics diversity in Lactococcus lactissubsp. lactisusing SDS‐ PAGEprotein fingerprinting as screening method. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rafael Tabla
- Dairy Department Technological Institute of Food and Agriculture – Scientific and Technological Research Centre of Extremadura (INTAEX – CICYTEX), Junta de Extremadura Badajoz Spain
| | - Felipe Molina
- Department of Biochemistry, Molecular Biology and Genetics Universidad de Extremadura Badajoz Spain
| | - José E. Rebollo
- Department of Biochemistry, Molecular Biology and Genetics Universidad de Extremadura Badajoz Spain
| | - Isidro Roa
- Dairy Department Technological Institute of Food and Agriculture – Scientific and Technological Research Centre of Extremadura (INTAEX – CICYTEX), Junta de Extremadura Badajoz Spain
| |
Collapse
|
19
|
Lim YH, Foo HL, Loh TC, Mohamad R, Abdullah N. Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements. J Anim Sci Biotechnol 2019; 10:15. [PMID: 30886709 PMCID: PMC6404369 DOI: 10.1186/s40104-019-0323-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increasing understanding on the functions of amino acids (AA) has led to new commercial applications and expansion of the worldwide markets. However, the current technologies rely heavily on non-food grade microorganism and chemical synthesis for the production of AA. Several studies reported that lactic acid bacteria (LAB) have the capability of producing AA owing to their well-established proteolytic system and amino acid biosynthesis genes. Hence, the objectives of this study were to explore the extracellular proteolytic activity of LAB isolated from various Malaysian fermented foods and their potential to produce AA extracellularly as feed supplements. RESULTS All the studied LAB isolates were versatile extracellular protease producers, whereby extracellular protease activities were detected from acidic to alkaline pH (pH 5, pH 6.5, pH 8) using qualitative and quantitative proteolytic assays. The highest proteolytic activity at pH 5 (15.76 U/mg) and pH 8 (19.42 U/mg) was achieved by Lactobacillus plantarum RG14, while Lactobacillus plantarum RS5 exhibited the highest proteolytic activity of 17.22 U/mg at pH 6.5. As for the results of AA production conducted in de Man, Rogosa and Sharpe medium and analysed by high pressure liquid chromatography system, all LAB isolates were capable of producing an array of AA. Generally, Pediococcus sp. showed greater ability for AA production as compared to Lactobacillus sp. Moreover, the studied LAB were able to produce a few major feed supplement AA such as methionine, lysine, threonine and tryptophan. P. pentosaceus TL-3 recorded the highest methionine and threonine productivity of 3.72 mg/L/h and 5.58 mg/L/h respectively. However, L. plantarum I-UL4 demonstrated a lysine productivity of 1.24 mg/L/h, while P. acidilactici TP-6 achieved up to 1.73 mg/L/h of tryptophan productivity. CONCLUSION All the 17 studied LAB isolates possessed versatile extracellular proteolytic system and have vast capability of producing various amino acids including a few major feed supplement AA such as methionine, lysine, threonine and tryptophan. Despite AA production was strain dependent, the studied LAB isolates possessed vast potential and can be exploited further as a bio-agent or an alternative amino acids and bioactive peptide producers.
Collapse
Affiliation(s)
- Ye Heng Lim
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Hooi Ling Foo
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Teck Chwen Loh
- Department of Animal Sciences, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Rosfarizan Mohamad
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Norhani Abdullah
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| |
Collapse
|
20
|
Hafeez Z, Cakir-Kiefer C, Lecomte X, Miclo L, Dary-Mourot A. The X-prolyl dipeptidyl-peptidase PepX of Streptococcus thermophilus initially described as intracellular is also responsible for peptidase extracellular activity. J Dairy Sci 2018; 102:113-123. [PMID: 30391182 DOI: 10.3168/jds.2018-14823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022]
Abstract
This study addresses the hypothesis that the extracellular cell-associated X-prolyl dipeptidyl-peptidase activity initially described in Streptococcus thermophilus could be attributable to the intracellular X-prolyl dipeptidyl-peptidase PepX. For this purpose, a PepX-negative mutant of S. thermophilus LMD-9 was constructed by interrupting the pepX gene and named LMD-9-ΔpepX. When cultivated, the S. thermophilus LMD-9 wild type strain grew more rapidly than its ΔpepX mutant counterpart. Thus, the growth rate of the LMD-9-ΔpepX strain was reduced by a factor of 1.5 and 1.6 in milk and LM17 medium (M17 medium supplemented with 2% lactose), respectively. The negative effect of the PepX inactivation on the hydrolysis of β-casomorphin-7 was also observed. Indeed, when incubated with this peptide, the LMD-9-ΔpepX mutant cells were unable to hydrolyze it, whereas this peptide was completely degraded by the S. thermophilus LMD-9 wild type cells. This hydrolysis was not due to leakage of intracellular PepX, as no peptide hydrolysis was highlighted in cell-free filtrate of wild type strain. Therefore, based on these results, it can be presumed that though lacking an export signal, the intracellular PepX might have accessed the β-casomorphin-7 externally, perhaps via its galactose-binding domain-like fold, this domain being known to help enzymes bind to several proteins and substrates. Therefore, the identification of novel distinctive features of the proteolytic system of S. thermophilus will further enhance its credibility as a starter in milk fermentation.
