1
|
Tanaka K, Lan JCW, Kondo A, Hasunuma T. Metabolic engineering and cultivation strategies for efficient production of fucoxanthin and related carotenoids. Appl Microbiol Biotechnol 2025; 109:57. [PMID: 40035874 PMCID: PMC11880063 DOI: 10.1007/s00253-025-13441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
Fucoxanthin, a bioactive carotenoid derived from algae, has attracted considerable attention for its applications in health, cosmetics, and nutrition. Advances in metabolic engineering, such as the overexpression of pathway-specific enzymes and enhancement of precursor availability, have shown promising results in improving production efficiency. However, despite its high value, the biosynthetic pathway of fucoxanthin remains only partially elucidated, posing significant challenges for metabolic engineering efforts. Recent studies have identified previously unknown enzymes and regulatory elements within the pathway, providing opportunities for further productivity enhancements through targeted metabolic modifications. Additionally, adaptive evolution, mutagenesis-driven strain development, and optimized cultivation conditions have demonstrated significant potential to boost fucoxanthin yields. This review consolidates the latest insights into the biosynthetic pathway of fucoxanthin and highlights metabolic engineering strategies aimed at enhancing the production of fucoxanthin and related carotenoids, offering approaches to design high-yielding strains. Furthermore, recent advancements in random mutagenesis and cultivation technology are discussed. By integrating these developments, more economically viable and environmentally sustainable fucoxanthin production systems can be achieved. KEY POINTS : • Insights into fucoxanthin biosynthesis enable targeted metabolic engineering. • ALE and cultivation strategies complement metabolic engineering efforts. • Balanced push-pull-block strategies improve fucoxanthin production efficiency.
Collapse
Affiliation(s)
- Kenya Tanaka
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
2
|
Li Z, You L, Du X, Yang H, Yang L, Zhu Y, Li L, Jiang Z, Li Q, He N, Lin R, Chen Z, Ni H. New strategies to study in depth the metabolic mechanism of astaxanthin biosynthesis in Phaffia rhodozyma. Crit Rev Biotechnol 2025; 45:454-472. [PMID: 38797672 DOI: 10.1080/07388551.2024.2344578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using Phaffia rhodozyma. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in P. rhodozyma, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as crtYB, crtS, and crtI, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in P. rhodozyma and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.
Collapse
Affiliation(s)
- Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Li You
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Haoyi Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Liang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Rui Lin
- College of Ocean and Earth Sciences, and Research and Development Center for Ocean Observation Technologies, Xiamen University, Xiamen, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| |
Collapse
|
3
|
Yu B, Ma T, Nawaz M, Chen H, Zheng H. Advances in Metabolic Engineering for the Accumulation of Astaxanthin Biosynthesis. Mol Biotechnol 2024:10.1007/s12033-024-01289-1. [PMID: 39373956 DOI: 10.1007/s12033-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Astaxanthin, a lipophilic carotenoid renowned for its strong antioxidant activity, holds significant commercial value across industries such as feed, food, and cosmetics. Although astaxanthin can be synthesized through chemical methods, it may contain toxic by-products in the synthesized astaxanthin, limiting its application in medicine or functional food. Natural astaxanthin can be extracted from algae, however, the cultivation cycle of algae is relatively longer compared to microorganisms. With the advancement of synthetic biology and metabolic engineering, the method of microbial fermentation has emerged as a promising strategy for the large-scale production of astaxanthin. This article provides a comprehensive overview of the research progress in astaxanthin biosynthesis, highlighting the use of the natural host Xanthophyllomyces dendrorhous, and the heterologous hosts Yarrowia lipolytica and Saccharomyces cerevisiae. Additionally, future research prospects are also discussed.
Collapse
Affiliation(s)
- Bingxin Yu
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
4
|
Ye C, Hong H, Gao J, Li M, Gou Y, Gao D, Dong C, Huang L, Xu Z, Lian J. Characterization and engineering of peroxisome targeting sequences for compartmentalization engineering in Pichia pastoris. Biotechnol Bioeng 2024; 121:2091-2105. [PMID: 38568751 DOI: 10.1002/bit.28706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Peroxisomal compartmentalization has emerged as a highly promising strategy for reconstituting intricate metabolic pathways. In recent years, significant progress has been made in the peroxisomes through harnessing precursor pools, circumventing metabolic crosstalk, and minimizing the cytotoxicity of exogenous pathways. However, it is important to note that in methylotrophic yeasts (e.g. Pichia pastoris), the abundance and protein composition of peroxisomes are highly variable, particularly when peroxisome proliferation is induced by specific carbon sources. The intricate subcellular localization of native proteins, the variability of peroxisomal metabolic pathways, and the lack of systematic characterization of peroxisome targeting signals have limited the applications of peroxisomal compartmentalization in P. pastoris. Accordingly, this study established a high-throughput screening method based on β-carotene biosynthetic pathway to evaluate the targeting efficiency of PTS1s (Peroxisome Targeting Signal Type 1) in P. pastoris. First, 25 putative endogenous PTS1s were characterized and 3 PTS1s with high targeting efficiency were identified. Then, directed evolution of PTS1s was performed by constructing two PTS1 mutant libraries, and a total of 51 PTS1s (29 classical and 22 noncanonical PTS1s) with presumably higher peroxisomal targeting efficiency were identified, part of which were further characterized via confocal microscope. Finally, the newly identified PTS1s were employed for peroxisomal compartmentalization of the geraniol biosynthetic pathway, resulting in more than 30% increase in the titer of monoterpene compared with when the pathway was localized to the cytosol. The present study expands the synthetic biology toolkit and lays a solid foundation for peroxisomal compartmentalization in P. pastoris.
