1
|
Long S, Su M, Chen X, Hu A, Yu F, Zou Q, Cheng G. Proteomic and Mutant Analysis of Hydrogenase Maturation Protein Gene hypE in Symbiotic Nitrogen Fixation of Mesorhizobium huakuii. Int J Mol Sci 2023; 24:12534. [PMID: 37628715 PMCID: PMC10454058 DOI: 10.3390/ijms241612534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogenases catalyze the simple yet important redox reaction between protons and electrons and H2, thus mediating symbiotic interactions. The contribution of hydrogenase to this symbiosis and anti-oxidative damage was investigated using the M. huakuii hypE (encoding hydrogenase maturation protein) mutant. The hypE mutant grew a little faster than its parental 7653R and displayed decreased antioxidative capacity under H2O2-induced oxidative damage. Real-time quantitative PCR showed that hypE gene expression is significantly up-regulated in all the detected stages of nodule development. Although the hypE mutant can form nodules, the symbiotic ability was severely impaired, which led to an abnormal nodulation phenotype coupled to a 47% reduction in nitrogen fixation capacity. This phenotype was linked to the formation of smaller abnormal nodules containing disintegrating and prematurely senescent bacteroids. Proteomics analysis allowed a total of ninety differentially expressed proteins (fold change > 1.5 or <0.67, p < 0.05) to be identified. Of these proteins, 21 are related to stress response and virulence, 21 are involved in transporter activity, and 18 are involved in energy and nitrogen metabolism. Overall, the HypE protein is essential for symbiotic nitrogen fixation, playing independent roles in supplying energy and electrons, in bacterial detoxification, and in the control of bacteroid differentiation and senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
2
|
Zvinavashe AT, Mardad I, Mhada M, Kouisni L, Marelli B. Engineering the Plant Microenvironment To Facilitate Plant-Growth-Promoting Microbe Association. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13270-13285. [PMID: 33929839 DOI: 10.1021/acs.jafc.1c00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
New technologies that enhance soil biodiversity and minimize the use of scarce resources while boosting crop production are highly sought to mitigate the increasing threats that climate change, population growth, and desertification pose on the food infrastructure. In particular, solutions based on plant-growth-promoting bacteria (PGPB) bring merits of self-replication, low environmental impact, tolerance to biotic and abiotic stressors, and reduction of inputs, such as fertilizers. However, challenges in facilitating PGPB delivery in the soil still persist and include survival to desiccation, precise delivery, programmable resuscitation, competition with the indigenous rhizosphere, and soil structure. These factors play a critical role in microbial root association and development of a beneficial plant microbiome. Engineering the seed microenvironment with protein and polysaccharides is one proposed way to deliver PGPB precisely and effectively in the seed spermosphere. In this review, we will cover new advancements in the precise and scalable delivery of microbial inoculants, also highlighting the latest development of multifunctional rhizobacteria solutions that have beneficial impact on not only legumes but also cereals. To conclude, we will discuss the role that legislators and policymakers play in promoting the adoption of new technologies that can enhance the sustainability of crop production.