Collapse
Affiliation(s)
- Zeeshan Hafeez
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France
| | - Céline Cakir-Kiefer
- Université de Lorraine, INRA, Unité de Recherche Animal et Produits Animaux (URAFPA), F-54000, Nancy, France
| | - Xavier Lecomte
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France
| | - Laurent Miclo
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France
| | - Annie Dary-Mourot
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France.
| |
Collapse
|
21
|
Kang J, Burall L, Mammel MK, Datta AR. Global transcriptomic response of Listeria monocytogenes during growth on cantaloupe slices. Food Microbiol 2018; 77:192-201. [PMID: 30297050 DOI: 10.1016/j.fm.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/22/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
Understanding a pathogen's response to food environments is imperative to develop effective control strategies as well as to elucidate the impact of foods on virulence potential. The purpose of this study was to assess transcriptional response of Listeria monocytogenes after growth in cantaloupe, as well as its impact on survival in synthetic gastric fluid (SGF). The transcriptional profiles of L. monocytogenes grown in cantaloupe or Brain Heart Infusion (BHI) under refrigeration were compared by a custom-designed microarray. A total of 286 and 175 genes were significantly up- and down-regulated, respectively, in L. monocytogenes grown in cantaloupe as compared to BHI (fold change ≥ 2.5 and adj. P < 0.05). The majority of upregulated genes belonged to functions related to amino acid and nucleotide metabolism, flagellar biosynthesis, and iron acquisition, while most downregulated genes belonged to carbohydrate metabolism. Notably, the branched chain amino acid (BCAA: leucine, isoleucine, valine) biosynthesis operon was shown to be highly upregulated as well as the purine and pyrimidine biosynthesis pathways. Transcript levels of several stress- and virulence-related genes were significantly altered, implying an impact of growth in cantaloupe on the virulence potential of L. monocytogenes. Enhanced survival of L. monocytogenes in SGF following growth in cantaloupe further demonstrated the impact of cantaloupe-associated growth on the pathogen's subsequent response to a host relevant stress.
Collapse
Affiliation(s)
- Jihun Kang
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, United States
| | - Laurel Burall
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, United States.
| | - Mark K Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, United States
| | - Atin R Datta
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, United States.
| |
Collapse
|
22
|
Arimoto T, Yambe R, Morisaki H, Umezawa H, Kataoka H, Matsui S, Kuwata H. Influence of excess branched-chain amino acid uptake by Streptococcus mutans in human host cells. FEMS Microbiol Lett 2018; 365:4733272. [PMID: 29240953 DOI: 10.1093/femsle/fnx273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/11/2017] [Indexed: 11/12/2022] Open
Abstract
Oral streptococci, including cariogenic bacterium Streptococcus mutans, comprise a large percentage of human supragingival plaque, which contacts both tooth surfaces and gingiva. Eukaryotic cells are able to take up macromolecules and particles, including bacteria, by endocytosis. Increasing evidence indicates endocytosis may be used as an entry process by bacteria. We hypothesized that some endocytosed bacteria might survive and obtain nutrients, such as amino acids, until they are killed. To verify this hypothesis, we focused on bacterial utilization of branched-chain amino acids (BCAAs; isoleucine, leucine and valine) in host cells. A branched-chain aminotransferase, IlvE (EC 2.6.1.42), has been suggested to play an important role in internal synthesis of BCAAs in S. mutans UA159. Therefore, we constructed an ilvE-deficient S. mutans 109c strain and confirmed that it had similar growth behavior as reported previously. 14C radioactive leucine uptake assays showed that ilvE-deficient S. mutans took up more leucine both inside and outside of host cells. We further clarified that a relative decrease of BCAAs in host cells caused enhanced endocytic and autophagic activity. In conclusion, S. mutans is endocytosed by host cells and may survive and obtain nutrients, such as BCAAs, inside the cells, which might affect cellular functions of host cells.