Collapse
Affiliation(s)
- Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Haosen Hong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Di Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chang Dong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Jiang L, Peng Y, Kim KH, Jeon D, Choe H, Han AR, Kim CY, Lee J. Jeongeuplla avenae gen. nov., sp. nov., a novel β-carotene-producing bacterium that alleviates salinity stress in Arabidopsis. Front Microbiol 2023; 14:1265308. [PMID: 38125566 PMCID: PMC10731981 DOI: 10.3389/fmicb.2023.1265308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
A novel endophytic bacterium, designated DY-R2A-6T, was isolated from oat (Avena sativa L.) seeds and found to produces β-carotene. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DY-R2A-6T had 96.3% similarity with Jiella aquimaris LZB041T, 96.0% similarity with Aurantimonas aggregate R14M6T and Aureimonas frigidaquae JCM 14755T, and less than 95.8% similarity with other genera in the family Aurantimonadaceae. The complete genome of strain DY-R2A-6T comprised 5,929,370 base pairs, consisting of one full chromosome (5,909,198 bp) and one plasmid (20,172 bp), with a G + C content was 69.1%. The overall genome-related index (OGRI), including digital DNA-DNA hybridization (<20.5%), ANI (<79.2%), and AAI (<64.2%) values, all fell below the thresholds set for novel genera. The major cellular fatty acids (>10%) of strain DY-R2A-6T were C16:0, C19:0 cyclo ω8c, and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Ubiquinone-10 was the main respiratory quinone. We identified the gene cluster responsible for carotenoid biosynthesis in the genome and found that the pink-pigment produced by strain DY-R2A-6T is β-carotene. In experiment with Arabidopsis seedlings, co-cultivation with strain DY-R2A-6T led to a 1.4-fold increase in plant biomass and chlorophyll content under salt stress conditions, demonstrating its capacity to enhance salt stress tolerance in plants. Moreover, external application of β-carotene to Arabidopsis seedlings under salt stress conditions also mitigated the stress significantly. Based on these findings, strain DY-R2A-6T is proposed to represent a novel genus and species in the family Aurantimonadaceae, named Jeongeuplla avenae gen. nov., sp. nov. The type strain is DY-R2A-6T (= KCTC 82985T = GDMCC 1.3014T). This study not only identified a new taxon but also utilized genome analysis to predict and confirm the production of β-carotene by strain DY-R2A-6T. It also demonstrated the ability of this strain to enhance salt stress tolerance in plants, suggesting potential application in agriculture to mitigate environmental stress in crops.
Collapse
Affiliation(s)
- Lingmin Jiang
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Yuxin Peng
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ki-Hyun Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Doeun Jeon
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Hanna Choe
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Jiyoung Lee
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
6
|
Basiony M, Ouyang L, Wang D, Yu J, Zhou L, Zhu M, Wang X, Feng J, Dai J, Shen Y, Zhang C, Hua Q, Yang X, Zhang L. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synth Syst Biotechnol 2022; 7:689-704. [PMID: 35261927 PMCID: PMC8866108 DOI: 10.1016/j.synbio.2022.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The global market demand for natural astaxanthin is rapidly increasing owing to its safety, the potential health benefits, and the diverse applications in food and pharmaceutical industries. The major native producers of natural astaxanthin on industrial scale are the alga Haematococcus pluvialis and the yeast Xanthopyllomyces dendrorhous. However, the natural production via these native producers is facing challenges of limited yield and high cost of cultivation and extraction. Alternatively, astaxanthin production via metabolically engineered non-native microbial cell factories such as Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica is another promising strategy to overcome these limitations. In this review we summarize the recent scientific and biotechnological progresses on astaxanthin biosynthetic pathways, transcriptional regulations, the interrelation with lipid metabolism, engineering strategies as well as fermentation process control in major native and non-native astaxanthin producers. These progresses illuminate the prospects of producing astaxanthin by microbial cell factories on industrial scale.
Collapse
Affiliation(s)
- Mostafa Basiony
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaming Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mohan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengguo Zhang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuliang Yang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Carotenoids and Their Biosynthesis in Fungi. Molecules 2022; 27:molecules27041431. [PMID: 35209220 PMCID: PMC8879039 DOI: 10.3390/molecules27041431] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids represent a class of pigmented terpenoids. They are distributed in all taxonomic groups of fungi. Most of the fungal carotenoids differ in their chemical structures to those from other organisms. The general function of carotenoids in heterotrophic organisms is protection as antioxidants against reactive oxygen species generated by photosensitized reactions. Furthermore, carotenoids are metabolized to apocarotenoids by oxidative cleavage. This review presents the current knowledge on fungal-specific carotenoids, their occurrence in different taxonomic groups, and their biosynthesis and conversion into trisporic acids. The outline of the different pathways was focused on the reactions and genes involved in not only the known pathways, but also suggested the possible mechanisms of reactions, which may occur in several non-characterized pathways in different fungi. Finally, efforts and strategies for genetic engineering to enhance or establish pathways for the production of various carotenoids in carotenogenic or non-carotenogenic yeasts were highlighted, addressing the most-advanced producers of each engineered yeast, which offered the highest biotechnological potentials as production systems.
Collapse
|
8
|
The role of key genes in astaxanthin biosynthesis in Phaffia rhodozyma by transcript level and gene knockout. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
González AM, Venegas M, Barahona S, Gómez M, Gutiérrez MS, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Damage response protein 1 (Dap1) functions in the synthesis of carotenoids and sterols in Xanthophyllomyces dendrorhous. J Lipid Res 2022; 63:100175. [PMID: 35120994 PMCID: PMC8953664 DOI: 10.1016/j.jlr.2022.100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Cytochrome P450s (P450s) are heme-containing proteins involved in several cellular functions, including biosynthesis of steroidal hormones, detoxification of xenobiotic compounds, among others. Damage response protein 1 (Dap1) has been described as a positive regulator of P450s through protein-protein interactions in organisms such as Schizosaccharomyces pombe. Three P450s in the carotenogenic yeast Xanthophyllomyces dendrorhous have thus far been characterized: Cyp51 and Cyp61, which are involved in ergosterol biosynthesis, and CrtS (astaxanthin synthase), which is involved in biosynthesis of the carotenoid astaxanthin. In this work, we describe the X. dendrorhous DAP1 gene, deletion of which affected yeast pigmentation by decreasing the astaxanthin fraction and increasing the β-carotene (a substrate of CrtS) fraction, which is consistent with the known role of CrtS. We found that the proportion of ergosterol was also decreased in the Δdap1 mutant. However, even though the fractions of the end products of these two pathways (the synthesis of carotenoids and sterols) were decreased in the Δdap1 mutant, the transcript levels of genes from the P450 systems involved were higher than those in the wild-type strain. We demonstrate that Dap1 coimmunoprecipitates with these three P450s, suggesting that Dap1 interacts with these three proteins. We propose that Dap1 regulates the synthesis of astaxanthin and ergosterol in X. dendrorhous, probably by regulating the P450s involved in both biosynthetic pathways at the protein level. This work suggests a new role for Dap1 in the regulation of carotenoid biosynthesis in X. dendrorhous.
Collapse
Affiliation(s)
- Ana-María González
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Maximiliano Venegas
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Melissa Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María-Soledad Gutiérrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Torres-Haro A, Verdín J, Kirchmayr MR, Arellano-Plaza M. Metabolic engineering for high yield synthesis of astaxanthin in Xanthophyllomyces dendrorhous. Microb Cell Fact 2021; 20:175. [PMID: 34488760 PMCID: PMC8420053 DOI: 10.1186/s12934-021-01664-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Astaxanthin is a carotenoid with a number of assets useful for the food, cosmetic and pharmaceutical industries. Nowadays, it is mainly produced by chemical synthesis. However, the process leads to an enantiomeric mixture where the biologically assimilable forms (3R, 3'R or 3S, 3'S) are a minority. Microbial production of (3R, 3'R) astaxanthin by Xanthophyllomyces dendrorhous is an appealing alternative due to its fast growth rate and easy large-scale production. In order to increase X. dendrorhous astaxanthin yields, random mutant strains able to produce from 6 to 10 mg/g dry mass have been generated; nevertheless, they often are unstable. On the other hand, site-directed mutant strains have also been obtained, but they increase only the yield of non-astaxanthin carotenoids. In this review, we insightfully analyze the metabolic carbon flow converging in astaxanthin biosynthesis and, by integrating the biological features of X. dendrorhous with available metabolic, genomic, transcriptomic, and proteomic data, as well as the knowledge gained with random and site-directed mutants that lead to increased carotenoids yield, we propose new metabolic engineering targets to increase astaxanthin biosynthesis.