Collapse
Affiliation(s)
- Augustine T Zvinavashe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ilham Mardad
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Manal Mhada
- African integrated Plant and Soil Group (AiPlaS), AgroBioSciences, Mohammed VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Lamfeddal Kouisni
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University (ASARI-UM6P), 70000 Laayoune, Morocco
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Jorrin B, Palacios JM, Peix Á, Imperial J. Rhizobium ruizarguesonis sp. nov., isolated from nodules of Pisum sativum L. Syst Appl Microbiol 2020; 43:126090. [PMID: 32690191 DOI: 10.1016/j.syapm.2020.126090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
Four strains, coded as UPM1132, UPM1133T, UPM1134 and UPM1135, and isolated from nodules of Pisum sativum plants grown on Ni-rich soils were characterised through a polyphasic taxonomy approach. Their 16S rRNA gene sequences were identical and showed 100% similarity with their closest phylogenetic neighbors, the species included in the 'R. leguminosarum group': R. laguerreae FB206T, R. leguminosarum USDA 2370T, R. anhuiense CCBAU 23252T, R. sophoreae CCBAU 03386T, R. acidisoli FH13T and R. hidalgonense FH14T, and 99.6% sequence similarity with R. esperanzae CNPSo 668T. The analysis of combined housekeeping genes recA, atpD and glnII sequences showed similarities of 92-95% with the closest relatives. Whole genome average nucleotide identity (ANI) values were 97.5-99.7% ANIb similarity among the four strains, and less than 92.4% with closely related species, while digital DNA-DNA hybridization average values (dDDH) were 82-85% within our strains and 34-52% with closely related species. Major fatty acids in strain UPM1133T were C18:1 ω7c / C18:1 ω6c in summed feature 8, C14:0 3OH/ C16:1 iso I in summed feature 2 and C18:0. Colonies were small to medium, pearl-white coloured in YMA at 28°C and growth was observed in the ranges 8-34°C, pH 5.5-7.5 and 0-0.7% (w/v) NaCl. The DNA G+C content was 60.8mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains UPM1132, UPM1133T, UPM1134 and UPM1135 into a novel species of Rhizobium, for which the name Rhizobium ruizarguesonis sp. nov. is proposed. The type strain is UPM1133T (=CECT 9542T=LMG 30526T).
Collapse
Affiliation(s)
- Beatriz Jorrin
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain; Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca-IRNASA (CSIC).
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain; Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
4
|
Albareda M, Pacios LF, Palacios JM. Computational analyses, molecular dynamics, and mutagenesis studies of unprocessed form of [NiFe] hydrogenase reveal the role of disorder for efficient enzyme maturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:325-340. [PMID: 30703364 DOI: 10.1016/j.bbabio.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
Biological production and oxidation of hydrogen is mediated by hydrogenases, key enzymes for these energy-relevant reactions. Synthesis of [NiFe] hydrogenases involves a complex series of biochemical reactions to assemble protein subunits and metallic cofactors required for enzyme function. A final step in this biosynthetic pathway is the processing of a C-terminal tail (CTT) from its large subunit, thus allowing proper insertion of nickel in the unique NiFe(CN)2CO cofactor present in these enzymes. In silico modelling and Molecular Dynamics (MD) analyses of processed vs. unprocessed forms of Rhizobium leguminosarum bv. viciae (Rlv) hydrogenase large subunit HupL showed that its CTT (residues 582-596) is an intrinsically disordered region (IDR) that likely provides the required flexibility to the protein for the final steps of proteolytic maturation. Prediction of pKa values of ionizable side chains in both forms of the enzyme's large subunit also revealed that the presence of the CTT strongly modify the protonation state of some key residues around the active site. Furthermore, MD simulations and mutant analyses revealed that two glutamate residues (E27 in the N-terminal region and E589 inside the CTT) likely contribute to the process of nickel incorporation into the enzyme. Computational analysis also revealed structural details on the interaction of Rlv hydrogenase LSU with the endoprotease HupD responsible for the removal of CTT.
Collapse
Affiliation(s)
- Marta Albareda
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jose M Palacios
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Rubio-Sanz L, Brito B, Palacios J. Analysis of metal tolerance in Rhizobium leguminosarum strains isolated from an ultramafic soil. FEMS Microbiol Lett 2018; 365:4813332. [DOI: 10.1093/femsle/fny010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/16/2018] [Indexed: 11/12/2022] Open
|
6
|
Sarkar A, Marszalkowska M, Schäfer M, Pees T, Klingenberg H, Macht F, Reinhold-Hurek B. Global expression analysis of the response to microaerobiosis reveals an important cue for endophytic establishment of Azoarcus sp. BH72. Environ Microbiol 2016; 19:198-217. [PMID: 27727497 DOI: 10.1111/1462-2920.13569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 11/30/2022]
Abstract
The endophyte Azoarcus sp. BH72, fixing nitrogen microaerobically, encounters low O2 tensions in flooded roots. Therefore, its transcriptome upon shift to microaerobiosis was analyzed using oligonucleotide microarrays. A total of 8.7% of the protein-coding genes were significantly modulated. Aerobic conditions induced expression of genes involved in oxidative stress protection, while under microaerobiosis, 233 genes were upregulated, encoding hypothetical proteins, transcriptional regulators, and proteins involved in energy metabolism, among them a cbb3 -type terminal oxidase contributing to but not essential for N2 fixation. A newly established sensitive transcriptional reporter system using tdTomato allowed to visualize even relatively low bacterial gene expression in association with roots. Beyond metabolic changes, low oxygen concentrations seemed to prime transcription for plant colonization: Several genes known to be required for endophytic rice interaction were induced, and novel bacterial colonization factors were identified, such as azo1653. The cargo of the type V autotransporter Azo1653 had similarities to the attachment factor pertactin. Although for short term swarming-dependent colonization, it conferred a competitive disadvantage, it contributed to endophytic long-term establishment inside roots. Proteins sharing such opposing roles in the colonization process appear to occur more generally, as we demonstrated a very similar phenotype for another attachment protein, Azo1684. This suggests distinct cellular strategies for endophyte establishment.