Collapse
Affiliation(s)
- Takafumi Arimoto
- Department of Oral Microbilogy and Immunology, Showa University School of Dentisty, Tokyo 142-8555, Japan
| | - Rei Yambe
- Department of Oral Microbilogy and Immunology, Showa University School of Dentisty, Tokyo 142-8555, Japan
| | - Hirobumi Morisaki
- Department of Oral Microbilogy and Immunology, Showa University School of Dentisty, Tokyo 142-8555, Japan
| | - Haruka Umezawa
- Department of Oral Microbilogy and Immunology, Showa University School of Dentisty, Tokyo 142-8555, Japan
| | - Hideo Kataoka
- Department of Oral Microbilogy and Immunology, Showa University School of Dentisty, Tokyo 142-8555, Japan
| | - Shohei Matsui
- Department of Oral Microbilogy and Immunology, Showa University School of Dentisty, Tokyo 142-8555, Japan.,Division of Community-Based Comprehensive Dentistry, Department of Special Needs Dentistry, Showa University School of Dentisty, Tokyo 142-8555, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbilogy and Immunology, Showa University School of Dentisty, Tokyo 142-8555, Japan
| |
Collapse
|
23
|
Wang XN, Qin M, Feng YY, Chen JK, Song YS. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4235-4241. [PMID: 28251668 DOI: 10.1002/jsfa.8299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 01/16/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. RESULT Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg-1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. CONCLUSION The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Nan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Mei Qin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yu-Ying Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Jian-Kang Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yi-Shan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| |
Collapse
|
24
|
Effect of decreased BCAA synthesis through disruption of ilvC gene on the virulence of Streptococcus pneumoniae. Arch Pharm Res 2017; 40:921-932. [PMID: 28735462 DOI: 10.1007/s12272-017-0931-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is responsible for significant morbidity and mortality worldwide. It causes a variety of life-threatening infections such as pneumonia, bacteremia, and meningitis. In bacterial physiology, the metabolic pathway of branched-chain amino acids (BCAAs) plays an important role in virulence. Nonetheless, the function of IlvC, one of the enzymes involved in the biosynthesis of BCAAs, in S. pneumoniae remains unclear. Here, we demonstrated that downregulation of BCAA biosynthesis by ilvC ablation can diminish BCAA concentration and expression of pneumolysin (Ply) and LytA, and subsequently attenuate virulence. Infection with an ilvC mutant showed significantly reduced mortality and colonization in comparison with strain D39 (serotype 2, wild type), suggesting that ilvC can potentiate S. pneumoniae virulence due to adequate BCAA synthesis. Taken together, these results suggest that the function of ilvC in BCAA synthesis is essential for virulence factor and could play an important role in the pathogenesis of respiratory infections.
Collapse
|
25
|
Willenborg J, Goethe R. Metabolic traits of pathogenic streptococci. FEBS Lett 2016; 590:3905-3919. [PMID: 27442496 DOI: 10.1002/1873-3468.12317] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
Invasive and noninvasive diseases caused by facultative pathogenic streptococci depend on their equipment with virulence factors and on their ability to sense and adapt to changing nutrients in different host environments. The knowledge of the principal metabolic mechanisms which allow these bacteria to recognize and utilize nutrients in host habitats is a prerequisite for our understanding of streptococcal pathogenicity and the development of novel control strategies. This review aims to summarize and compare the central carbohydrate metabolic and amino acid biosynthetic pathways of a selected group of streptococcal species, all belonging to the naso-oropharyngeal microbiome in humans and/or animals. We also discuss the urgent need of comprehensive metabolomics approaches for a better understanding of the streptococcal metabolism during host-pathogen interaction.
Collapse
Affiliation(s)
- Jörg Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
26
|
Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proc Natl Acad Sci U S A 2015; 112:7803-8. [PMID: 26056274 DOI: 10.1073/pnas.1501897112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microbes that target molecules and pathways, such as oxidative stress, which can negatively affect both host and microbiota, may hold promise as an inflammatory bowel disease therapy. Prior work showed that a five-strain fermented milk product (FMP) improved colitis in T-bet(-/-) Rag2(-/-) mice. By varying the number of strains used in the FMP, we found that Lactococcus lactis I-1631 was sufficient to ameliorate colitis. Using comparative genomic analyses, we identified genes unique to L. lactis I-1631 involved in oxygen respiration. Respiration of oxygen results in reactive oxygen species (ROS) generation. Also, ROS are produced at high levels during intestinal inflammation and cause tissue damage. L. lactis I-1631 possesses genes encoding enzymes that detoxify ROS, such as superoxide dismutase (SodA). Thus, we hypothesized that lactococcal SodA played a role in attenuating colitis. Inactivation of the sodA gene abolished L. lactis I-1631's beneficial effect in the T-bet(-/-) Rag2(-/-) model. Similar effects were obtained in two additional colonic inflammation models, Il10(-/-) mice and dextran sulfate sodium-treated mice. Efforts to understand how a lipophobic superoxide anion (O2 (-)) can be detoxified by cytoplasmic lactoccocal SodA led to the finding that host antimicrobial-mediated lysis is a prerequisite for SodA release and SodA's extracytoplasmic O2 (-) scavenging. L. lactis I-1631 may represent a promising vehicle to deliver antioxidant, colitis-attenuating SodA to the inflamed intestinal mucosa, and host antimicrobials may play a critical role in mediating SodA's bioaccessibility.