Collapse
Affiliation(s)
- Alejandro Torres-Haro
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Jorge Verdín
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Manuel R Kirchmayr
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Melchor Arellano-Plaza
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico.
| |
Collapse
|
11
|
Bian Q, Zhou P, Yao Z, Li M, Yu H, Ye L. Heterologous biosynthesis of lutein in S. cerevisiae enabled by temporospatial pathway control. Metab Eng 2021; 67:19-28. [PMID: 34077803 DOI: 10.1016/j.ymben.2021.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023]
Abstract
The market-expanding lutein is currently mainly supplied by plant extraction, with microbial fermentation using engineered cell factory emerging as a promising substitution. During construction of lutein-producing yeast, α-carotene formation through asymmetric ε- and β-cyclization of lycopene was found as the main limiting step, attributed to intra-pathway competition of the cyclases for lycopene, forming β-carotene instead. To solve this problem, temperature-responsive expression of β-cyclase was coupled to constitutive expression of ε-cyclase for flux redirection to α-carotene by allowing ε-cyclization to occur first. Meanwhile, the ε-cyclase was engineered and re-localized to the plasma membrane for further flux reinforcement towards α-carotene. Finally, pathway extension with proper combination of carotenoid hydroxylases enabled lutein (438 μg/g dry cells) biosynthesis in S. cerevisiae. The success of heterologous lutein biosynthesis in yeast suggested temporospatial pathway control as a potential strategy in solving intra-pathway competitions, and may also be applicable for promoting the biosynthesis of other natural products.
Collapse
Affiliation(s)
- Qi Bian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zhen Yao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Min Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
12
|
Sandmann G, Pollmann H, Gassel S, Breitenbach J. Xanthophyllomyces dendrorhous, a Versatile Platform for the Production of Carotenoids and Other Acetyl-CoA-Derived Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1261:137-151. [PMID: 33783736 DOI: 10.1007/978-981-15-7360-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xanthophyllomyces dendrorhous (with Phaffia rhodozyma as its anamorphic state) is a basidiomycetous, moderately psychrophilic, red yeast belonging to the Cystofilobasidiales. Its red pigmentation is caused by the accumulation of astaxanthin, which is a unique feature among fungi. The present chapter reviews astaxanthin biosynthesis and acetyl-CoA metabolism in X. dendrorhous and describes the construction of a versatile platform for the production of carotenoids, such as astaxanthin, and other acetyl-CoA-derived compounds including fatty acids by using this fungus.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Biosynthesis Group, Molecular Biosciences, Goethe University, Frankfurt, Germany.
| | - Hendrik Pollmann
- Biosynthesis Group, Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Sören Gassel
- Biosynthesis Group, Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Jürgen Breitenbach
- Biosynthesis Group, Molecular Biosciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
13
|
Wan X, Zhou XR, Moncalian G, Su L, Chen WC, Zhu HZ, Chen D, Gong YM, Huang FH, Deng QC. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog Lipid Res 2020; 81:101083. [PMID: 33373616 DOI: 10.1016/j.plipres.2020.101083] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | | | - Gabriel Moncalian
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Hang-Zhi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dan Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yang-Min Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | - Qian-Chun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| |
Collapse
|
14
|
Fournié M, Truan G. Multiplicity of carotene patterns derives from competition between phytoene desaturase diversification and biological environments. Sci Rep 2020; 10:21106. [PMID: 33273560 PMCID: PMC7713294 DOI: 10.1038/s41598-020-77876-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022] Open
Abstract
Phytoene desaturases catalyse from two to six desaturation reactions on phytoene, generating a large diversity of molecules that can then be cyclised and produce, depending on the organism, many different carotenoids. We constructed a phylogenetic tree of a subset of phytoene desaturases from the CrtI family for which functional data was available. We expressed in a bacterial system eight codon optimized CrtI enzymes from different clades. Analysis of the phytoene desaturation reactions on crude extracts showed that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Kinetic data generated using a subset of five purified enzymes demonstrate the existence of characteristic patterns of desaturated molecules associated with various CrtI clades. The kinetic data was also analysed using a classical Michaelis–Menten kinetic model, showing that variations in the reaction rates and binding constants could explain the various carotene patterns observed. Competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full β-carotene production pathway. Our results demonstrate that the desaturation patterns of carotene molecules in various biological environments cannot be fully inferred from phytoene desaturases classification but is governed both by evolutionary-linked variations in the desaturation rates and competition between desaturation and cyclisation steps.
Collapse
Affiliation(s)
- Mathieu Fournié
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,Adisseo France S.A.S., 10 place du Général de Gaulle, 92160, Anthony, France.,Groupe Avril, 11 Rue de Monceau, 75378, Paris, Cedex 08, France
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
15
|
Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook. Appl Microbiol Biotechnol 2020; 104:5725-5737. [DOI: 10.1007/s00253-020-10648-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/15/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
|
16
|
Pham KD, Shida Y, Miyata A, Takamizawa T, Suzuki Y, Ara S, Yamazaki H, Masaki K, Mori K, Aburatani S, Hirakawa H, Tashiro K, Kuhara S, Takaku H, Ogasawara W. Effect of light on carotenoid and lipid production in the oleaginous yeast Rhodosporidium toruloides. Biosci Biotechnol Biochem 2020; 84:1501-1512. [PMID: 32189572 DOI: 10.1080/09168451.2020.1740581] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The oleaginous yeast Rhodosporodium toruloides is receiving widespread attention as an alternative energy source for biofuels due to its unicellular nature, high growth rate and because it can be fermented on a large-scale. In this study, R. toruloides was cultured under both light and dark conditions in order to understand the light response involved in lipid and carotenoid biosynthesis. Our results from phenotype and gene expression analysis showed that R. toruloides responded to light by producing darker pigmentation with an associated increase in carotenoid production. Whilst there was no observable difference in lipid production, slight changes in the fatty acid composition were recorded. Furthermore, a two-step response was found in three genes (GGPSI, CAR1, and CAR2) under light conditions and the expression of the gene encoding the photoreceptor CRY1 was similarly affected.
