1
|
Berzina I, Kalnins M, Geiba Z, Raita S, Palcevska J, Mika T, Spalvins K. Creating Single-Cell Protein-Producing Bacillus subtilis Mutants Using Chemical Mutagen and Amino Acid Inhibitors. SCIENTIFICA 2024; 2024:8968295. [PMID: 39649941 PMCID: PMC11623996 DOI: 10.1155/sci5/8968295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024]
Abstract
Due to population growth and climate changes, there is a rising need for alternative food and protein sources to reduce protein scarcity and the environmental impact of food industries. Single-cell proteins (SCPs) have the potential to partially or fully substitute plant- and animal-derived dietary proteins. Bacillus subtilis is an appealing bacterium for SCP production because of its fast growth and ability to obtain high protein and essential amino acid (AA) content in its biomass. It is also capable of utilizing a wide range of substrates. B. subtilis attractiveness and efficiency can be further enhanced using mutagenesis. In this study, a novel approach to creating mutant strains with enhanced protein and AA content was experimentally validated. The method is based on the application of AA inhibitors for selective pressure to ensure the growth of mutants with enhanced protein and/or AA synthesis capacity. For AA inhibitors, three herbicides were used: glufosinate-ammonium (GA), L-methionine sulfoximine (MSO), and S-(2-aminoethyl)-L-cysteine (AEC). Initially, AA inhibitor doses for the complete inhibition of wild-type (WT) B. subtilis strain were determined. Then, B. subtilis was treated with EMS chemical mutagen and created mutants were cultivated on a medium containing inhibitory dose of AA inhibitors. Growing samples were selected, analyzed, and compared. The optimal inhibitory concentrations of herbicides for mutant selection were 0.05-0.4 M for GA, 0.01-0.05 M for MSO, and 0.2 M for AEC. The best-performing mutants were selected when using GA-improvement of 7.1 times higher biomass content, 1.5 times higher protein concentration, 1.2 times higher AA content, and 1.2 times higher essential AA index was achieved in comparison with WT B. subtilis. Enhanced mutants were also successfully selected when using MSO and AEC. This study demonstrates the potential of using AA inhibitors for the selection of mutants with improved protein and AA profiles.
Collapse
Affiliation(s)
- Indra Berzina
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Martins Kalnins
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Zane Geiba
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Svetlana Raita
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Jelizaveta Palcevska
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Taras Mika
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Kriss Spalvins
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| |
Collapse
|
2
|
Chakraborty S, Venkataraman M, Infante V, Pfleger BF, Ané JM. Scripting a new dialogue between diazotrophs and crops. Trends Microbiol 2024; 32:577-589. [PMID: 37770375 PMCID: PMC10950843 DOI: 10.1016/j.tim.2023.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Diazotrophs are bacteria and archaea that can reduce atmospheric dinitrogen (N2) into ammonium. Plant-diazotroph interactions have been explored for over a century as a nitrogen (N) source for crops to improve agricultural productivity and sustainability. This scientific quest has generated much information about the molecular mechanisms underlying the function, assembly, and regulation of nitrogenase, ammonium assimilation, and plant-diazotroph interactions. This review presents various approaches to manipulating N fixation activity, ammonium release by diazotrophs, and plant-diazotroph interactions. We discuss the research avenues explored in this area, propose potential future routes, emphasizing engineering at the metabolic level via biorthogonal signaling, and conclude by highlighting the importance of biocontrol measures and public acceptance.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA; Department of Agronomy, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Schnabel T, Sattely E. Improved Stability of Engineered Ammonia Production in the Plant-Symbiont Azospirillum brasilense. ACS Synth Biol 2021; 10:2982-2996. [PMID: 34591447 PMCID: PMC8604774 DOI: 10.1021/acssynbio.1c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioavailable nitrogen is the limiting nutrient for most agricultural food production. Associative diazotrophs can colonize crop roots and fix their own bioavailable nitrogen from the atmosphere. Wild-type (WT) associative diazotrophs, however, do not release fixed nitrogen in culture and are not known to directly transfer fixed nitrogen resources to plants. Efforts to engineer diazotrophs for plant nitrogen provision as an alternative to chemical fertilization have yielded several strains that transiently release ammonia. However, these strains suffer from selection pressure for nonproducers, which rapidly deplete ammonia accumulating in culture, likely limiting their potential for plant growth promotion (PGP). Here we report engineered Azospirillum brasilense strains with significantly extend ammonia production lifetimes of up to 32 days in culture. Our approach relies on multicopy genetic redundancy of a unidirectional adenylyltransferase (uAT) as a posttranslational mechanism to induce ammonia release via glutamine synthetase deactivation. Testing our multicopy stable strains with the model monocot Setaria viridis in hydroponic monoassociation reveals improvement in plant growth promotion compared to single copy strains. In contrast, inoculation of Zea mays in nitrogen-poor, nonsterile soil does not lead to increased PGP relative to WT, suggesting strain health, resource competition, or colonization capacity in soil may also be limiting factors. In this context, we show that while engineered strains fix more nitrogen per cell compared to WT strains, the expression strength of multiple uAT copies needs to be carefully balanced to maximize ammonia production rates and avoid excessive fitness defects caused by excessive glutamine synthetase shutdown.