Collapse
|
28
|
Pogoń K, Sady M, Jaworska G, Grega T. Characteristics of orange-whey fermented beverages. ACTA ALIMENTARIA 2015. [DOI: 10.1556/aalim.2014.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Vargas LA, Olson DW, Aryana KJ. Whey protein isolate improves acid and bile tolerances of Streptococcus thermophilus ST-M5 and Lactobacillus delbrueckii ssp. bulgaricus LB-12. J Dairy Sci 2015; 98:2215-21. [DOI: 10.3168/jds.2014-8869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022]
|
30
|
Lu WW, Wang Y, Wang T, Kong J. The global regulator CodY in Streptococcus thermophilus controls the metabolic network for escalating growth in the milk environment. Appl Environ Microbiol 2015; 81:2349-58. [PMID: 25616791 PMCID: PMC4357943 DOI: 10.1128/aem.03361-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/15/2015] [Indexed: 02/04/2023] Open
Abstract
CodY is a transcriptional regulator conserved in the low-GC group of Gram-positive bacteria. In this work, we demonstrated the presence in Streptococcus thermophilus ST2017 of a functional member of the CodY family of global regulatory proteins, S. thermophilus CodY (CodYSt). The CodYSt regulon was identified by transcriptome analysis; it consisted predominantly of genes involved in amino acid metabolism but also included genes involved in several other cellular processes, including carbon metabolism, nutrient transport, and stress response. It was revealed that CodYSt repressed the transformation of the central metabolic pathway to amino acid metabolism and improved lactose utilization. Furthermore, the glutamate dehydrogenase gene (gdhA), repressed by CodYSt, was suggested to coordinate the interconversion between carbon metabolism and amino acid metabolism and to play an important role on the optimal growth of S. thermophilus ST2017 in milk. A conserved CodYSt box [AA(T/A)(A/T)TTCTGA(A/C)AATT] was indeed required for in vitro binding of CodYSt to the target regions of DNA. These results provided evidence for the function of CodYSt, by which this strain coordinately regulates its various metabolic pathways so as to adapt to the milk environment.
Collapse
Affiliation(s)
- W W Lu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Y Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - T Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - J Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
31
|
Hongfei Z, Fengling B, Fang Z, Walczak P, Xiangning J, Bolin Z. Characterization of soybean protein hydrolysates able to promote the proliferation of Streptococcus thermophilus ST. J Food Sci 2013; 78:M575-81. [PMID: 23488684 DOI: 10.1111/1750-3841.12075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/23/2012] [Indexed: 11/28/2022]
Abstract
How soybean protein hydrolysates (SPHs) to favor the growth of S. thermophilus ST were investigated. Hydrolyzed soybean protein was fractionated to 4 fragments, that is, SPH-I, SPH-II, SPH-III, and SPH-IV according to their molecular weight sizes. SPHs can improve the growth of strain ST, in which SPH-IV, with the molecular weight of less than 5 kD, significantly promoted the growth of strain ST. The cell counts of strain ST grew quickly from 7.71 to 9.78 (log CFU/mL) when the concentrations of SPH-IV ranging from 0% to 1%. Moreover, 2 chemically defined media (CDMs) were used to test their roles in maintaining the viability of strain ST. CDMs only maintained the survival of strain ST, but SPH-IV had the promotional effects on proliferation of the bacteria. SPH-IV was further characterized to be oligopeptides that contain 2 to 8 amino acids and free amino acids by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. The amino acid compositions showed that SPH-IV contained more essential amino acids, which were necessary for the growth of S. thermophilus ST. Clearly, SPH-IV could be used as an exogenous nitrogen supplement to enhance the proliferation of S. thermophilus ST and other lactic acid bacteria, and the data from small scale-up fermentation also supported this point.
Collapse
Affiliation(s)
- Zhao Hongfei
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing, China
| | | | | | | | | | | |
Collapse
|
32
|
Gene expression profile of probiotic Lactobacillus casei Zhang during the late stage of milk fermentation. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.10.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans. J Bacteriol 2012; 194:2010-9. [PMID: 22328677 DOI: 10.1128/jb.06737-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Streptococcus mutans to produce and tolerate organic acids from carbohydrate metabolism represents a major virulence factor responsible for the formation of carious lesions. Pyruvate is a key metabolic intermediate that, when rerouted to other metabolic pathways such as amino acid biosynthesis, results in the alleviation of acid stress by reducing acid end products and aiding in maintenance of intracellular pH. Amino acid biosynthetic genes such as ilvC and ilvE were identified as being upregulated in a proteome analysis of Streptococcus mutans under acid stress conditions (A. C. Len, D. W. Harty, and N. A. Jacques, Microbiology 150:1353-1366, 2004). In Lactococcus lactis and Staphylococcus carnosus, the ilvE gene product is involved with biosynthesis and degradation of branched-chain amino acids, as well as in the production of branched-chain fatty acids (B. Ganesan and B. C. Weimer, Appl. Environ. Microbiol. 70:638-641, 2004; S. M. Madsen et al., Appl. Environ. Microbiol. 68:4007-4014, 2002; and M. Yvon, S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon, Appl. Environ. Microbiol. 63:414-419, 1997). Here we constructed and characterized an ilvE deletion mutant of S. mutans UA159. Growth experiments revealed that the ilvE mutant strain has a lag in growth when nutritionally limited for branched-chain amino acids. We further demonstrated that the loss of ilvE causes a decrease in acid tolerance. The ilvE strain exhibits a defect in F(1)-F(o) ATPase activity and has reduced catabolic activity for isoleucine and valine. Results from transcriptional studies showed that the ilvE promoter is upregulated during growth at low pH. Collectively, the results of this investigation show that amino acid metabolism is a component of the acid-adaptive repertoire of S. mutans.