Collapse
Affiliation(s)
- Abhijit Sarkar
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Marta Marszalkowska
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Martin Schäfer
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Tobias Pees
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Hannah Klingenberg
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Franziska Macht
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Barbara Reinhold-Hurek
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| |
Collapse
|
7
|
Albareda M, Pacios LF, Manyani H, Rey L, Brito B, Imperial J, Ruiz-Argüeso T, Palacios JM. Maturation of Rhizobium leguminosarum hydrogenase in the presence of oxygen requires the interaction of the chaperone HypC and the scaffolding protein HupK. J Biol Chem 2014; 289:21217-29. [PMID: 24942742 DOI: 10.1074/jbc.m114.577403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
[NiFe] hydrogenases are key enzymes for the energy and redox metabolisms of different microorganisms. Synthesis of these metalloenzymes involves a complex series of biochemical reactions catalyzed by a plethora of accessory proteins, many of them required to synthesize and insert the unique NiFe(CN)2CO cofactor. HypC is an accessory protein conserved in all [NiFe] hydrogenase systems and involved in the synthesis and transfer of the Fe(CN)2CO cofactor precursor. Hydrogenase accessory proteins from bacteria-synthesizing hydrogenase in the presence of oxygen include HupK, a scaffolding protein with a moderate sequence similarity to the hydrogenase large subunit and proposed to participate as an intermediate chaperone in the synthesis of the NiFe cofactor. The endosymbiotic bacterium Rhizobium leguminosarum contains a single hydrogenase system that can be expressed under two different physiological conditions: free-living microaerobic cells (∼ 12 μm O2) and bacteroids from legume nodules (∼ 10-100 nm O2). We have used bioinformatic tools to model HupK structure and interaction of this protein with HypC. Site-directed mutagenesis at positions predicted as critical by the structural analysis have allowed the identification of HupK and HypC residues relevant for the maturation of hydrogenase. Mutant proteins altered in some of these residues show a different phenotype depending on the physiological condition tested. Modeling of HypC also predicts the existence of a stable HypC dimer whose presence was also demonstrated by immunoblot analysis. This study widens our understanding on the mechanisms for metalloenzyme biosynthesis in the presence of oxygen.