Collapse
Affiliation(s)
- Khanh Dung Pham
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Atsushi Miyata
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Takeru Takamizawa
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| | - Yoshiyuki Suzuki
- Advanced Course, National Institute of Technology, Nagaoka College , Niigata, Japan
| | - Satoshi Ara
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences , Niigata, Japan
| | - Harutake Yamazaki
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences , Niigata, Japan
| | - Kazuo Masaki
- Brewing Technology Division, National Research Institute of Brewing (NRIB) , Hiroshima, Japan
| | - Kazuki Mori
- Advance Course, National Institute of Technology, Kagoshima College , Kagoshima, Japan
| | - Sachiyo Aburatani
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo, Japan
| | - Hideki Hirakawa
- Facility for Genome Informatics, Kazusa DNA Research Institute , Ibaraki, Japan
| | - Kosuke Tashiro
- Faculty of Agriculture, Kyushu University , Fukuoka, Japan
| | - Satoru Kuhara
- Graduate School of Genetic Resource Technology, Kyushu University , Fukuoka, Japan
| | - Hiroaki Takaku
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences , Niigata, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology , Niigata, Japan
| |
Collapse
|
17
|
Metabolic Engineering of Chlamydomonas reinhardtii for Enhanced β-Carotene and Lutein Production. Appl Biochem Biotechnol 2019; 190:1457-1469. [PMID: 31782090 DOI: 10.1007/s12010-019-03194-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/11/2019] [Indexed: 01/27/2023]
Abstract
The metabolic engineering of Chlamydomonas reinhardtii, one of the fastest-growing microalgae, is a potential alternative for enhanced carotenoid productivity. CrtYB (phytoene-β-carotene synthase - PBS) gene from red yeast Xanthophyllomyces dendrorhous encodes for a bifunctional enzyme that harbours both phytoene synthase (psy) and lycopene cyclization (lcyb) activities. Heterologous expression of this bifunctional PBS gene led to 38% enhancement in β-carotene along with 60% increase in the lutein yields under low light conditions of 75 μmol photons m-2 s-1. Short Duration-High Light induction strategy led to overall 72% and 83% increase in β-carotene and lutein yield reaching up to 22.8 mg g-1 and 8.9 mg g-1, respectively. This is the first report of expression of heterologous bifunctional PBS gene resulting in simultaneous enhancement in β-carotene and lutein content in phototrophic engineered cells. Graphical Abstract.
Collapse
|
18
|
Rabeharindranto H, Castaño-Cerezo S, Lautier T, Garcia-Alles LF, Treitz C, Tholey A, Truan G. Enzyme-fusion strategies for redirecting and improving carotenoid synthesis in S. cerevisiae. Metab Eng Commun 2019; 8:e00086. [PMID: 30723675 PMCID: PMC6350077 DOI: 10.1016/j.mec.2019.e00086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
Spatial clustering of enzymes has proven an elegant approach to optimize metabolite transfer between enzymes in synthetic metabolic pathways. Among the multiple methods used to promote colocalisation, enzyme fusion is probably the simplest. Inspired by natural systems, we have explored the metabolic consequences of spatial reorganizations of the catalytic domains of Xanthophyllomyces dendrorhous carotenoid enzymes produced in Saccharomyces cerevisiae. Synthetic genes encoding bidomain enzymes composed of CrtI and CrtB domains from the natural CrtYB fusion were connected in the two possible orientations, using natural and synthetic linkers. A tridomain enzyme (CrtB, CrtI, CrtY) harboring the full β-carotene producing pathway was also constructed. Our results demonstrate that domain order and linker properties considerably impact both the expression and/or stability of the constructed proteins and the functionality of the catalytic domains, all concurring to either diminish or boost specific enzymatic steps of the metabolic pathway. Remarkably, the yield of β-carotene production doubled with the tridomain fusion while precursor accumulation decreased, leading to an improvement of the pathway efficiency, when compared to the natural system. Our data strengthen the idea that fusion of enzymatic domains is an appropriate technique not only to achieve spatial confinement and enhance the metabolic flux but also to produce molecules not easily attainable with natural enzymatic configurations, even with membrane bound enzymes.
Collapse
Affiliation(s)
| | | | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Christian Treitz
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
19
|
Gutiérrez MS, Campusano S, González AM, Gómez M, Barahona S, Sepúlveda D, Espenshade PJ, Fernández-Lobato M, Baeza M, Cifuentes V, Alcaíno J. Sterol Regulatory Element-Binding Protein (Sre1) Promotes the Synthesis of Carotenoids and Sterols in Xanthophyllomyces dendrorhous. Front Microbiol 2019; 10:586. [PMID: 30984134 PMCID: PMC6449425 DOI: 10.3389/fmicb.2019.00586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Xanthophyllomyces dendrorhous is a basidiomycete yeast that synthesizes carotenoids, mainly astaxanthin, which are of great commercial interest. Currently, there are many unknown aspects related to regulatory mechanisms on the synthesis of carotenoids in this yeast. Our recent studies showed that changes in sterol levels and composition resulted in upregulation of genes in the mevalonate pathway required for the synthesis of carotenoid precursors, leading to increased production of these pigments. Sterol Regulatory Element-Binding Proteins (SREBP), called Sre1 in yeast, are conserved transcriptional regulators of sterol homeostasis and other cellular processes. Given the results linking sterols and carotenoids, we investigated the role of SREBP in sterol and carotenoid synthesis in X. dendrorhous. In this study, we present the identification and functional characterization of the X. dendrorhous SRE1 gene, which encodes the transcription factor Sre1. The deduced protein has the characteristic features of SREBP/Sre1 and binds to consensus DNA sequences in vitro. RNA-seq analysis and chromatin-immunoprecipitation experiments showed that genes of the mevalonate pathway and ergosterol biosynthesis are directly regulated by Sre1. The sre1- mutation reduced sterol and carotenoid production in X. dendrorhous, and expression of the Sre1 N-terminal domain (Sre1N) increased carotenoid production more than twofold compared to wild-type. Overall, our results indicate that in X. dendrorhous transcriptional regulation of genes in the mevalonate pathway control production of the isoprenoid derivatives, carotenoids and sterol. Our results provide new insights into the conserved regulatory functions of SREBP/Sre1 and identify pointing to the SREBP pathway as a potential target to enhance carotenoid production in X. dendrorhous.
