1
|
Ferreira BH, Ramírez-Prado JH, Neves GWP, Torrado E, Sampaio P, Felipe MSS, Vasconcelos AT, Goldman GH, Carvalho A, Cunha C, Lopes-Bezerra LM, Rodrigues F. Ploidy Determination in the Pathogenic Fungus Sporothrix spp. Front Microbiol 2019; 10:284. [PMID: 30858833 PMCID: PMC6397882 DOI: 10.3389/fmicb.2019.00284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/04/2019] [Indexed: 11/16/2022] Open
Abstract
The pathogenic clade of the Sporothrix genus comprises the etiological agents of sporotrichosis, a worldwide emergent disease. Despite the growing understanding of their successful pathogen traits, there is little information on genome sizes and ploidy within the genus. Therefore, in this work, we evaluated the ploidy of four species of the Sporothrix genus, specifically Sporothrix brasiliensis, Sporothrix schenckii, Sporothrix globosa, and Sporothrix pallida. Through cell cycle analysis of the yeast-phase cells, we showed that the DNA content of G0/G1 cells was similar to the genome size determined by whole genome sequencing. Moreover, ploidy of S. schenckii, S. brasiliensis, and S. pallida that was determined by allele composition using next-generation sequencing (NGS) data is consistent with monomorphic positions at each allele. These data show that the analyzed strains of Sporothrix are haploid, or at least aneuploid, thereby laying the foundation for the development of a molecular toolbox for Sporothrix spp.
Collapse
Affiliation(s)
- Beatriz H. Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, University of Minho, Braga, Portugal
| | | | - Gabriela W. P. Neves
- Laboratory of Cellular Mycology and Proteomics, Biology Institute, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, University of Minho, Braga, Portugal
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Maria Sueli S. Felipe
- Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, Brazil
- Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Ana Tereza Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, University of Minho, Braga, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, University of Minho, Braga, Portugal
| | - Leila M. Lopes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Biology Institute, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, University of Minho, Braga, Portugal
| |
Collapse
|
2
|
Glycolytic Functions Are Conserved in the Genome of the Wine Yeast Hanseniaspora uvarum, and Pyruvate Kinase Limits Its Capacity for Alcoholic Fermentation. Appl Environ Microbiol 2017; 83:AEM.01580-17. [PMID: 28887422 DOI: 10.1128/aem.01580-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/03/2017] [Indexed: 01/11/2023] Open
Abstract
Hanseniaspora uvarum (anamorph Kloeckera apiculata) is a predominant yeast on wine grapes and other fruits and has a strong influence on wine quality, even when Saccharomyces cerevisiae starter cultures are employed. In this work, we sequenced and annotated approximately 93% of the H. uvarum genome. Southern and synteny analyses were employed to construct a map of the seven chromosomes present in a type strain. Comparative determinations of specific enzyme activities within the fermentative pathway in H. uvarum and S. cerevisiae indicated that the reduced capacity of the former yeast for ethanol production is caused primarily by an ∼10-fold-lower activity of the key glycolytic enzyme pyruvate kinase. The heterologous expression of the encoding gene, H. uvarumPYK1 (HuPYK1), and two genes encoding the phosphofructokinase subunits, HuPFK1 and HuPFK2, in the respective deletion mutants of S. cerevisiae confirmed their functional homology.IMPORTANCEHanseniaspora uvarum is a predominant yeast species on grapes and other fruits. It contributes significantly to the production of desired as well as unfavorable aroma compounds and thus determines the quality of the final product, especially wine. Despite this obvious importance, knowledge on its genetics is scarce. As a basis for targeted metabolic modifications, here we provide the results of a genomic sequencing approach, including the annotation of 3,010 protein-encoding genes, e.g., those encoding the entire sugar fermentation pathway, key components of stress response signaling pathways, and enzymes catalyzing the production of aroma compounds. Comparative analyses suggest that the low fermentative capacity of H. uvarum compared to that of Saccharomyces cerevisiae can be attributed to low pyruvate kinase activity. The data reported here are expected to aid in establishing H. uvarum as a non-Saccharomyces yeast in starter cultures for wine and cider fermentations.
