1
|
Liu Q, Du F, Kong W, Wang H, Ng TB. Fermentation Production, Purification and Characterization of a Fungal α-galactosidase from Trametes versicolor and Its Synergistic Degradation of Guar Gum with Mannanase. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences
| | - Fang Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences
| | - Weili Kong
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories
| |
Collapse
|
2
|
Loder AJ, Zeldes BM, Conway JM, Counts JA, Straub CT, Khatibi PA, Lee LL, Vitko NP, Keller MW, Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Adams MW, Kelly RM. Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andrew J. Loder
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Benjamin M. Zeldes
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Jonathan M. Conway
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - James A. Counts
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Christopher T. Straub
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Piyum A. Khatibi
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Laura L. Lee
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Nicholas P. Vitko
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Matthew W. Keller
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Amanda M. Rhaesa
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gabe M. Rubinstein
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Israel M. Scott
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gina L. Lipscomb
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Michael W.W. Adams
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Robert M. Kelly
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| |
Collapse
|
3
|
Weignerová L, Simerská P, Křen V. α-Galactosidases and their applications in biotransformations. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420802583416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Fujiwara K, Tsubouchi T, Kuzuyama T, Nishiyama M. Involvement of the arginine repressor in lysine biosynthesis of Thermus thermophilus. Microbiology (Reading) 2006; 152:3585-3594. [PMID: 17159211 DOI: 10.1099/mic.0.29222-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lysine biosynthesis of Thermus thermophilus proceeds in a similar way to arginine biosynthesis, and some lysine biosynthetic enzymes from T. thermophilus so far investigated have the potential to function in arginine biosynthesis. These observations suggest that arginine might regulate the expression of genes for lysine biosynthesis. To test this hypothesis, the argR gene encoding the regulator of arginine biosynthesis was cloned from T. thermophilus and its function in lysine biosynthesis was analysed. The addition of arginine to the culture medium inhibited the growth of an arginase gene knockout mutant of T. thermophilus, which presumably accumulates arginine inside the cells. Arginine-dependent growth inhibition was not alleviated by the addition of ornithine, which is a biosynthetic intermediate of arginine and serves as a peptidoglycan component of the cell wall in T. thermophilus. However, the growth inhibition was cancelled either by the simultaneous addition of lysine and ornithine or by a knockout of the argR gene, suggesting the involvement of argR in regulation of lysine biosynthesis in T. thermophilus. Electrophoretic mobility shift assay and DNase I footprinting revealed that the ArgR protein specifically binds to the promoter region of the major lysine biosynthetic gene cluster. Furthermore, an α-galactosidase reporter assay for this promoter indicated that arginine repressed the promoter in an argR-dependent manner. These results indicate that lysine biosynthesis is regulated by arginine in T. thermophilus.
Collapse
Affiliation(s)
- Kei Fujiwara
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taishi Tsubouchi
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Purification, characterization and substrate specificity of thermostable α-galactosidase from Bacillus stearothermophilus (NCIM-5146). Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
|
7
|
Tsubouchi T, Mineki R, Taka H, Kaga N, Murayama K, Nishiyama C, Yamane H, Kuzuyama T, Nishiyama M. Leader Peptide-mediated Transcriptional Attenuation of Lysine Biosynthetic Gene Cluster in Thermus thermophilus. J Biol Chem 2005; 280:18511-6. [PMID: 15753090 DOI: 10.1074/jbc.m414456200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism for regulation of the genes involved in the biosynthesis of amino acids is poorly identified in Thermus thermophilus. In this study, we analyzed the transcriptional control of the major lysine biosynthetic gene cluster in T. thermophilus. S1 nuclease mapping revealed that the transcription, which is repressed by lysine, starts at 111 bp, upstream of the translational start codon, ATG, for the homocitrate synthase (hcs) gene. The 5'-leader region of 111 bp carries a sequence that can encode a short peptide of 14 amino acids with tandem-arranged lysine residues in its sequence. The nucleotide sequence of the region suggests that the transcript can form complicated secondary structures. Deletion of most of the 5'-leader region or mutation of the tandem lysine codons suppressed the transcriptional repression by lysine. Mutation of the tandem codons from lysine to glutamine resulted in glutamine-dependent repression of the gene connected downstream, indicating that the leader peptide mediated the transcriptional attenuation of the gene expression. This is the first report demonstrating the transcriptional regulation of amino acid biosynthesis in T. thermophilus.