Collapse
Affiliation(s)
- María Soledad Gutiérrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián Campusano
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ana María González
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Melissa Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Peter J. Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - María Fernández-Lobato
- Centro de Biologiìa Molecular Severo Ochoa, Departamento de Biologiìa Molecular (UAM-CSIC), Universidad Autoìnoma de Madrid, Madrid, Spain
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Breitenbach J, Pollmann H, Sandmann G. Genetic modification of the carotenoid pathway in the red yeast Xanthophyllomyces dendrorhous: Engineering of a high-yield zeaxanthin strain. J Biotechnol 2019; 289:112-117. [DOI: 10.1016/j.jbiotec.2018.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/11/2018] [Accepted: 11/25/2018] [Indexed: 12/23/2022]
|
21
|
Pi HW, Anandharaj M, Kao YY, Lin YJ, Chang JJ, Li WH. Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production. Sci Rep 2018; 8:10850. [PMID: 30022171 PMCID: PMC6052021 DOI: 10.1038/s41598-018-29194-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/22/2018] [Indexed: 02/05/2023] Open
Abstract
Rhodotorula glutinis, an oleaginous red yeast, intrinsically produces several bio-products (i.e., lipids, carotenoids and enzymes) and is regarded as a potential host for biorefinery. In view of the limited available genetic engineering tools for this yeast, we have developed a useful genetic transformation method and transformed the β-carotene biosynthesis genes (crtI, crtE, crtYB and tHMG1) and cellulase genes (CBHI, CBHII, EgI, EgIII, EglA and BGS) into R. glutinis genome. The transformant P4-10-9-63Y-14B produced significantly higher β-carotene (27.13 ± 0.66 mg/g) than the wild type and also exhibited cellulase activity. Furthermore, the lipid production and salt tolerance ability of the transformants were unaffected. This is the first study to engineer the R. glutinis for simultaneous β-carotene and cellulase production. As R. glutinis can grow in sea water and can be engineered to utilize the cheaper substrates (i.e. biomass) for the production of biofuels or valuable compounds, it is a promising host for biorefinery.
Collapse
Affiliation(s)
- Hong-Wei Pi
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Marimuthu Anandharaj
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ying Kao
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 402, Taiwan.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan. .,Biotechnology center, National Chung Hsing University, Taichung, 40227, Taiwan. .,Department of Ecology and Evolution, University of Chicago, Chicago, 60637, USA.
| |
Collapse
|
22
|
Alcalde E, Fraser PD. Extending our tools and resources in the non-conventional industrial yeast Xanthophyllomyces dendrorhous through the application of metabolite profiling methodologies. Metabolomics 2018; 14:30. [PMID: 29479298 PMCID: PMC5809543 DOI: 10.1007/s11306-017-1313-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Xanthophyllomyces dendrorhous is a non-conventional industrial yeast. It has the unique ability among yeasts to produce geranylgeranyl pyrophosphate derived terpenoids such as carotenoids and in particular the high value pigment astaxanthin. OBJECTIVE In order to fully exploit the industrial potential of Xanthophyllomyces using modern industrial biotechnology approaches the further development of "omic" resources in this organism are required to build on the now sequenced and annotated genome. To contribute to this goal, the present study has developed and implemented an efficient metabolite profiling system comprised of, quenching, extraction and associated GC-MS and UPLC analysis. METHOD Four quenching methods and five extraction methods compatible with GC-MS and UPLC profiling were tested and validated by analysing steady state metabolite changes of Xanthophyllomyces cultivated at laboratory scale in liquid shake culture at lag, exponential and early and late stationary phases. RESULTS A customised Automated Mass Spectral Deconvolution and Identification System (AMDIS) library has been created for Xanthophyllomyces, over 400 compounds are present in the library of which 78 are detected and quantified routinely in polar and non-polar derived extracts. A preliminary biochemical network has been constructed. Over a standardised laboratory growth cycle, changes in metabolite levels have been determined to create reference point for future strain improvement approaches and the initial biochemical network construction. Correlation analysis has illustrated that astaxanthin formation correlates positively with different sectors of intermediary metabolism (e.g. the TCA cycle intermediates and amino acid formation), "short" saturated fatty acids and β-carotene, while other metabolites are reduced in response to astaxanthin production. These sectors of intermediary metabolism offer potential future targets for the manipulation resulting in the generation of strains with improved titres of given terpenoids. DISCUSSION In summary a robust metabolite profiling system for Xanthophyllomyces is in place to further our understanding and potential exploitation of this underutilised industrial yeast.
Collapse
Affiliation(s)
- Eugenio Alcalde
- School Biological Sciences, Royal Holloway, University London, Egham Hill, Egham, Surrey TW20OEX UK
| | - Paul D. Fraser
- School Biological Sciences, Royal Holloway, University London, Egham Hill, Egham, Surrey TW20OEX UK
| |
Collapse
|
23
|
Mao X, Liu Z, Sun J, Lee SY. Metabolic engineering for the microbial production of marine bioactive compounds. Biotechnol Adv 2017; 35:1004-1021. [DOI: 10.1016/j.biotechadv.2017.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
|
24
|
Gan HM, Thomas BN, Cavanaugh NT, Morales GH, Mayers AN, Savka MA, Hudson AO. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick ( Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis. PeerJ 2017; 5:e4030. [PMID: 29158974 PMCID: PMC5691792 DOI: 10.7717/peerj.4030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/23/2017] [Indexed: 01/25/2023] Open
Abstract
In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.
Collapse
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology-School of Life and Environmental Sciences, Deakin University, Victoria, Australia.,Genomics Facility, Monash University, Selangor, Malaysia.,School of Science, Monash University, Selangor, Malaysia
| | - Bolaji N Thomas
- College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Nicole T Cavanaugh
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Grace H Morales
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Ashley N Mayers
- College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Michael A Savka
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - André O Hudson
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
25
|
Barredo JL, García-Estrada C, Kosalkova K, Barreiro C. Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous. J Fungi (Basel) 2017; 3:E44. [PMID: 29371561 PMCID: PMC5715937 DOI: 10.3390/jof3030044] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Carotenoids are organic lipophilic yellow to orange and reddish pigments of terpenoid nature that are usually composed of eight isoprene units. This group of secondary metabolites includes carotenes and xanthophylls, which can be naturally obtained from photosynthetic organisms, some fungi, and bacteria. One of the microorganisms able to synthesise carotenoids is the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous, which represents the teleomorphic state of Phaffia rhodozyma, and is mainly used for the production of the xanthophyll astaxanthin. Upgraded knowledge on the biosynthetic pathway of the main carotenoids synthesised by X. dendrorhous, the biotechnology-based improvement of astaxanthin production, as well as the current omics approaches available in this yeast are reviewed in depth.
Collapse
Affiliation(s)
- Jose L Barredo
- CRYSTAL PHARMA S.A.U. Parque Tecnológico de León, C/Nicostrato Vela s/n, 24009 León, Spain.
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real, 1, 24006 León, Spain.
- Área de Toxicología, Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, 24071 León, Spain.
| | - Katarina Kosalkova
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real, 1, 24006 León, Spain.
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real, 1, 24006 León, Spain.