Collapse
|
3
|
Palma M, Münsterkötter M, Peça J, Güldener U, Sá-Correia I. Genome sequence of the highly weak-acid-tolerant Zygosaccharomyces bailii IST302, amenable to genetic manipulations and physiological studies. FEMS Yeast Res 2017; 17:3786350. [PMID: 28460089 PMCID: PMC5812536 DOI: 10.1093/femsyr/fox025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Zygosaccharomyces bailii is one of the most problematic spoilage yeast species found in the food and beverage industry particularly in acidic products, due to its exceptional resistance to weak acid stress. This article describes the annotation of the genome sequence of Z. bailii IST302, a strain recently proven to be amenable to genetic manipulations and physiological studies. The work was based on the annotated genomes of strain ISA1307, an interspecies hybrid between Z. bailii and a closely related species, and the Z. bailii reference strain CLIB 213T. The resulting genome sequence of Z. bailii IST302 is distributed through 105 scaffolds, comprising a total of 5142 genes and a size of 10.8 Mb. Contrasting with CLIB 213T, strain IST302 does not form cell aggregates, allowing its manipulation in the laboratory for genetic and physiological studies. Comparative cell cycle analysis with the haploid and diploid Saccharomyces cerevisiae strains BY4741 and BY4743, respectively, suggests that Z. bailii IST302 is haploid. This is an additional trait that makes this strain attractive for the functional analysis of non-essential genes envisaging the elucidation of mechanisms underlying its high tolerance to weak acid food preservatives, or the investigation and exploitation of the potential of this resilient yeast species as cell factory.
Collapse
Affiliation(s)
- Margarida Palma
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - João Peça
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
- Chair of Genome-oriented Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
4
|
Ortiz-Merino RA, Kuanyshev N, Braun-Galleani S, Byrne KP, Porro D, Branduardi P, Wolfe KH. Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch. PLoS Biol 2017; 15:e2002128. [PMID: 28510588 PMCID: PMC5433688 DOI: 10.1371/journal.pbio.2002128] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/13/2017] [Indexed: 11/30/2022] Open
Abstract
Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements. Surprisingly, Z. parabailii has a full sexual cycle and is genetically haploid. It goes through mating-type switching and autodiploidization, followed by immediate sporulation. We identified the key evolutionary event that enabled Z. parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT) locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus. This rearrangement was caused by HO endonuclease, which normally functions in mating-type switching. With 1 copy of MAT inactivated, the interspecies hybrid now behaves as a haploid. Our results provide the first demonstration that MAT locus damage is a naturally occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to interspecies hybrids. The events that occurred in Z. parabailii strongly resemble those postulated to have caused ancient whole-genome duplication in an ancestor of Saccharomyces cerevisiae. It has recently been proposed that the whole-genome duplication (WGD) event that occurred during evolution of an ancestor of the yeast S. cerevisiae was the result of a hybridization between 2 parental yeast species that were significantly divergent in DNA sequence, followed by a doubling of the genome content to restore the hybrid’s ability to make viable spores. However, the molecular details of how genome doubling could occur in a hybrid were unclear because most known interspecies hybrid yeasts have no sexual cycle. We show here that Z. parabailii provides an almost exact precedent for the steps proposed to have occurred during the S. cerevisiae WGD. Two divergent haploid parental species, each with 8 chromosomes, mated to form a hybrid that was initially sterile but regained fertility when 1 copy of its mating-type locus became damaged by the mating-type switching apparatus. As a result of this damage, the Z. parabailii life cycle now consists of a 16-chromosome haploid phase and a transient 32-chromosome diploid phase. Each pair of homeologous genes behaves as 2 independent Mendelian loci during meiosis.