Collapse
Affiliation(s)
- Marta Albareda
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, 28040 Madrid, Spain, and
| | - Hamid Manyani
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Luis Rey
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Belén Brito
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Juan Imperial
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain, Consejo Superior de Investigaciones Científicas, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Tomás Ruiz-Argüeso
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Jose M Palacios
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain,
| |
Collapse
|
8
|
Rubio-Sanz L, Prieto RI, Imperial J, Palacios JM, Brito B. Functional and expression analysis of the metal-inducible dmeRF system from Rhizobium leguminosarum bv. viciae. Appl Environ Microbiol 2013; 79:6414-22. [PMID: 23934501 PMCID: PMC3811197 DOI: 10.1128/aem.01954-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/06/2013] [Indexed: 02/04/2023] Open
Abstract
A gene encoding a homolog to the cation diffusion facilitator protein DmeF from Cupriavidus metallidurans has been identified in the genome of Rhizobium leguminosarum UPM791. The R. leguminosarum dmeF gene is located downstream of an open reading frame (designated dmeR) encoding a protein homologous to the nickel- and cobalt-responsive transcriptional regulator RcnR from Escherichia coli. Analysis of gene expression showed that the R. leguminosarum dmeRF genes are organized as a transcriptional unit whose expression is strongly induced by nickel and cobalt ions, likely by alleviating the repressor activity of DmeR on dmeRF transcription. An R. leguminosarum dmeRF mutant strain displayed increased sensitivity to Co(II) and Ni(II), whereas no alterations of its resistance to Cd(II), Cu(II), or Zn(II) were observed. A decrease of symbiotic performance was observed when pea plants inoculated with an R. leguminosarum dmeRF deletion mutant strain were grown in the presence of high concentrations of nickel and cobalt. The same mutant induced significantly lower activity levels of NiFe hydrogenase in microaerobic cultures. These results indicate that the R. leguminosarum DmeRF system is a metal-responsive efflux mechanism acting as a key element for metal homeostasis in R. leguminosarum under free-living and symbiotic conditions. The presence of similar dmeRF gene clusters in other Rhizobiaceae suggests that the dmeRF system is a conserved mechanism for metal tolerance in legume endosymbiotic bacteria.
Collapse
Affiliation(s)
- L. Rubio-Sanz
- Centro de Biotecnología y Genómica de Plantas (CBGP) and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - R. I. Prieto
- Centro de Biotecnología y Genómica de Plantas (CBGP) and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - J. Imperial
- Centro de Biotecnología y Genómica de Plantas (CBGP) and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - J. M. Palacios
- Centro de Biotecnología y Genómica de Plantas (CBGP) and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - B. Brito
- Centro de Biotecnología y Genómica de Plantas (CBGP) and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Albareda M, Manyani H, Imperial J, Brito B, Ruiz-Argüeso T, Böck A, Palacios JM. Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum. BMC Microbiol 2012; 12:256. [PMID: 23136881 PMCID: PMC3534401 DOI: 10.1186/1471-2180-12-256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/24/2012] [Indexed: 11/16/2022] Open
Abstract
Background [NiFe] hydrogenases are enzymes that catalyze the oxidation of hydrogen into protons and electrons, to use H2 as energy source, or the production of hydrogen through proton reduction, as an escape valve for the excess of reduction equivalents in anaerobic metabolism. Biosynthesis of [NiFe] hydrogenases is a complex process that occurs in the cytoplasm, where a number of auxiliary proteins are required to synthesize and insert the metal cofactors into the enzyme structural units. The endosymbiotic bacterium Rhizobium leguminosarum requires the products of eighteen genes (hupSLCDEFGHIJKhypABFCDEX) to synthesize an active hydrogenase. hupF and hupK genes are found only in hydrogenase clusters from bacteria expressing hydrogenase in the presence of oxygen. Results HupF is a HypC paralogue with a similar predicted structure, except for the C-terminal domain present only in HupF. Deletion of hupF results in the inability to process the hydrogenase large subunit HupL, and also in reduced stability of this subunit when cells are exposed to high oxygen tensions. A ΔhupF mutant was fully complemented for hydrogenase activity by a C-terminal deletion derivative under symbiotic, ultra low-oxygen tensions, but only partial complementation was observed in free living cells under higher oxygen tensions (1% or 3%). Co-purification experiments using StrepTag-labelled HupF derivatives and mass spectrometry analysis indicate the existence of a major complex involving HupL and HupF, and a less abundant HupF-HupK complex. Conclusions The results indicate that HupF has a dual role during hydrogenase biosynthesis: it is required for hydrogenase large subunit processing and it also acts as a chaperone to stabilize HupL when hydrogenase is synthesized in the presence of oxygen.
Collapse
Affiliation(s)
- Marta Albareda
- Centro de Biotecnología y Genómica de Plantas-CBGP, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40- km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Cacho C, Brito B, Palacios J, Pérez-Conde C, Cámara C. Speciation of nickel by HPLC-UV/MS in pea nodules. Talanta 2010; 83:78-83. [PMID: 21035647 DOI: 10.1016/j.talanta.2010.08.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/20/2010] [Accepted: 08/26/2010] [Indexed: 11/15/2022]
Abstract
A new and sensitive methodology based on normal phase HPLC has been developed for the speciation of nickel in low-complexity plant extracts. The method combines a silica stationary phase column, a 9:1 (v/v) hexane:ethanol mixture as mobile phase, and the detection of nickel complexes by either UV or MS. The developed methodology was applied to the speciation of nickel complexes in the cytoplasm of pea root nodules. Results obtained indicate that nickel citrate and nickel malate accounts for 99% of nickel present in pea nodule cytoplasm fraction. The low detection limit of the method (<0.2 nM) enables nickel speciation in non-hyperaccumulator plants.