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda, Astorga, s/n, 24400 Ponferrada, Spain.
| |
Collapse
|
26
|
Sun W, Yang X, Wang X, Lin X, Wang Y, Zhang S, Luan Y, Zhao ZK. Homologous gene targeting of a carotenoids biosynthetic gene in Rhodosporidium toruloides by Agrobacterium-mediated transformation. Biotechnol Lett 2017; 39:1001-1007. [PMID: 28337556 DOI: 10.1007/s10529-017-2324-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To target a carotenoid biosynthetic gene in the oleaginous yeast Rhodosporidium toruloides by using the Agrobacterium-mediated transformation (AMT) method. RESULTS The RHTO_04602 locus of R. toruloides NP11, previously assigned to code the carotenoid biosynthetic gene CRTI, was amplified from genomic DNA and cloned into the binary plasmid pZPK-mcs, resulting in pZPK-CRT. A HYG-expression cassette was inserted into the CRTI sequence of pZPK-CRT by utilizing the restriction-free clone strategy. The resulted plasmid was used to transform R. toruloides cells according to the AMT method, leading to a few white transformants. Sequencing analysis of those transformants confirmed homologous recombination and insertional inactivation of CRTI. When the white variants were transformed with a CRTI-expression cassette, cells became red and produced carotenoids as did the wild-type strain NP11. CONCLUSIONS Successful homologous targeting of the CrtI locus confirmed the function of RHTO_04602 in carotenoids biosynthesis in R. toruloides. It provided valuable information for metabolic engineering of this non-model yeast species.
Collapse
Affiliation(s)
- Wenyi Sun
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.,Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China.,School of Life Sciences, Jilin Normal University, 1301 Haifeng Street, Siping, 136000, China
| | - Xiaobing Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Xueying Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Xinping Lin
- School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan, Dalian, 116034, China
| | - Yanan Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Sufang Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
27
|
Engineering of the carotenoid pathway in Xanthophyllomyces dendrorhous leading to the synthesis of zeaxanthin. Appl Microbiol Biotechnol 2016; 101:103-111. [DOI: 10.1007/s00253-016-7769-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/19/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022]
|
28
|
Li L, Yu Y, Du X, Jiang Z, Chen F, Ni H. An improved high performance liquid chromatography method for the separation of carotenoids extracted from Phaffia rhodozyma. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815120102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Castelblanco-Matiz LM, Barbachano-Torres A, Ponce-Noyola T, Ramos-Valdivia AC, Cerda García-Rojas CM, Flores-Ortiz CM, Barahona-Crisóstomo SK, Baeza-Cancino ME, Alcaíno-Gorman J, Cifuentes-Guzmán VH. Carotenoid production and gene expression in an astaxanthin-overproducing Xanthophyllomyces dendrorhous mutant strain. Arch Microbiol 2015; 197:1129-39. [DOI: 10.1007/s00203-015-1153-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/07/2015] [Accepted: 09/11/2015] [Indexed: 12/25/2022]
|
30
|
Guo Y, Dong J, Zhou T, Auxillos J, Li T, Zhang W, Wang L, Shen Y, Luo Y, Zheng Y, Lin J, Chen GQ, Wu Q, Cai Y, Dai J. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Res 2015; 43:e88. [PMID: 25956650 PMCID: PMC4513847 DOI: 10.1093/nar/gkv464] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/27/2015] [Indexed: 01/09/2023] Open
Abstract
It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using β-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts.
Collapse
Affiliation(s)
- Yakun Guo
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junkai Dong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Zhou
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jamie Auxillos
- School of Biological Sciences, The King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Tianyi Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lihui Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yue Shen
- School of Biological Sciences, The King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Yisha Luo
- School of Biological Sciences, The King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Yijing Zheng
- School of Biological Sciences, The King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Jiwei Lin
- Wuxi Qinglan Biotechnology Inc., Yixing, Jiangsu 214200, China
| | - Guo-Qiang Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingyu Wu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yizhi Cai
- School of Biological Sciences, The King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Junbiao Dai
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Leiva K, Werner N, Sepúlveda D, Barahona S, Baeza M, Cifuentes V, Alcaíno J. Identification and functional characterization of the CYP51 gene from the yeast Xanthophyllomyces dendrorhous that is involved in ergosterol biosynthesis. BMC Microbiol 2015; 15:89. [PMID: 25906980 PMCID: PMC4415319 DOI: 10.1186/s12866-015-0428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, a carotenoid with great biotechnological impact. The ergosterol and carotenoid synthetic pathways derive from the mevalonate pathway and involve cytochrome P450 enzymes. Among these enzymes, the CYP51 family, which is involved in ergosterol biosynthesis, is one of the most remarkable that has C14-demethylase activity. RESULTS In this study, the CYP51 gene from X. dendrorhous was isolated and its function was analyzed. The gene is composed of ten exons and encodes a predicted 550 amino acid polypeptide that exhibits conserved cytochrome P450 structural characteristics and shares significant identity with the sterol C14-demethylase from other fungi. The functionality of this gene was confirmed by heterologous complementation in S. cerevisiae. Furthermore, a CYP51 gene mutation in X. dendrorhous reduced sterol production by approximately 40% and enhanced total carotenoid production by approximately 90% compared to the wild-type strain after 48 and 120 h of culture, respectively. Additionally, the CYP51 gene mutation in X. dendrorhous increased HMGR (hydroxy-methylglutaryl-CoA reductase, involved in the mevalonate pathway) and crtR (cytochrome P450 reductase) transcript levels, which could be associated with reduced ergosterol production. CONCLUSIONS These results suggest that the CYP51 gene identified in X. dendrorhous encodes a functional sterol C14-demethylase that is involved in ergosterol biosynthesis.
Collapse
Affiliation(s)
- Kritsye Leiva
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Nicole Werner
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| |
Collapse
|
32
|
Ye L, Xie W, Zhou P, Yu H. Biotechnological Production of Astaxanthin through Metabolic Engineering of Yeasts. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201400023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Ignea C, Trikka FA, Nikolaidis AK, Georgantea P, Ioannou E, Loupassaki S, Kefalas P, Kanellis AK, Roussis V, Makris AM, Kampranis SC. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metab Eng 2015; 27:65-75. [DOI: 10.1016/j.ymben.2014.10.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/01/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
34
|
Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides. World J Microbiol Biotechnol 2014; 31:321-36. [PMID: 25504221 DOI: 10.1007/s11274-014-1784-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Carotenoids are natural pigments that act as powerful antioxidants and have various beneficial effects on human and animal health. Mucor circinelloides (Mucoromycotina) is a carotenoid producing zygomycetes fungus, which accumulates β-carotene as the main carotenoid but also able to produce the hydroxylated derivatives of β-carotene (i.e. zeaxanthin and β-cryptoxanthin) in low amount. These xanthophylls, together with the ketolated derivatives of β-carotene (such as canthaxanthin, echinenone and astaxanthin) have better antioxidant activity than β-carotene. In this study our aim was to modify and enhance the xanthophyll production of the M. circinelloides by expression of heterologous genes responsible for the astaxanthin biosynthesis. The crtS and crtR genes, encoding the cytochrome-P450 hydroxylase and reductase, respectively, of wild-type and astaxanthin overproducing mutant Xanthophyllomyces dendrorhous strains were amplified from cDNA and the nucleotide and the deduced amino acid sequences were compared to each other. Introduction of the crtS on autonomously replicating plasmid in the wild-type M. circinelloides resulted enhanced zeaxanthin and β-cryptoxanthin accumulation and the presence of canthaxanthin, echinenone and astaxanthin in low amount; the β-carotene hydroxylase and ketolase activity of the X. dendrorhous cytochrome-P450 hydroxylase in M. circinelloides was verified. Increased canthaxanthin and echinenone production was observed by expression of the gene in a canthaxanthin producing mutant M. circinelloides. Co-expression of the crtR and crtS genes led to increase in the total carotenoid and slight change in xanthophyll accumulation in comparison with transformants harbouring the single crtS gene.