Collapse
Affiliation(s)
- Raúl A. Ortiz-Merino
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Nurzhan Kuanyshev
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Kevin P. Byrne
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Kenneth H. Wolfe
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
5
|
Gonzalez A, Hernandez O. New insights into a complex fungal pathogen: the case of Paracoccidioides spp. Yeast 2016; 33:113-28. [PMID: 26683539 DOI: 10.1002/yea.3147] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 01/31/2023] Open
Abstract
Paracoccidioidomycosis is a systemic mycosis endemic to Latin America, with Paracoccidioides brasiliensis and P. lutzii being the causal agents of this disorder. Several issues have been raised in the 100 years since its discovery and in this article we discuss features of this fascinating fungal pathogen, including its biology, eco-epidemiology and aspects of its pathogenicity. We also consider some of its virulence determinants, the most recent advances in the study of its metabolic pathways and the molecular and genetic research tools developed for this research. We also review the animal models used to study host-fungal interactions and how the host defence mechanisms against this pathogen work.
Collapse
Affiliation(s)
- Angel Gonzalez
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Orville Hernandez
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
6
|
Masneuf-Pomarede I, Bely M, Marullo P, Albertin W. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges. Front Microbiol 2016; 6:1563. [PMID: 26793188 PMCID: PMC4707289 DOI: 10.3389/fmicb.2015.01563] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/23/2015] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines.
Collapse
Affiliation(s)
- Isabelle Masneuf-Pomarede
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- Bordeaux Sciences AgroGradignan, France
| | - Marina Bely
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
| | - Philippe Marullo
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- BiolaffortBordeaux, France
| | - Warren Albertin
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- ENSCBP, Bordeaux INPPessac, France
| |
Collapse
|
7
|
Mira NP, Münsterkötter M, Dias-Valada F, Santos J, Palma M, Roque FC, Guerreiro JF, Rodrigues F, Sousa MJ, Leão C, Güldener U, Sá-Correia I. The genome sequence of the highly acetic acid-tolerant Zygosaccharomyces bailii-derived interspecies hybrid strain ISA1307, isolated from a sparkling wine plant. DNA Res 2014; 21:299-313. [PMID: 24453040 PMCID: PMC4060950 DOI: 10.1093/dnares/dst058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this work, it is described the sequencing and annotation of the genome of the yeast strain ISA1307, isolated from a sparkling wine continuous production plant. This strain, formerly considered of the Zygosaccharomyces bailii species, has been used to study Z. bailii physiology, in particular, its extreme tolerance to acetic acid stress at low pH. The analysis of the genome sequence described in this work indicates that strain ISA1307 is an interspecies hybrid between Z. bailii and a closely related species. The genome sequence of ISA1307 is distributed through 154 scaffolds and has a size of around 21.2 Mb, corresponding to 96% of the genome size estimated by flow cytometry. Annotation of ISA1307 genome includes 4385 duplicated genes (∼90% of the total number of predicted genes) and 1155 predicted single-copy genes. The functional categories including a higher number of genes are ‘Metabolism and generation of energy’, ‘Protein folding, modification and targeting’ and ‘Biogenesis of cellular components’. The knowledge of the genome sequence of the ISA1307 strain is expected to contribute to accelerate systems-level understanding of stress resistance mechanisms in Z. bailii and to inspire and guide novel biotechnological applications of this yeast species/strain in fermentation processes, given its high resilience to acidic stress. The availability of the ISA1307 genome sequence also paves the way to a better understanding of the genetic mechanisms underlying the generation and selection of more robust hybrid yeast strains in the stressful environment of wine fermentations.
Collapse
Affiliation(s)
- Nuno P Mira
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Filipa Dias-Valada
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Júlia Santos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
| | - Margarida Palma
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Filipa C Roque
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Joana F Guerreiro
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA)/Department of Biology, University of Minho, Braga 4710-057, Portugal
| | - Cecília Leão
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Isabel Sá-Correia
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
8
|
Branduardi P, Dato L, Porro D. Molecular tools and protocols for engineering the acid-tolerant yeast Zygosaccharomyces bailii as a potential cell factory. Methods Mol Biol 2014; 1152:63-85. [PMID: 24744027 DOI: 10.1007/978-1-4939-0563-8_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microorganisms offer a tremendous potential as cell factories, and they are indeed used by humans for centuries for biotransformations. Among them, yeasts combine the advantage of unicellular state with a eukaryotic organization, and, in the era of biorefineries, their biodiversity can offer solutions to specific process constraints. Zygosaccharomyces bailii, an ascomycetales budding yeast, is widely known for its peculiar tolerance to various stresses, among which are organic acids. Despite the possibility to apply with this yeast some of the molecular tools and protocols routinely used to manipulate Saccharomyces cerevisiae, adjustments and optimizations are necessary. Here, we describe in detail protocols for transformation, for target gene disruption or gene integration, and for designing episomal expression plasmids helpful for developing and further studying the yeast Z. bailii.