Collapse
Affiliation(s)
- C Cacho
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Brito B, Prieto RI, Cabrera E, Mandrand-Berthelot MA, Imperial J, Ruiz-Argüeso T, Palacios JM. Rhizobium leguminosarum hupE encodes a nickel transporter required for hydrogenase activity. J Bacteriol 2010; 192:925-35. [PMID: 20023036 PMCID: PMC2812973 DOI: 10.1128/jb.01045-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 12/07/2009] [Indexed: 02/04/2023] Open
Abstract
Synthesis of the hydrogen uptake (Hup) system in Rhizobium leguminosarum bv. viciae requires the function of an 18-gene cluster (hupSLCDEFGHIJK-hypABFCDEX). Among them, the hupE gene encodes a protein showing six transmembrane domains for which a potential role as a nickel permease has been proposed. In this paper, we further characterize the nickel transport capacity of HupE and that of the translated product of hupE2, a hydrogenase-unlinked gene identified in the R. leguminosarum genome. HupE2 is a potential membrane protein that shows 48% amino acid sequence identity with HupE. Expression of both genes in the Escherichia coli nikABCDE mutant strain HYD723 restored hydrogenase activity and nickel transport. However, nickel transport assays revealed that HupE and HupE2 displayed different levels of nickel uptake. Site-directed mutagenesis of histidine residues in HupE revealed two motifs (HX(5)DH and FHGX[AV]HGXE) that are required for HupE functionality. An R. leguminosarum double mutant, SPF22A (hupE hupE2), exhibited reduced levels of hydrogenase activity in free-living cells, and this phenotype was complemented by nickel supplementation. Low levels of symbiotic hydrogenase activity were also observed in SPF22A bacteroid cells from lentil (Lens culinaris L.) root nodules but not in pea (Pisum sativum L.) bacteroids. Moreover, heterologous expression of the R. leguminosarum hup system in bacteroid cells of Rhizobium tropici and Mesorhizobium loti displayed reduced levels of hydrogen uptake in the absence of hupE. These data support the role of R. leguminosarum HupE as a nickel permease required for hydrogen uptake under both free-living and symbiotic conditions.
Collapse
Affiliation(s)
- Belén Brito
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Rosa-Isabel Prieto
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Ezequiel Cabrera
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Marie-Andrée Mandrand-Berthelot
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Juan Imperial
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Tomás Ruiz-Argüeso
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - José-Manuel Palacios
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
12
|
Brito B, Toffanin A, Prieto RI, Imperial J, Ruiz-Argüeso T, Palacios JM. Host-dependent expression of Rhizobium leguminosarum bv. viciae hydrogenase is controlled at transcriptional and post-transcriptional levels in legume nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:597-604. [PMID: 18393619 DOI: 10.1094/mpmi-21-5-0597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The legume host affects the expression of Rhizobium leguminosarum hydrogenase activity in root nodules. High levels of symbiotic hydrogenase activity were detected in R. leguminosarum bacteroids from different hosts, with the exception of lentil (Lens culinaris). Transcription analysis showed that the NifA-regulated R. leguminosarum hydrogenase structural gene promoter (P(1)) is poorly induced in lentil root nodules. Replacement of the P(1) promoter by the FnrN-dependent promoter of the fixN gene restored transcription of hup genes in lentil bacteroids, but not hydrogenase activity. In the P(fixN)-hupSL strain, additional copies of the hup gene cluster and nickel supplementation to lentil plants increased bacteroid hydrogenase activity. However, the level of activity in lentil still was significantly lower than in pea bacteroids, indicating that an additional factor is impairing hydrogenase expression inside lentil nodules. Immunological analysis revealed that lentil bacteroids contain reduced levels of both hydrogenase structural subunit HupL and nickel-binding protein HypB. Altogether, results indicate that hydrogenase expression is affected by the legume host at the level of both transcription of hydrogenase structural genes and biosynthesis or stability of nickel-related proteins HypB and HupL, and suggest the existence of a plant-dependent mechanism that affects hydrogenase activity during the symbiosis by limiting nickel availability to the bacteroid.