Collapse
|
35
|
Alcaíno J, Romero I, Niklitschek M, Sepúlveda D, Rojas MC, Baeza M, Cifuentes V. Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors. PLoS One 2014; 9:e96626. [PMID: 24796858 PMCID: PMC4010515 DOI: 10.1371/journal.pone.0096626] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/09/2014] [Indexed: 12/21/2022] Open
Abstract
The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20) in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5) and dimethylallyl pyrophosphate (DMAPP, C5) was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15) synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10) from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to favor carotenoid biosynthesis in X. dendrorhous.
Collapse
Affiliation(s)
- Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ignacio Romero
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Niklitschek
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María Cecilia Rojas
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Hara KY, Morita T, Endo Y, Mochizuki M, Araki M, Kondo A. Evaluation and screening of efficient promoters to improve astaxanthin production in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2014; 98:6787-93. [PMID: 24737060 DOI: 10.1007/s00253-014-5727-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/11/2014] [Accepted: 03/25/2014] [Indexed: 12/20/2022]
Abstract
Astaxanthin is a valuable carotenoid that is widely used in the aquaculture, food, pharmaceutical, and cosmetic industries. Xanthophyllomyces dendrorhous is a carotenoid-synthesizing yeast strain that produces astaxanthin as its main pigment. Although metabolic engineering using gene manipulation is a valuable way to improve astaxanthin production, a gene expression system for X. dendrorhous has been poorly developed. In this study, three known promoters of X. dendrorhous, glycerol-3-phosphate dehydrogenase (gpd) promoter (Pgpd), glucose dehydrogenase (gdh) promoter (Pgdh), and actin (act) promoter (Pact), were evaluated for use in the overexpression of target proteins using green fluorescence protein (GFP) as an expression level indicator protein. The actin promoter, Pact, showed the highest expression level of GFP when compared with Pgpd and Pgdh. Additionally, to obtain new promoters for higher expression of target protein in X. dendrorhous, intracellular GFP intensity was evaluated for 13 candidate promoters. An alcohol dehydrogenase promoter, Padh4, showed more efficient expression of GFP rather than Pact. Overexpression of crtE gene encoding rate-limiting enzyme of carotenoid synthesis under the adh4 promoter yielded an increase in intracellular astaxanthin content of about 1.7-fold compared with the control strain. The promoters identified in this study must be useful for improving carotenoids production in X. dendrorhous.
Collapse
Affiliation(s)
- Kiyotaka Y Hara
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Barbachano-Torres A, Castelblanco-Matiz LM, Ramos-Valdivia AC, Cerda-García-Rojas CM, Salgado LM, Flores-Ortiz CM, Ponce-Noyola T. Analysis of proteomic changes in colored mutants of Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Arch Microbiol 2014; 196:411-21. [DOI: 10.1007/s00203-014-0979-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 03/15/2014] [Indexed: 01/23/2023]
|
38
|
Multiple transformation with the crtYB gene of the limiting enzyme increased carotenoid synthesis and generated novel derivatives in Xanthophyllomyces dendrorhous. Arch Biochem Biophys 2014; 545:141-7. [DOI: 10.1016/j.abb.2014.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/15/2014] [Indexed: 01/08/2023]
|
39
|
|
40
|
Sandmann G. Carotenoids of biotechnological importance. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 148:449-67. [PMID: 25326165 DOI: 10.1007/10_2014_277] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carotenoids are natural pigments with antioxidative functions that protect against oxidative stress. They are essential for humans and must be supplied through the diet. Carotenoids are the precursors for the visual pigment rhodopsin, and lutein and zeaxanthin must be accumulated in the yellow eye spot to protect the retina from excess light and ultraviolet damage. There is a global market for carotenoids as food colorants, animal feed, and nutraceuticals. Some carotenoids are chemically synthesized, whereas others are from natural sources. Microbial mass production systems of industrial interest for carotenoids are in use, and new ones are being developed by metabolic pathway engineering of bacteria, fungi, and plants. Several examples will be highlighted in this chapter.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Biosynthesis Group, Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt, Germany,
| |
Collapse
|
41
|
Reyes LH, Gomez JM, Kao KC. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 2013; 21:26-33. [PMID: 24262517 DOI: 10.1016/j.ymben.2013.11.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/24/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
Abstract
Adaptive laboratory evolution is an important tool for the engineering of strains for industrially relevant phenotypes. Traditionally, adaptive laboratory evolution has been implemented to improve robustness of industrial strains under diverse operational conditions; however due to the required coupling between growth and survival, its application for increased production of secondary metabolites generally results in decreased production due to the metabolic burden imposed by, or toxicity of, the produced compound. In this study, adaptive laboratory evolution was successfully applied to improve carotenoids production in an engineered Saccharomyces cerevisiae producer strain by exploiting the antioxidant properties of carotenoids. Short-term evolution experiment using periodic hydrogen peroxide shocking schemes resulted in a 3-fold increase in carotenoids production (from 6 mg/g dry cell weight to up to 18 mg/g dry cell weight). Subsequent transcriptome analysis was used to elucidate the molecular mechanisms for increased carotenoids production. Upregulation of genes related with lipid biosynthesis and mevalonate biosynthesis pathways were commonly observed in the carotenoids hyper-producers analyzed.
Collapse
Affiliation(s)
- Luis H Reyes
- Department of Chemical Engineering, Texas A&M University, College Station, United States
| | - Jose M Gomez
- Department of Chemical Engineering, Texas A&M University, College Station, United States
| | - Katy C Kao
- Department of Chemical Engineering, Texas A&M University, College Station, United States.
| |
Collapse
|
42
|
Gassel S, Breitenbach J, Sandmann G. Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl Microbiol Biotechnol 2013; 98:345-50. [PMID: 24241897 DOI: 10.1007/s00253-013-5358-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 01/20/2023]
Abstract
The yeast Xanthophyllomyces dendrorhous is one of the rare organisms which can synthesize the commercially interesting carotenoid astaxanthin. However, astaxanthin yield in wild-type and also in classical mutants is still too low for an attractive bioprocess. Therefore, we combined classical mutagenesis with genetic engineering of the complete pathway covering improved precursor supply for carotenogenesis, enhanced metabolite flow into the pathway, and efficient conversion of intermediates into the desired end product astaxanthin. We also constructed new transformation plasmids for the stepwise expression of the genes of 3-hydroxymethyl-3-glutaryl coenzyme A reductase, geranylgeranyl pyrophosphate synthase, phytoene synthase/lycopene cyclase, and astaxanthin synthase. Starting from two mutants with a 15-fold higher astaxanthin, we obtained transformants with an additional 6-fold increase in the final step of pathway engineering. Thus, a maximum astaxanthin content of almost 9 mg per g dry weight was reached in shaking cultures. Under optimized fermenter conditions, astaxanthin production with these engineered transformants should be comparable to Haematococcus pluvialis, the leading commercial producer of natural astaxanthin.