Collapse
|
34
|
Abstract
This review describes recent scientific and technological drivers of food fermentation research. In addition, a number of practical implications of the results of this development will be highlighted. The first part of the manuscript elaborates on the message that genome sequence information gives us an unprecedented view on the biodiversity of microbes in food fermentation. This information can be made applicable for tailoring relevant characteristics of food products through fermentation. The second part deals with the integration of genome sequence data into metabolic models and the use of these models for a number of topics that are relevant for food fermentation processes. The final part will be about metagenomics approaches to reveal the complexity and understand the functionality of undefined complex microbial consortia used in a diverse range of food fermentation processes.
Collapse
Affiliation(s)
- E J Smid
- NIZO Food Research, 6710 BA Ede, The Netherlands.
| | | |
Collapse
|
35
|
ÖZOĞUL F, KULEY E, ÖZOĞUL Y, ÖZOĞUL İ. The Function of Lactic Acid Bacteria on Biogenic Amines Production by Food-Borne Pathogens in Arginine Decarboxylase Broth. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2012. [DOI: 10.3136/fstr.18.795] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Steed H, Macfarlane GT, Blackett KL, Macfarlane S, Miller MH, Bahrami B, Dillon JF. Bacterial translocation in cirrhosis is not caused by an abnormal small bowel gut microbiota. ACTA ACUST UNITED AC 2011; 63:346-54. [PMID: 22092561 DOI: 10.1111/j.1574-695x.2011.00857.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 11/29/2022]
Abstract
Sepsis is common in liver cirrhosis, and animal studies have shown the gut to be the principal source of infection, through bacterial overgrowth and translocation in the small bowel. A total of 33 patients were recruited into this study, 10 without cirrhosis and 23 with cirrhotic liver disease. Six distal duodenal biopsies were obtained and snap frozen for RNA and DNA extraction, or frozen for FISH. Peripheral venous bloods were obtained from 30 patients, including 17 chronic liver disease patients. Samples were analysed by real-time PCR, to assess total bacteria, bifidobacteria, bacteroides, enterobacteria, staphylococci, streptococci, lactobacilli, enterococci, Helicobacter pylori and moraxella, as well as TNF-α, IL-8 and IL-18. There was no evidence of bacterial overgrowth with respect to any of the individual bacterial groups, with the exception of enterococci, which were present in higher numbers in cirrhotic patients (P = 0.04). There were no significant differences in any of the cytokines compared to the controls. The small intestinal mucosal microbiota in cirrhotic patients was qualitatively and quantitatively normal, and this shifts the focus of disease aetiology to factors that reduce gut integrity, failure of mechanisms to remove translocating bacteria, or the large bowel as the source of sepsis.
Collapse
Affiliation(s)
- Helen Steed
- Dundee University Gut Group, Ninewells Hospital and Medical School, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Thevenard B, Rasoava N, Fourcassié P, Monnet V, Boyaval P, Rul F. Characterization of Streptococcus thermophilus two-component systems: In silico analysis, functional analysis and expression of response regulator genes in pure or mixed culture with its yogurt partner, Lactobacillus delbrueckii subsp. bulgaricus. Int J Food Microbiol 2011; 151:171-81. [PMID: 21978656 DOI: 10.1016/j.ijfoodmicro.2011.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/15/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
The lactic acid bacterium Streptococcus thermophilus (S. thermophilus) is widely used in the dairy industry. As a food bacterium, it has to cope with changing environments such as milk, yogurt, as well as the digestive tract, after the product has been ingested. In bacteria, two-component systems (TCS) are one of the most prevalent mechanisms to sense and respond appropriately to a wide range of signals. They are typically composed of a sensor kinase (HK) that detects a stimulus and a response regulator (RR) which acts as a transcriptional regulator. Our objective was to make an inventory of the TCS present in S. thermophilus LMD-9 and investigate the contribution of each TCS to LMD-9 growth in milk. For that purpose, we performed in silico, transcriptomic as well as functional analysis. The LMD-9 genome presented 6 complete TCS with both HK and RR (TCS 2, 4, 5, 6, 7, and 9) and 2 orphan RRs (RR01 and 08) with truncated HK. Our in silico analysis revealed that for 5 TCS out of the 8, orthologs with known functions were found in other bacterial species whereas for TCS02, 4 and 6 the function of the orthologs are unidentified. Transcriptomic studies (using quantitative PCR) revealed that all S. thermophilus LMD-9 response regulator genes were expressed in milk; they were expressed at different levels and with different profiles during growth. In mixed culture with Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus), the S. thermophilus partner in yogurt, the expression of four S. thermophilus LMD-9 response regulator increased; two of them, rr02 and rr09, increased by a factor of 6. These results indicate that the presence of L. bulgaricus induces regulatory changes in S. thermophilus. We also demonstrated that a response regulator (rr02) can exert its regulatory function on its target genes even when expressed at very low levels. We showed that RR05-an ortholog of Bacillus subtilis YycF or Staphylococcus aureus WalR-was essential for the growth of S. thermophilus. For the 7 other RRs, the absence of a single response regulator gene was insufficient to notably impact the growth of LMD-9 in milk, with or without supplementation with purines, formate, or stress agents (lactate, H₂O₂). We demonstrated here that the 8 response regulators of LMD-9 are expressed--and thus potentially active--during growth in milk and suggested that the response regulators have possibly overlapping regulons and/or functions not essential under the conditions tested.