Collapse
Affiliation(s)
- Tim Schnabel
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University and HHMI, Stanford, California 94305, United States
| |
Collapse
|
4
|
Schnabel T, Sattely E. Engineering Posttranslational Regulation of Glutamine Synthetase for Controllable Ammonia Production in the Plant Symbiont Azospirillum brasilense. Appl Environ Microbiol 2021; 87:e0058221. [PMID: 33962983 PMCID: PMC8231714 DOI: 10.1128/aem.00582-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Nitrogen requirements for modern agriculture far exceed the levels of bioavailable nitrogen in most arable soils. As a result, the addition of nitrogen fertilizer is necessary to sustain productivity and yields, especially for cereal crops, the planet's major calorie suppliers. Given the unsustainability of industrial fertilizer production and application, engineering biological nitrogen fixation directly at the roots of plants has been a grand challenge for biotechnology. Here, we designed and tested a potentially broadly applicable metabolic engineering strategy for the overproduction of ammonia in the diazotrophic symbiont Azospirillum brasilense. Our approach is based on an engineered unidirectional adenylyltransferase (uAT) that posttranslationally modifies and deactivates glutamine synthetase (GS), a key regulator of nitrogen metabolism in the cell. We show that this circuit can be controlled inducibly, and we leveraged the inherent self-contained nature of our posttranslational approach to demonstrate that multicopy redundancy can improve strain evolutionary stability. uAT-engineered Azospirillum is capable of producing ammonia at rates of up to 500 μM h-1 unit of OD600 (optical density at 600 nm)-1. We demonstrated that when grown in coculture with the model monocot Setaria viridis, these strains increase the biomass and chlorophyll content of plants up to 54% and 71%, respectively, relative to the wild type (WT). Furthermore, we rigorously demonstrated direct transfer of atmospheric nitrogen to extracellular ammonia and then plant biomass using isotopic labeling: after 14 days of cocultivation with engineered uAT strains, 9% of chlorophyll nitrogen in Setaria seedlings was derived from diazotrophically fixed dinitrogen, whereas no nitrogen was incorporated in plants cocultivated with WT controls. This rational design for tunable ammonia overproduction is modular and flexible, and we envision that it could be deployable in a consortium of nitrogen-fixing symbiotic diazotrophs for plant fertilization. IMPORTANCE Nitrogen is the most limiting nutrient in modern agriculture. Free-living diazotrophs, such as Azospirillum, are common colonizers of cereal grasses and have the ability to fix nitrogen but natively do not release excess ammonia. Here, we used a rational engineering approach to generate ammonia-excreting strains of Azospirillum. Our design features posttranslational control of highly conserved central metabolism, enabling tunability and flexibility of circuit placement. We found that our strains promote the growth and health of the model grass S. viridis and rigorously demonstrated that in comparison to WT controls, our engineered strains can transfer nitrogen from 15N2 gas to plant biomass. Unlike previously reported ammonia-producing mutants, our rationally designed approach easily lends itself to further engineering opportunities and has the potential to be broadly deployable.