Collapse
Affiliation(s)
- Belén Brito
- Departamento de Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica de Madrid (UPM), Spain
| | | | | | | | | | | |
Collapse
|
13
|
Manyani H, Rey L, Palacios JM, Imperial J, Ruiz-Argüeso T. Gene products of the hupGHIJ operon are involved in maturation of the iron-sulfur subunit of the [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae. J Bacteriol 2005; 187:7018-26. [PMID: 16199572 PMCID: PMC1251625 DOI: 10.1128/jb.187.20.7018-7026.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we investigate the functions of the hupGHIJ operon in the synthesis of an active [NiFe] hydrogenase in the legume endosymbiont Rhizobium leguminosarum bv. viciae. These genes are clustered with 14 other genes including the hydrogenase structural genes hupSL. A set of isogenic mutants with in-frame deletions (deltahupG, deltahupH, deltahupI, and deltahupJ) was generated and tested for hydrogenase activity in cultures grown at different oxygen concentrations (0.2 to 2.0%) and in symbiosis with peas. In free-living cultures, deletions in these genes severely reduced hydrogenase activity. The deltahupH mutant was totally devoid of hydrogenase activity at any of the O2 concentration tested, whereas the requirement of hupGIJ for hydrogenase activity varied with the O2 concentration, being more crucial at higher pO2. Pea bacteroids from the mutant strains affected in hupH, hupI, and hupJ exhibited reduced (20 to 50%) rates of hydrogenase activity compared to the wild type, whereas rates were not affected in the deltahupG mutant. Immunoblot experiments with HupL- and HupS-specific antisera showed that free-living cultures from deltahupH, deltahupI, and deltahupJ mutants synthesized a fully processed mature HupL protein and accumulated an unprocessed form of HupS (pre-HupS). Both the mature HupL and the pre-HupS forms were located in the cytoplasmic fraction of cultures from the deltahupH mutant. Affinity chromatography experiments revealed that cytoplasmic pre-HupS binds to the HupH protein before the pre-HupS-HupL complex is formed. From these results we propose that hupGHIJ gene products are involved in the maturation of the HupS hydrogenase subunit.
Collapse
Affiliation(s)
- Hamid Manyani
- Laboratorio de Microbiología, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Ureta AC, Imperial J, Ruiz-Argüeso T, Palacios JM. Rhizobium leguminosarum biovar viciae symbiotic hydrogenase activity and processing are limited by the level of nickel in agricultural soils. Appl Environ Microbiol 2005; 71:7603-6. [PMID: 16269813 PMCID: PMC1287657 DOI: 10.1128/aem.71.11.7603-7606.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/16/2005] [Indexed: 11/20/2022] Open
Abstract
Analysis of levels of hydrogenase processing and activity in Rhizobium leguminosarum biovar viciae bacteroids from pea (Pisum sativum) plants showed that the oxidation of nitrogenase-evolved hydrogen is limited by the availability of nickel in agricultural soils. This limitation was overcome by using an inoculant strain engineered for higher hydrogenase expression.
Collapse
Affiliation(s)
- Ana-Claudia Ureta
- Department of Biotechnology, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Palacios JM, Manyani H, Martínez M, Ureta AC, Brito B, Báscones E, Rey L, Imperial J, Ruiz-Argüeso T. Genetics and biotechnology of the H(2)-uptake [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae, a legume endosymbiotic bacterium. Biochem Soc Trans 2005; 33:94-6. [PMID: 15667275 DOI: 10.1042/bst0330094] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A limited number of strains belonging to several genera of Rhizobiaceae are capable of expressing a hydrogenase system that allows partial or full recycling of hydrogen evolved by nitrogenase, thus increasing the energy efficiency of the nitrogen fixation process. This review is focused on the genetics and biotechnology of the hydrogenase system from Rhizobium leguminosarum bv. viciae, a frequent inhabitant of European soils capable of establishing symbiotic association with peas, lentils, vetches and other legumes.