Collapse
|
38
|
Hsu-Ming W, Naito K, Kinoshita Y, Kobayashi H, Honjoh KI, Tashiro K, Miyamoto T. Changes in transcription during recovery from heat injury in Salmonella typhimurium and effects of BCAA on recovery. Amino Acids 2011; 42:2059-66. [DOI: 10.1007/s00726-011-0934-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/03/2011] [Indexed: 11/28/2022]
|
39
|
Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P, Besset C, Fontaine L, Hols P, Leblond-Bourget N, Monnet V, Gardan R. Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol Microbiol 2011; 80:1102-19. [PMID: 21435032 DOI: 10.1111/j.1365-2958.2011.07633.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We identified a genetic context encoding a transcriptional regulator of the Rgg family and a small hydrophobic peptide (SHP) in nearly all streptococci and suggested that it may be involved in a new quorum-sensing mechanism, with SHP playing the role of a pheromone. Here, we provide further support for this hypothesis by constructing a phylogenetic tree of the Rgg and Rgg-like proteins from Gram-positive bacteria and by studying the shp/rgg1358 locus of Streptococcus thermophilus LMD-9. We identified the shp1358 gene as a target of Rgg1358, and used it to confirm the existence of the steps of a quorum-sensing mechanism including secretion, maturation and reimportation of the pheromone into the cell. We used surface plasmon resonance to demonstrate interaction between the pheromone and the regulatory protein and performed electrophoretic mobility shift assays to assess binding of the transcriptional regulator to the promoter regions of its target genes. The active form of the pheromone was identified by mass spectrometry. Our findings demonstrate that the shp/rgg1358 locus encodes two components of a novel quorum-sensing mechanism involving a transcriptional regulator of the Rgg family and a SHP pheromone that is detected and reimported into the cell by the Ami oligopeptide transporter.
Collapse
Affiliation(s)
- B Fleuchot
- INRA, UMR1319 MICALIS, F-78352 Jouy en Josas, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Thomas S, Besset C, Courtin P, Rul F. The role of aminopeptidase PepS in the growth of Streptococcus thermophilus is not restricted to nitrogen nutrition. J Appl Microbiol 2010; 108:148-57. [PMID: 19583797 DOI: 10.1111/j.1365-2672.2009.04400.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the effect of an absence of aminopeptidase PepS on the growth of Streptococcus thermophilus on different media and at different temperatures. METHODS AND RESULTS Using gene interruption, a negative mutant of the Strep. thermophilus CNRZ385 strain was constructed for the aminopeptidase PepS (strain DeltapepS). Checks were first of all made using biochemical assays that the DeltapepS strain lacks the peptide hydrolase activity of aminopeptidase PepS. It was demonstrated that the absence of the aminopeptidase PepS exerted a negative effect on growth whatever the culture medium (M17, chemically defined medium, milk). The role of aminopeptidase PepS in growth was enhanced at a high temperature (45 degrees C vs 37 degrees C). The DeltapepS strain was more resistant to lysozyme than the wild-type strain. CONCLUSIONS We were able to demonstrate that aminopeptidase PepS probably plays a pleiotropic role through its involvement in growth via nitrogen nutrition, as well as via other cellular functions/metabolisms (such as peptidoglycane metabolism). SIGNIFICANCE AND IMPACT OF THE STUDY This study constitutes the first report on the role of a member of the M29 MEROPS family of metallopeptidases (http://merops.sanger.ac.uk/).