Collapse
Affiliation(s)
- Sören Gassel
- Institute of Molecular Bioscience, J.W. Goethe Universität, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | | | | |
Collapse
|
43
|
Contreras G, Barahona S, Rojas MC, Baeza M, Cifuentes V, Alcaíno J. Increase in the astaxanthin synthase gene (crtS) dose by in vivo DNA fragment assembly in Xanthophyllomyces dendrorhous. BMC Biotechnol 2013; 13:84. [PMID: 24103677 PMCID: PMC3852557 DOI: 10.1186/1472-6750-13-84] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/04/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Xanthophyllomyces dendrorhous is a basidiomycetous yeast that is relevant to biotechnology, as it can synthesize the carotenoid astaxanthin. However, the astaxanthin levels produced by wild-type strains are low. Although different approaches for promoting increased astaxanthin production have been attempted, no commercially competitive results have been obtained thus far. A promising alternative to facilitate the production of carotenoids in this yeast involves the use of genetic modification. However, a major limitation is the few available molecular tools to manipulate X. dendrorhous. RESULTS In this work, the DNA assembler methodology that was previously described in Saccharomyces cerevisiae was successfully applied to assemble DNA fragments in vivo and integrate these fragments into the genome of X. dendrorhous by homologous recombination in only one transformation event. Using this method, the gene encoding astaxanthin synthase (crtS) was overexpressed in X. dendrorhous and a higher level of astaxanthin was produced. CONCLUSIONS This methodology could be used to easily and rapidly overexpress individual genes or combinations of genes simultaneously in X. dendrorhous, eliminating numerous steps involved in conventional cloning methods.
Collapse
Affiliation(s)
- Gabriela Contreras
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - María Cecilia Rojas
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| |
Collapse
|
44
|
Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnol Lett 2012. [DOI: 10.1007/s10529-012-1103-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Melillo E, Muntendam R, Quax WJ, Kayser O. Heterologous expression of pentalenene synthase (PSS) from Streptomyces UC5319 in Xanthophyllomyces dendrorhous. J Biotechnol 2012; 161:302-7. [PMID: 22771888 DOI: 10.1016/j.jbiotec.2012.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 01/21/2023]
Abstract
For the first time, the pentalenene synthase (PSS) gene from Streptomyces UC5319 was expressed in Xanthophyllomyces dendrorhous, a native producer of astaxanthin. For the expression of the gene and the concurrent knock out of the native crtE or crtYB genes, two new vectors were engineered and used for the transformation of the wild-type strain of X. dendrorhous. The transformations resulted in white colonies, showing a complete shutdown of the carotenoid production. Furthermore, an additional vector was constructed for the insertion of the PSS gene in the rDNA of the yeast. All the mutant strains produce the sesquiterpene pentalenene and show no difference in growth when compared to the wild-type strain. In this report, we demonstrate that X. dendrorhous is a suitable host for the expression of heterologous terpene cyclases and for the production of foreign terpene compounds.
Collapse
Affiliation(s)
- Elena Melillo
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
46
|
Enhanced production of astaxanthin in Paracoccus sp. strain N-81106 by using random mutagenesis and genetic engineering. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Rodríguez-Sáiz M, de la Fuente JL, Barredo JL. Metabolic engineering of Mucor circinelloides for zeaxanthin production. Methods Mol Biol 2012; 898:133-151. [PMID: 22711122 DOI: 10.1007/978-1-61779-918-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mucor circinelloides is a β-carotene producing zygomycete amenable to metabolic engineering using molecular tools. The crtS gene of the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous encodes the enzymatic activities β-carotene hydroxylase and ketolase, allowing this yeast to produce the xanthophyll called astaxanthin. Here we describe the fermentation of X. dendrorhous in astaxanthin producing conditions to purify mRNA for the cloning of the cDNA from the crtS gene by RT-PCR. Further construction of an expression plasmid and transformation of M. circinelloides protoplasts allow the heterologous expression of the crtS cDNA in M. circinelloides to obtain β-cryptoxanthin and zeaxanthin overproducing transformants. These two xanthophylls are hydroxylated compounds from β-carotene. These results show that the crtS gene is involved in the conversion of β-carotene into xanthophylls, being potentially useful to engineer carotenoid pathways.
Collapse
|
48
|
Wozniak A, Lozano C, Barahona S, Niklitschek M, Marcoleta A, Alcaíno J, Sepulveda D, Baeza M, Cifuentes V. Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source. FEMS Yeast Res 2011; 11:252-62. [DOI: 10.1111/j.1567-1364.2010.00711.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Breitenbach J, Visser H, Verdoes JC, van Ooyen AJJ, Sandmann G. Engineering of geranylgeranyl pyrophosphate synthase levels and physiological conditions for enhanced carotenoid and astaxanthin synthesis in Xanthophyllomyces dendrorhous. Biotechnol Lett 2010; 33:755-61. [DOI: 10.1007/s10529-010-0495-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
|
50
|
Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2010; 89:555-71. [PMID: 21046372 DOI: 10.1007/s00253-010-2976-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 12/18/2022]
Abstract
The oxygenated β-carotene derivative astaxanthin exhibits outstanding colouring, antioxidative and health-promoting properties and is mainly found in the marine environment. To satisfy the growing demand for this ketocarotenoid in the feed, food and cosmetics industries, there are strong efforts to develop economically viable bioprocesses alternative to the current chemical synthesis. However, up to now, natural astaxanthin from Haematococcus pluvialis, Phaffia rhodozyma or Paracoccus carotinifaciens has not been cost competitive with chemically synthesized astaxanthin, thus only serving niche applications. This review illuminates recent advances made in elucidating astaxanthin biosynthesis in P. rhodozyma. It intensely focuses on strategies to increase astaxanthin titers in the heterobasidiomycetous yeast by genetic engineering of the astaxanthin pathway, random mutagenesis and optimization of fermentation processes. This review emphasizes the potential of P. rhodozyma for the biotechnological production of astaxanthin in comparison to other natural sources such as the microalga H. pluvialis, other fungi and transgenic plants and to chemical synthesis.
Collapse
|