Collapse
Affiliation(s)
- Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2 - 20126, Milan, Italy,
| | | | | |
Collapse
|
9
|
Sousa M, Duarte AM, Fernandes TR, Chaves SR, Pacheco A, Leão C, Côrte-Real M, Sousa MJ. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics 2013; 14:838. [PMID: 24286259 PMCID: PMC4046756 DOI: 10.1186/1471-2164-14-838] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetic acid is mostly known as a toxic by-product of alcoholic fermentation carried out by Saccharomyces cerevisiae, which it frequently impairs. The more recent finding that acetic acid triggers apoptotic programmed cell death (PCD) in yeast sparked an interest to develop strategies to modulate this process, to improve several biotechnological applications, but also for biomedical research. Indeed, acetate can trigger apoptosis in cancer cells, suggesting its exploitation as an anticancer compound. Therefore, we aimed to identify genes involved in the positive and negative regulation of acetic acid-induced PCD by optimizing a functional analysis of a yeast Euroscarf knock-out mutant collection. RESULTS The screen consisted of exposing the mutant strains to acetic acid in YPD medium, pH 3.0, in 96-well plates, and subsequently evaluating the presence of culturable cells at different time points. Several functional categories emerged as greatly relevant for modulation of acetic acid-induced PCD (e.g.: mitochondrial function, transcription of glucose-repressed genes, protein synthesis and modifications, and vesicular traffic for protection, or amino acid transport and biosynthesis, oxidative stress response, cell growth and differentiation, protein phosphorylation and histone deacetylation for its execution). Known pro-apoptotic and anti-apoptotic genes were found, validating the approach developed. Metabolism stood out as a main regulator of this process, since impairment of major carbohydrate metabolic pathways conferred resistance to acetic acid-induced PCD. Among these, lipid catabolism arose as one of the most significant new functions identified. The results also showed that many of the cellular and metabolic features that constitute hallmarks of tumour cells (such as higher glycolytic energetic dependence, lower mitochondrial functionality, increased cell division and metabolite synthesis) confer sensitivity to acetic acid-induced PCD, potentially explaining why tumour cells are more susceptible to acetate than untransformed cells and reinforcing the interest in exploiting this acid in cancer therapy. Furthermore, our results clearly establish a connection between cell proliferation and cell death regulation, evidencing a conserved developmental role of programmed cell death in unicellular eukaryotes. CONCLUSIONS This work advanced the characterization of acetic acid-induced PCD, providing a wealth of new information on putative molecular targets for its control with impact both in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Marlene Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Raman spectroscopy and chemometrics for identification and strain discrimination of the wine spoilage yeasts Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Brettanomyces bruxellensis. Appl Environ Microbiol 2013; 79:6264-70. [PMID: 23913433 DOI: 10.1128/aem.01886-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%.