Collapse
Affiliation(s)
- S Thomas
- Unité de Biochimie Bactérienne, INRA, UR477, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
41
|
Iyer R, Tomar S, Uma Maheswari T, Singh R. Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2009.10.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Liu F, Du L, Du P, Huo G. Possible promoter regions within the proteolytic system in Streptococcus thermophilus and their interaction with the CodY homolog. FEMS Microbiol Lett 2009; 297:164-72. [PMID: 19552712 DOI: 10.1111/j.1574-6968.2009.01672.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Possible promoter regions preceding 14 genes belonging to the proteolytic system of Streptococcus thermophilus KLDS 3.0503 were predicted by a promoter analysis software nnpp. The 14 genes included an extracellular protease gene prtS, an oligopeptide ABC transport system gene amiA1, and 12 genes, respectively, encoding peptidases pepA, pepS, pepN, pepC, pepB, pepQ, pepV, pepT, pepM, pepXP, pepP, and pepO. These predicted promoter sequences were cloned and inserted into the upstream of a promoterless Escherichia coli gusA (beta-glucuronidase) gene in a promoter probe vector pNZ273. The resulting vectors were, respectively, introduced into S. thermophilus KLDS 3.0503 and all 14 predicted promoter sequences were able to drive gusA expression, which indicated that these sequences were functional promoters. These promoters were able to interact with the S. thermophilus CodY homolog in an in vitro DNA binding assay but they did not contain a conserved CodY-box sequence identified in Lactococcus lactis. These results were useful for further studies on the regulation of protein metabolism in S. thermophilus.
Collapse
|
43
|
Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl Environ Microbiol 2009; 75:3627-33. [PMID: 19346354 DOI: 10.1128/aem.00138-09] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we describe the amino acid metabolism and amino acid dependency of the dairy bacterium Streptococcus thermophilus LMG18311 and compare them with those of two other characterized lactic acid bacteria, Lactococcus lactis and Lactobacillus plantarum. Through the construction of a genome-scale metabolic model of S. thermophilus, the metabolic differences between the three bacteria were visualized by direct projection on a metabolic map. The comparative analysis revealed the minimal amino acid auxotrophy (only histidine and methionine or cysteine) of S. thermophilus LMG18311 and the broad variety of volatiles produced from amino acids compared to the other two bacteria. It also revealed the limited number of pyruvate branches, forcing this strain to use the homofermentative metabolism for growth optimization. In addition, some industrially relevant features could be identified in S. thermophilus, such as the unique pathway for acetaldehyde (yogurt flavor) production and the absence of a complete pentose phosphate pathway.
Collapse
|
44
|
Herve-Jimenez L, Guillouard I, Guedon E, Boudebbouze S, Hols P, Monnet V, Maguin E, Rul F. Postgenomic analysis of streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 2009; 75:2062-73. [PMID: 19114510 PMCID: PMC2663229 DOI: 10.1128/aem.01984-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 12/22/2008] [Indexed: 11/20/2022] Open
Abstract
Streptococcus thermophilus is one of the most widely used lactic acid bacteria in the dairy industry, in particular in yoghurt manufacture, where it is associated with Lactobacillus delbrueckii subsp. bulgaricus. This bacterial association, known as a proto-cooperation, is poorly documented at the molecular and regulatory levels. We thus investigate the kinetics of the transcriptomic and proteomic modifications of S. thermophilus LMG 18311 in response to the presence of L. delbrueckii subsp. bulgaricus ATCC 11842 during growth in milk at two growth stages. Seventy-seven different genes or proteins (4.1% of total coding sequences), implicated mainly in the metabolism of nitrogen (24%), nucleotide base (21%), and iron (20%), varied specifically in coculture. One of the most unpredicted results was a significant decrease of most of the transcripts and enzymes involved in purine biosynthesis. Interestingly, the expression of nearly all genes potentially encoding iron transporters of S. thermophilus decreased, whereas that of iron-chelating dpr as well as that of the fur (perR) regulator genes increased, suggesting a reduction in the intracellular iron concentration, probably in response to H(2)O(2) production by L. bulgaricus. The present study reveals undocumented nutritional exchanges and regulatory relationships between the two yoghurt bacteria, which provide new molecular clues for the understanding of their associative behavior.
Collapse
|
45
|
Arioli S, Monnet C, Guglielmetti S, Mora D. Carbamoylphosphate synthetase activity is essential for the optimal growth of Streptococcus thermophilus in milk. J Appl Microbiol 2009; 107:348-54. [PMID: 19302299 DOI: 10.1111/j.1365-2672.2009.04213.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The aim of the study was to study the role of carbon dioxide metabolism in Streptococcus thermophilus through investigation of the phenotype of a carbamoylphosphate synthetase-negative mutant. METHODS AND RESULTS The effect of carbon dioxide on the nutritional requirements of Strep. thermophilus DSM20617(T) and its derivative, carbamoylphosphate synthetase-negative mutant A17(DeltacarB), was investigated by cultivating the strain in a chemically defined medium under diverse gas compositions and in milk. The results obtained revealed that CO(2) depletion or carB gene inactivation determined the auxotrophy of Strep. thermophilus for l-arginine and uracil. In addition, the parent strain grew faster than the mutant, even when milk was supplemented with uracil or arginine. CONCLUSIONS Milk growth experiments underlined that carbamoylphosphate synthetase activity was essential for the optimal growth of Strep. thermophilus in milk. SIGNIFICANCE AND IMPACT OF THE STUDY The study of the carbon dioxide metabolism in Strep. thermophilus revealed new insights with regard to the metabolism of this species, which could be useful for the optimization of dairy fermentation processes.