Collapse
Affiliation(s)
- Taishi Tsubouchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Park HS, Kayser KJ, Kwak JH, Kilbane JJ. Heterologous gene expression in Thermus thermophilus: beta-galactosidase, dibenzothiophene monooxygenase, PNB carboxy esterase, 2-aminobiphenyl-2,3-diol dioxygenase, and chloramphenicol acetyl transferase. J Ind Microbiol Biotechnol 2004; 31:189-97. [PMID: 15138843 DOI: 10.1007/s10295-004-0130-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 03/15/2004] [Indexed: 10/26/2022]
Abstract
Enzymes from thermophiles are preferred for industrial applications because they generally show improved tolerance to temperature, pressure, solvents, and pH as compared with enzymes from mesophiles. However, nearly all thermostable enzymes used in industrial applications or available commercially are produced as recombinant enzymes in mesophiles, typically Escherichia coli. The development of high-temperature bioprocesses, particularly those involving cofactor-requiring enzymes and/or multi-step enzymatic pathways, requires a thermophilic host. The extreme thermophile most amenable to genetic manipulation is Thermus thermophilus, but the study of expression of heterologous genes in T. thermophilus is in its infancy. While several heterologous genes have previously been expressed in T. thermophilus, the data reported here include the first examples of the functional expression of a gene from an archaeal hyperthermophile ( bglA from Pyrococcus woesei), a cofactor-requiring enzyme ( dszC from Rhodococcus erythropolis IGTS8), and a two-component enzyme ( carBa and carBb from Sphingomonas sp. GTIN11). A thermostable derivative of pnbA from Bacillus subtilis was also expressed, further expanding the list of genes from heterologous hosts that have been expressed in T. thermophilus.
Collapse
Affiliation(s)
- Ho-Shin Park
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., IL 61801, Urbana, USA
| | | | | | | |
Collapse
|
9
|
Schäffer C, Wugeditsch T, Messner P, Whitfield C. Functional expression of enterobacterial O-polysaccharide biosynthesis enzymes in Bacillus subtilis. Appl Environ Microbiol 2002; 68:4722-30. [PMID: 12324313 PMCID: PMC126445 DOI: 10.1128/aem.68.10.4722-4730.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Accepted: 07/16/2002] [Indexed: 11/20/2022] Open
Abstract
The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-alpha-D-(14)C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli.
Collapse
Affiliation(s)
- Christina Schäffer
- Zentrum für Ultrastrukturforschung and Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Vienna, Austria.
| | | | | | | |
Collapse
|
10
|
Fridjonsson O, Watzlawick H, Mattes R. Thermoadaptation of alpha-galactosidase AgaB1 in Thermus thermophilus. J Bacteriol 2002; 184:3385-91. [PMID: 12029056 PMCID: PMC135109 DOI: 10.1128/jb.184.12.3385-3391.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolutionary potential of a thermostable alpha-galactosidase, with regard to improved catalytic activity at high temperatures, was investigated by employing an in vivo selection system based on thermophilic bacteria. For this purpose, hybrid alpha-galactosidase genes of agaA and agaB from Bacillus stearothermophilus KVE39, designated agaA1 and agaB1, were cloned into an autonomously replicating Thermus vector and introduced into Thermus thermophilus OF1053GD (DeltaagaT) by transformation. This selector strain is unable to metabolize melibiose (alpha-galactoside) without recombinant alpha-galactosidases, because the native alpha-galactosidase gene, agaT, has been deleted. Growth conditions were established under which the strain was able to utilize melibiose as a single carbohydrate source when harboring a plasmid-encoded agaA1 gene but unable when harboring a plasmid-encoded agaB1 gene. With incubation of the agaB1 plasmid-harboring strain under selective pressure at a restrictive temperature (67 degrees C) in a minimal melibiose medium, spontaneous mutants as well as N-methyl-N'-nitro-N-nitrosoguanidine-induced mutants able to grow on the selective medium were isolated. The mutant alpha-galactosidase genes were amplified by PCR, cloned in Escherichia coli, and sequenced. A single-base substitution that replaces glutamic acid residue 355 with glycine or valine was found in the mutant agaB1 genes. The mutant enzymes displayed the optimum hydrolyzing activity at higher temperatures together with improved catalytic capacity compared to the wild-type enzyme and furthermore showed an enhanced thermal stability. To our knowledge, this is the first report of an in vivo evolution of glycoside-hydrolyzing enzyme and selection within a thermophilic host cell.
Collapse
Affiliation(s)
- Olafur Fridjonsson
- Institut für Industrielle Genetik, Universität Stuttgart, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|