Collapse
|
12
|
Solieri L, Chand Dakal T, Croce MA, Giudici P. Unravelling genomic diversity ofZygosaccharomyces rouxiicomplex with a link to its life cycle. FEMS Yeast Res 2013; 13:245-58. [DOI: 10.1111/1567-1364.12027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/30/2012] [Accepted: 12/12/2012] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lisa Solieri
- Department of Life Sciences; University of Modena and Reggio Emilia; Reggio Emilia; Italy
| | - Tikam Chand Dakal
- Department of Life Sciences; University of Modena and Reggio Emilia; Reggio Emilia; Italy
| | - Maria Antonietta Croce
- Department of Life Sciences; University of Modena and Reggio Emilia; Reggio Emilia; Italy
| | - Paolo Giudici
- Department of Life Sciences; University of Modena and Reggio Emilia; Reggio Emilia; Italy
| |
Collapse
|
13
|
Mallet S, Weiss S, Jacques N, Leh-Louis V, Sacerdot C, Casaregola S. Insights into the life cycle of yeasts from the CTG clade revealed by the analysis of the Millerozyma (Pichia) farinosa species complex. PLoS One 2012; 7:e35842. [PMID: 22574125 PMCID: PMC3344839 DOI: 10.1371/journal.pone.0035842] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 03/23/2012] [Indexed: 11/30/2022] Open
Abstract
Among ascomycetous yeasts, the CTG clade is so-called because its constituent species translate CTG as serine instead of leucine. Though the biology of certain pathogenic species such as Candida albicans has been much studied, little is known about the life cycles of non-pathogen species of the CTG clade. Taking advantage of the recently obtained sequence of the biotechnological Millerozyma (Pichiasorbitophila) farinosa strain CBS 7064, we used MLST to better define phylogenic relationships between most of the Millerozyma farinosa strains available in public collections. This led to the constitution of four phylogenetic clades diverging from 8% to 15% at the DNA level and possibly constituting a species complex (M. farinosa) and to the proposal of two new species:Millerozyma miso sp. nov. CBS 2004T ( = CLIB 1230T) and Candida pseudofarinosa sp. nov.NCYC 386T( = CLIB 1231T).Further analysis showed that M. farinosa isolates exist as haploid and inter-clade hybrids. Despite the sequence divergence between the clades, secondary contacts after reproductive isolation were evidenced, as revealed by both introgression and mitochondria transfer between clades. We also showed that the inter-clade hybrids do sporulate to generate mainly viable vegetative diploid spores that are not the result of meiosis, and very rarely aneuploid spores possibly through the loss of heterozygosity during sporulation. Taken together, these results show that in this part of the CTG clade, non-Mendelian genetic exchanges occur at high rates through hybridization between divergent strainsfrom distinct clades and subsequent massive loss of heterozygosity. This combination of mechanisms could constitute an alternative sexuality leading to an unsuspected biodiversity.
Collapse
Affiliation(s)
- Sandrine Mallet
- INRA UMR1319, Micalis Institute, CIRM-Levures, Thiverval-Grignon, France
- AgroParisTech UMR1319, Micalis Institute, Thiverval-Grignon, France
| | - Stéphanie Weiss
- INRA UMR1319, Micalis Institute, CIRM-Levures, Thiverval-Grignon, France
- AgroParisTech UMR1319, Micalis Institute, Thiverval-Grignon, France
| | - Noémie Jacques
- INRA UMR1319, Micalis Institute, CIRM-Levures, Thiverval-Grignon, France
- AgroParisTech UMR1319, Micalis Institute, Thiverval-Grignon, France
| | | | - Christine Sacerdot
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, UMR 3525, Université Pierre et Marie Curie-Paris 06, UFR 927, Paris, France
| | - Serge Casaregola
- INRA UMR1319, Micalis Institute, CIRM-Levures, Thiverval-Grignon, France
- AgroParisTech UMR1319, Micalis Institute, Thiverval-Grignon, France
- * E-mail:
| |
Collapse
|
14
|
Drinnenberg IA, Fink GR, Bartel DP. Compatibility with killer explains the rise of RNAi-deficient fungi. Science 2011; 333:1592. [PMID: 21921191 DOI: 10.1126/science.1209575] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The RNA interference (RNAi) pathway is found in most eukaryotic lineages but curiously is absent in others, including that of Saccharomyces cerevisiae. We show that reconstituting RNAi in S. cerevisiae causes loss of a beneficial double-stranded RNA virus known as killer virus. Incompatibility between RNAi and killer viruses extends to other fungal species in that RNAi is absent in all species known to possess double-stranded RNA killer viruses, whereas killer viruses are absent in closely related species that retained RNAi. Thus, the advantage imparted by acquiring and retaining killer viruses explains the persistence of RNAi-deficient species during fungal evolution.