Collapse
Affiliation(s)
- S Arioli
- Department of Food Science and Microbiology, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
46
|
Nomoto K, Kiwaki M, Tsuji H. Genetic Modification of Probiotic Microorganisms. HANDBOOK OF PROBIOTICS AND PREBIOTICS 2008:189-255. [DOI: 10.1002/9780470432624.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
47
|
Barcellos FG, Batista JSDS, Menna P, Hungria M. Genetic differences between Bradyrhizobium japonicum variant strains contrasting in N(2)-fixation efficiency revealed by representational difference analysis. Arch Microbiol 2008; 191:113-22. [PMID: 18854979 DOI: 10.1007/s00203-008-0432-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 07/01/2008] [Accepted: 09/05/2008] [Indexed: 01/05/2023]
Abstract
Two variant strains of Bradyrhizobium japonicum, derived from SEMIA 566, adapted to the stressful environmental conditions of the Brazilian Cerrados and characterized by contrasting capacities for N(2) fixation, were compared by representational difference analysis (RDA). Twenty-four gene sequences that are unique to the highly effective strain S 370 were identified, eight showing high similarity to known genes, nine encoding putative proteins and seven representing conserved hypothetical or hypothetical proteins; they were classified in eight functional categories. Among those genes, some were highlighted for their known or potential functions in plant-microbe interactions. The nodulation outer protein P (nopP), related to the type-III secretion system (TTSS) and a major determinant of nodulation of some tropical legumes, was detected in the genome of strain S 370. Three coding sequences (CDS) identified by RDA were expressed in proteomics experiments with B. japonicum strain USDA 110 (ChvE and NopP). The use of the sequences identified by RDA in the highly effective strain S 370 might represent an important tool to speed up strain selection programs, accelerating pre-screening procedures. Additionally, the conserved hypothetical and hypothetical proteins identified in strain S 370 might encode important but still unknown proteins related to the symbiosis that deserve further study.
Collapse
Affiliation(s)
- Fernando Gomes Barcellos
- Laboratório de Biotecnologia dos Solos, Embrapa Soja, Cx. Postal 231, Londrina, 86001-970, PR, Brazil,
| | | | | | | |
Collapse
|
48
|
Herve-Jimenez L, Guillouard I, Guedon E, Gautier C, Boudebbouze S, Hols P, Monnet V, Rul F, Maguin E. Physiology ofStreptococcus thermophilusduring the late stage of milk fermentation with special regard to sulfur amino-acid metabolism. Proteomics 2008; 8:4273-86. [DOI: 10.1002/pmic.200700489] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Sahu B, Ray MK. Auxotrophy in natural isolate: minimal requirements for growth of the Antarctic psychrotrophic bacteriumPseudomonas syringae Lz4W. J Basic Microbiol 2008; 48:38-47. [DOI: 10.1002/jobm.200700185] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: a new quorum-sensing system? J Bacteriol 2007; 189:8844-54. [PMID: 17921293 DOI: 10.1128/jb.01057-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-positive bacteria secrete a variety of peptides that are often subjected to posttranslational modifications and that are either antimicrobials or pheromones involved in bacterial communication. Our objective was to identify peptides secreted by Streptococcus thermophilus, a nonpathogenic bacterium widely used in dairy technology in association with other bacteria, and to understand their potential roles in cell-cell communication. Using reverse-phase liquid chromatography, mass spectrometry, and Edman sequencing, we analyzed the culture supernatants of three S. thermophilus strains (CNRZ1066, LMG18311, and LMD-9) grown in a medium containing no peptides. We identified several peptides in the culture supernatants, some of them found with the three strains while others were specific to the LMD-9 strain. We focused our study on a new modified peptide secreted by S. thermophilus LMD-9 and designated Pep1357C. This peptide contains 9 amino acids and lost 2 Da in a posttranslational modification, most probably a dehydrogenation, leading to a linkage between the Lys2 and Trp6 residues. Production of Pep1357C and transcription of its encoding gene depend on both the medium composition and the growth phase. Furthermore, we demonstrated that transcription of the gene coding for Pep1357C is drastically decreased in mutants inactivated for the synthesis of a short hydrophobic peptide, a transcriptional regulator, or the oligopeptide transport system. Taken together, our results led us to deduce that the transcription of the Pep1357C-encoding gene is controlled by a new quorum-sensing system.
Collapse
|