Collapse
Affiliation(s)
- J M Palacios
- Laboratorio de Microbiología, Department of Biotechnology, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Martínez M, Brito B, Imperial J, Ruiz-Argüeso T. Characterization of a new internal promoter (P3) for Rhizobium leguminosarum hydrogenase accessory genes hupGHIJ. Microbiology (Reading) 2004; 150:665-675. [PMID: 14993316 DOI: 10.1099/mic.0.26623-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthesis of the Rhizobium leguminosarum [NiFe] hydrogenase requires the participation of 16 accessory genes (hupCDEFGHIJKhypABFCDEX) besides the genes encoding the structural proteins (hupSL). Transcription of hupSL is controlled by a -24/-12-type promoter (P(1)), located upstream of hupS and regulated by NifA. In this work, a second -24/-12-type promoter (P(3)), located upstream of the hupG gene and transcribing hupGHIJ genes in R. leguminosarum pea (Pisum sativum L.) bacteroids, has been identified in the hup gene cluster. Promoter P(3) was also active in R. leguminosarum free-living cells, as evidenced by genetic complementation of hydrogenase mutants. Both NifA and NtrC activated P(3) expression in the heterologous host Klebsiella pneumoniae. Also, P(3) activity was highly stimulated by K. pneumoniae NifA in Escherichia coli. This NifA activation of P(3) expression only required the sigma(54)-binding site, and it was independent of any cis-acting element upstream of the sigma(54) box, which suggests a direct interaction of free NifA with the RNA polymerase holoenzyme. P(3)-dependent hupGHIJ expression in pea nodules started in interzone II/III, spanned through nitrogen-fixing zone III, and was coincident with the NifA-dependent nifH expression pattern. However, P(3) was dispensable for hupGHIJ transcription and hydrogenase activity in pea bacteroids due to transcription initiated at P(1). This fact and the lack of an activator recruitment system suggest that P(3) plays a secondary role in symbiotic hupGHIJ expression.
Collapse
Affiliation(s)
- Marta Martínez
- Departamento de Biotecnología, E. T. S. de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Belén Brito
- Departamento de Biotecnología, E. T. S. de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Imperial
- Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Tomás Ruiz-Argüeso
- Departamento de Biotecnología, E. T. S. de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Meloni S, Rey L, Sidler S, Imperial J, Ruiz-Argüeso T, Palacios JM. The twin-arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis. Mol Microbiol 2003; 48:1195-207. [PMID: 12787349 DOI: 10.1046/j.1365-2958.2003.03510.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Tat (twin-arginine translocation) system mediates export of periplasmic proteins in folded conformation. Proteins transported via Tat contain a characteristic twin-arginine motif in their signal peptide. Genetic determinants (tatABC genes) of the Tat system from Rhizobium leguminosarum bv. viciae were cloned and characterized, and a tatBC deletion mutant was constructed. The mutant lacked the ability for membrane targeting of hydrogenase, a known Tat substrate, and was impaired in hydrogenase activity. Interestingly, in the absence of a functional Tat system, only small, white nodules unable to fix nitrogen were induced in symbiosis with pea plants. Analysis of nodule structure and location of green fluorescent protein (GFP)-tagged bacteria within nodules indicated that the symbiotic process was blocked in the tat mutant at a stage previous to bacteria release into cortical cells. The R. leguminosarum Tat-deficient mutant lacked a functional cytochrome bc1 complex. This was consistent with the fact that R. leguminosarum Rieske protein, a key component of the symbiosis-essential cytochrome bc1 complex, contained a typical twin-arginine signal peptide. However, comparative analyses of nodule structure indicated that nodule development in the tat mutant was arrested at an earlier step than in a cytochrome bc1 mutant. These data indicate that the Tat pathway is also critical for proteins relevant to the initial stages of the symbiotic process.
Collapse
Affiliation(s)
- Stefania Meloni
- Laboratorio de Microbiología, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | | | |
Collapse
|