Collapse
Affiliation(s)
- Ines A Drinnenberg
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
15
|
Bucheli-Witschel M, Bassin C, Egli T. UV-C inactivation in Escherichia coli is affected by growth conditions preceding irradiation, in particular by the specific growth rate. J Appl Microbiol 2010; 109:1733-44. [PMID: 20629801 DOI: 10.1111/j.1365-2672.2010.04802.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS The objective was to analyse the impact of growth conditions, in particular of the specific growth rate, on the resistance of Escherichia coli towards UV-C irradiation. METHODS AND RESULTS Escherichia coli K12 wild-type bacteria (and in some experiments also a mutant not expressing RpoS, the global regulator of the general stress response; rpoS(-) mutant) were cultivated either in batch culture until stationary phase was reached or in continuous culture at different specific growth rates (μ) and then irradiated with UV-C light. Inactivation was determined by plating. The specific growth rate had a profound effect on UV-C resistance. Stationary phase or very slowly growing cells (0≤μ<0·1 h(-1)) as well as fast-growing cells exhibited a high resistance compared to bacteria growing at an intermediate rate (between 0·2 and 0·4 h(-1) ). The rpoS(-) mutant was more susceptible to UV irradiation than the wild-type when obtained from stationary phase, while mutant cells from continuous culture (μ=0·2 h(-1)) revealed a UV-C resistance similar to the wild-type grown under the same conditions. CONCLUSIONS Antecedent growth conditions determine the physiological state of bacteria including the resistance towards UV-C irradiation. In particular, the specific growth rate was shown to markedly affect UV-C resistance of E. coli. The observed pattern of UV-C resistance exhibiting a minimum at intermediate specific growth rates must be explained by two or several counteracting mechanisms. For lower specific growth rates, the regulator of the global stress response, RpoS, is at least partly involved in the physiological processes responsible for UV-C resistance. SIGNIFICANCE AND IMPACT OF THE STUDY The observed impact of antecedent growth conditions on UV-C resistance of E. coli stresses the necessity to use clearly defined cultivation conditions and to report them to gather meaningful and comparable data on the UV-C resistance of micro-organisms.
Collapse
Affiliation(s)
- M Bucheli-Witschel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Microbiology, Dübendorf, Switzerland
| | | | | |
Collapse
|
16
|
Population polymorphism of nuclear mitochondrial DNA insertions reveals widespread diploidy associated with loss of heterozygosity in Debaryomyces hansenii. EUKARYOTIC CELL 2010; 9:449-59. [PMID: 20048048 DOI: 10.1128/ec.00263-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Debaryomyces hansenii, a yeast that participates in the elaboration of foodstuff, displays important genetic diversity. Our recent phylogenetic classification of this species led to the subdivision of the species into three distinct clades. D. hansenii harbors the highest number of nuclear mitochondrial DNA (NUMT) insertions known so far for hemiascomycetous yeasts. Here we assessed the intraspecific variability of the NUMTs in this species by testing their presence/absence first in 28 strains, with 21 loci previously detected in the completely sequenced strain CBS 767(T), and second in a larger panel of 77 strains, with 8 most informative loci. We were able for the first time to structure populations in D. hansenii, although we observed little NUMT insertion variability within the clades. We determined the chronology of the NUMT insertions, which turned out to correlate with the previously defined taxonomy and provided additional evidence that colonization of nuclear genomes by mitochondrial DNA is a dynamic process in yeast. In combination with flow cytometry experiments, the NUMT analysis revealed the existence of both haploid and diploid strains, the latter being heterozygous and resulting from at least four crosses among strains from the various clades. As in the diploid pathogen Candida albicans, to which D. hansenii is phylogenetically related, we observed a differential loss of heterozygosity in the diploid strains, which can explain some of the large genetic diversity found in D. hansenii over the years.