Collapse
Affiliation(s)
- Tim Schnabel
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University and HHMI, Stanford, California, USA
| |
Collapse
|
5
|
Ghenov F, Gerhardt ECM, Huergo LF, Pedrosa FO, Wassem R, Souza EM. Characterization of glutamine synthetase from the ammonium-excreting strain HM053 of Azospirillum brasilense. BRAZ J BIOL 2021; 82:e235927. [PMID: 34076164 DOI: 10.1590/1519-6984.235927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/29/2020] [Indexed: 11/21/2022] Open
Abstract
Glutamine synthetase (GS), encoded by glnA, catalyzes the conversion of L-glutamate and ammonium to L-glutamine. This ATP hydrolysis driven process is the main nitrogen assimilation pathway in the nitrogen-fixing bacterium Azospirillum brasilense. The A. brasilense strain HM053 has poor GS activity and leaks ammonium into the medium under nitrogen fixing conditions. In this work, the glnA genes of the wild type and HM053 strains were cloned into pET28a, sequenced and overexpressed in E. coli. The GS enzyme was purified by affinity chromatography and characterized. The GS of HM053 strain carries a P347L substitution, which results in low enzyme activity and rendered the enzyme insensitive to adenylylation by the adenilyltransferase GlnE.
Collapse
Affiliation(s)
- Fernanda Ghenov
- Universidade Federal do Paraná - UFPR, Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Curitiba, PR, Brasil
| | - Edileusa Cristina Marques Gerhardt
- Universidade Federal do Paraná - UFPR, Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Curitiba, PR, Brasil
| | | | - Fabio Oliveira Pedrosa
- Universidade Federal do Paraná - UFPR, Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Curitiba, PR, Brasil
| | - Roseli Wassem
- Universidade Federal do Paraná - UFPR, Departamento de Genética, Curitiba, PR, Brasil
| | - Emanuel Maltempi Souza
- Universidade Federal do Paraná - UFPR, Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Curitiba, PR, Brasil
| |
Collapse
|
6
|
Exploring the Ancestral Mechanisms of Regulation of Horizontally Acquired Nitrogenases. J Mol Evol 2015; 81:84-9. [PMID: 26374754 DOI: 10.1007/s00239-015-9698-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
The vast majority of Pseudomonas species are unable to fix atmospheric nitrogen. Although several studies have demonstrated that some strains belonging to the genus Pseudomonas sensu stricto do have the ability to fix nitrogen by the expression of horizontally acquired nitrogenase, little is known about the mechanisms of nitrogenase adaptation to the new bacterial host. Recently, we transferred the nitrogen fixation island from Pseudomonas stutzeri A1501 to the non-nitrogen-fixing bacterium Pseudomonas protegens Pf-5, and interestingly, the resulting recombinant strain Pf-5 X940 showed an uncommon phenotype of constitutive nitrogenase activity. Here, we integrated evolutionary and functional approaches to elucidate this unusual phenotype. Phylogenetic analysis showed that polyhydroxybutyrate (PHB) biosynthesis genes from natural nitrogen-fixing Pseudomonas strains have been acquired by horizontal transfer. Contrary to Pf-5 X940, its derived PHB-producing strain Pf-5 X940-PHB exhibited the inhibition of nitrogenase activity under nitrogen-excess conditions, and displayed the typical switch-on phenotype observed in natural nitrogen-fixing strains after nitrogen deficiency. This indicates a competition between PHB production and nitrogen fixation. Therefore, we propose that horizontal transfer of PHB biosynthesis genes could be an ancestral mechanism of regulation of horizontally acquired nitrogenases in the genus Pseudomonas.
Collapse
|
7
|
Geddes BA, Ryu MH, Mus F, Garcia Costas A, Peters JW, Voigt CA, Poole P. Use of plant colonizing bacteria as chassis for transfer of N₂-fixation to cereals. Curr Opin Biotechnol 2015; 32:216-222. [PMID: 25626166 DOI: 10.1016/j.copbio.2015.01.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
Engineering cereal crops that are self-supported by nitrogen fixation has been a dream since the 1970s when nitrogenase was transferred from Klebsiella pneumoniae to Escherichia coli. A renewed interest in this area has generated several new approaches with the common aim of transferring nitrogen fixation to cereal crops. Advances in synthetic biology have afforded the tools to rationally engineer microorganisms with traits of interest. Nitrogenase biosynthesis has been a recent target for the application of new synthetic engineering tools. Early successes in this area suggest that the transfer of nitrogenase and other supporting traits to microorganisms that already closely associate with cereal crops is a logical approach to deliver nitrogen to cereal crops.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Plant Sciences, Oxford University, Oxford OX1 3RB, United Kingdom
| | - Min-Hyung Ryu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Florence Mus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Amaya Garcia Costas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Philip Poole
- Department of Plant Sciences, Oxford University, Oxford OX1 3RB, United Kingdom.
| |
Collapse
|
8
|
Hou X, McMillan M, Coumans JVF, Poljak A, Raftery MJ, Pereg L. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant. PLoS One 2014; 9:e114435. [PMID: 25502569 PMCID: PMC4264754 DOI: 10.1371/journal.pone.0114435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023] Open
Abstract
FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA− strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.