Collapse
|
17
|
Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 2009; 106:16333-8. [PMID: 19805302 DOI: 10.1073/pnas.0904673106] [Citation(s) in RCA: 321] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae has been used for millennia in winemaking, but little is known about the selective forces acting on the wine yeast genome. We sequenced the complete genome of the diploid commercial wine yeast EC1118, resulting in an assembly of 31 scaffolds covering 97% of the S288c reference genome. The wine yeast differed strikingly from the other S. cerevisiae isolates in possessing 3 unique large regions, 2 of which were subtelomeric, the other being inserted within an EC1118 chromosome. These regions encompass 34 genes involved in key wine fermentation functions. Phylogeny and synteny analyses showed that 1 of these regions originated from a species closely related to the Saccharomyces genus, whereas the 2 other regions were of non-Saccharomyces origin. We identified Zygosaccharomyces bailii, a major contaminant of wine fermentations, as the donor species for 1 of these 2 regions. Although natural hybridization between Saccharomyces strains has been described, this report provides evidence that gene transfer may occur between Saccharomyces and non-Saccharomyces species. We show that the regions identified are frequent and differentially distributed among S. cerevisiae clades, being found almost exclusively in wine strains, suggesting acquisition through recent transfer events. Overall, these data show that the wine yeast genome is subject to constant remodeling through the contribution of exogenous genes. Our results suggest that these processes are favored by ecologic proximity and are involved in the molecular adaptation of wine yeasts to conditions of high sugar, low nitrogen, and high ethanol concentrations.
Collapse
|
18
|
Genome size and ploidy level: new insights for elucidating relationships in Zygosaccharomyces species. Fungal Genet Biol 2008; 45:1582-90. [PMID: 18952188 DOI: 10.1016/j.fgb.2008.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/15/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
Ploidy is a fundamental genetic trait with important physiological and genomic implications. We applied complementary molecular tools to highlight differences in genome size and ploidy between Zygosaccharomyces rouxii strain CBS 732T and other related wild strains (ATCC 42981, ABT 301, and ABT 601). The cell cycle analysis by flow cytometry revealed a genome size of 12.7+/-0.2 Mb for strain CBS 732T, 21.9+/-0.2 Mb for ATCC 42981, 28.1+/-1.3 Mb for ABT 301, and 39.00+/-0.3 Mb for ABT 601. Moreover, karyotyping analysis showed a high variability, with wild strains having a higher number of chromosomal bands than CBS 732T. The ploidy level was assessed comparing genome size from flow cytometry with the average haploid size from electrophoretic karyotyping. Strain CBS 732T showed an haploid DNA content, whereas the wild strains a diploid DNA content. In addition gene probe-chromosome hybridization targeted to ZSOD genes showed that wild strains with a diploid DNA content have two ZSOD copies located on different chromosomes.
Collapse
|
19
|
Dato L, Sauer M, Passolunghi S, Porro D, Branduardi P. Investigating the multibudded and binucleate phenotype ofâ the yeastZygosaccharomyces bailiigrowing on minimal medium. FEMS Yeast Res 2008; 8:906-15. [DOI: 10.1111/j.1567-1364.2008.00417.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
20
|
Almeida AJ, Matute DR, Carmona JA, Martins M, Torres I, McEwen JG, Restrepo A, Leão C, Ludovico P, Rodrigues F. Genome size and ploidy of Paracoccidioides brasiliensis reveals a haploid DNA content: Flow cytometry and GP43 sequence analysis. Fungal Genet Biol 2007; 44:25-31. [PMID: 16879998 DOI: 10.1016/j.fgb.2006.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/20/2022]
Abstract
The aim of this study was to evaluate genome size and ploidy of the dimorphic pathogenic fungus Paracoccidioides brasiliensis. The cell cycle analysis of 10 P. brasiliensis isolates by flow cytometry (FCM) revealed a genome size ranging from 26.3+/-0.1Mb (26.9+/-0.1fg) to 35.5+/-0.2Mb (36.3+/-0.2fg) per uninucleated yeast cell. The DNA content of conidia from P. brasiliensis ATCC 60855-30.2+/-0.8Mb (30.9+/-0.8fg) -showed no significant differences with the yeast form, possibly excluding the occurrence of ploidy shift during morphogenesis. The ploidy of several P. brasiliensis isolates was assessed by comparing genome sizing by FCM with the previously described average haploid size obtained from electrophoretic karyotyping. The analysis of intra-individual variability of a highly polymorphic P. brasiliensis gene, GP43, indicated that only one allele seems to be present. Overall, the results showed that all analysed isolates presented a haploid, or at least aneuploid, DNA content and no association was detected between genome size/ploidy and the clinical-epidemiological features of the studied isolates. This work provides new knowledge on P. brasiliensis genetics/genomics, important for future research in basic cellular/molecular mechanisms and for the development/design of molecular techniques in this fungus.
Collapse
Affiliation(s)
- A J Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Almeida AJ, Martins M, Carmona JA, Cano LE, Restrepo A, Leão C, Rodrigues F. New insights into the cell cycle profile of Paracoccidioides brasiliensis. Fungal Genet Biol 2006; 43:401-9. [PMID: 16631397 DOI: 10.1016/j.fgb.2006.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/09/2006] [Accepted: 01/12/2006] [Indexed: 11/26/2022]
Abstract
The present work focuses on the analysis of cell cycle progression of Paracoccidioides brasiliensis yeast cells under different environmental conditions. We optimized a flow cytometric technique for cell cycle profile analysis based on high resolution measurements of nuclear DNA. Exponentially growing cells in poor-defined or rich-complex nutritional environments showed an increased percentage of daughter cells in accordance with the fungus' multiple budding and high growth rate. During the stationary growth-phase cell cycle progression in rich-complex medium was characterized by an accumulation of cells with higher DNA content or pseudohyphae-like structures, whereas in poor-defined medium arrested cells mainly displayed two DNA contents. Furthermore, the fungicide benomyl induced an arrest of the cell cycle with accumulation of cells presenting high and varying DNA contents, consistent with this fungus' unique pattern of cellular division. Altogether, our findings seem to indicate that P. brasiliensis may possess alternative control mechanisms during cell growth to manage multiple budding and its multinucleate nature.
Collapse
Affiliation(s)
- A J Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
22
|
Macpherson N, Shabala L, Rooney H, Jarman MG, Davies JM. Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts. Microbiology (Reading) 2005; 151:1995-2003. [PMID: 15942006 DOI: 10.1099/mic.0.27502-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The food spoilage yeastsZygosaccharomyces bailiiandSaccharomyces cerevisiaehave been proposed to resist weak-acid preservative stress by different means;Z. bailiiby limiting influx of preservative combined with its catabolism,S. cerevisiaeby active extrusion of the preservative weak-acid anion and H+. Measurement of H+extrusion by exponential-phaseZ. bailiicells suggest that, in common withS. cerevisiae, this yeast uses a plasma membrane H+-ATPase to expel H+when challenged by weak-acid preservative (benzoic acid). Simultaneous measurement ofZ. bailiinet H+and K+fluxes showed that net K+influx accompanies net H+efflux during acute benzoic acid stress. Such ionic coupling is known forS. cerevisiaein short-term preservative stress. Both yeasts significantly accumulated K+on long-term exposure to benzoic acid. Analysis ofS. cerevisiaeK+transporter mutants revealed that loss of the high affinity K+uptake systemTrk1confers sensitivity to growth in preservative. The results suggest that cation accumulation is an important factor in adaptation to weak-acid preservatives by spoilage yeasts and thatZ. bailiiandS. cerevisiaeshare hitherto unsuspected adaptive responses at the level of plasma membrane ion transport.
Collapse
Affiliation(s)
- Neil Macpherson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Lana Shabala
- Department of Agricultural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Henrietta Rooney
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Marcus G Jarman
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
23
|
Posey KL, Koufopanou V, Burt A, Gimble FS. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species. Nucleic Acids Res 2004; 32:3947-56. [PMID: 15280510 PMCID: PMC506816 DOI: 10.1093/nar/gkh734] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 --> T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites.
Collapse
Affiliation(s)
- Karen L Posey
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
24
|
Current awareness on yeast. Yeast 2003; 20:653-60. [PMID: 12769126 DOI: 10.1002/yea.945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|