Collapse
Affiliation(s)
- Xingsheng Hou
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mary McMillan
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - Joëlle V. F. Coumans
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- School of Rural Medicine, University of New England, Armidale, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
- The School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry Facility, Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Lily Pereg
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- * E-mail: mailto:
| |
Collapse
|
9
|
Van Dommelen A, Spaepen S, Vanderleyden J. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense. Res Microbiol 2009; 160:205-12. [PMID: 19366628 DOI: 10.1016/j.resmic.2009.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 03/28/2009] [Accepted: 03/30/2009] [Indexed: 11/29/2022]
Abstract
Glutamine synthetase, a key enzyme in nitrogen metabolism of both prokaryotes and eukaryotes, is strictly regulated. One means of regulation is the modulation of activity through adenylylation catalyzed by adenylyltransferases. Using PCR primers based on conserved sequences in glutamine synthetase adenylyltransferases, we amplified part of the glnE gene of Azospirillum brasilense Sp7. The complete glnE sequence of A. brasilense Sp245 was retrieved from the draft genome sequence of this organism (http://genomics.ornl.gov/research/azo/). Adenylyltransferase is a bifunctional enzyme consisting of an N-terminal domain responsible for deadenylylation activity and a C-terminal domain responsible for adenylylation activity. Both domains are partially homologous to each other. Residues important for catalytic activity were present in the deduced amino acid sequence of the A. brasilense Sp245 glnE sequence. A glnE mutant was constructed in A. brasilense Sp7 by inserting a kanamycin resistance cassette between the two active domains of the enzyme. The resulting mutant was unable to adenylylate the glutamine synthetase enzyme and was impaired in growth when shifted from nitrogen-poor to nitrogen-rich medium.
Collapse
Affiliation(s)
- Anne Van Dommelen
- Centre of Microbial and Plant Genetics, K.U. Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
10
|
Ahuja M, Punekar NS. Phosphinothricin resistance in Aspergillus niger and its utility as a selectable transformation marker. Fungal Genet Biol 2008; 45:1103-10. [PMID: 18479949 DOI: 10.1016/j.fgb.2008.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/28/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Aspergillus niger is moderately susceptible to inhibition by phosphinothricin (PPT)-a potent inhibitor of glutamine synthetase. This growth inhibition was relieved by L-glutamine. PPT inhibited A. niger glutamine synthetase in vitro (K(I), 54 microM) and the inhibition was competitive with L-glutamate. The bar gene, imparting resistance to PPT, was successfully exploited as a dominant marker to transform this fungus. Very high PPT concentrations were required in the overlay for selection. Apart from bar transformants, colonies spontaneously resistant to PPT were frequently encountered on selection media. Reasons for such spontaneous resistance, albeit of moderate growth phenotype, were sought using one such isolate (SRPPT). The SRPPT isolate showed a 2-3-fold decrease in its glutamate uptake rate. Elevated external glutamate levels further suppressed the PPT-induced growth inhibition. Cellular entry of PPT could be through the L-glutamate uptake system thereby accounting for the observed spontaneous resistant phenotype. These results were useful in the fine-tuning of bar-selection in A. niger.
Collapse
Affiliation(s)
- Manmeet Ahuja
- Biotechnology Group, School of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | |
Collapse
|
11
|
Antonyuk LP. Glutamine synthetase of the rhizobacterium Azospirillum brasilense: Specific features of catalysis and regulation. APPL BIOCHEM MICRO+ 2007. [DOI: 10.1134/s0003683807030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Srivastava A, Tripathi AK. Adenosine diphosphate ribosylation of dinitrogenase reductase and adenylylation of glutamine synthetase control ammonia excretion in ethylenediamine-resistant mutants of Azospirillum brasilense Sp7. Curr Microbiol 2006; 53:317-23. [PMID: 16972125 DOI: 10.1007/s00284-006-0058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 06/19/2006] [Indexed: 11/26/2022]
Abstract
Azospirillum brasilense is a nitrogen-fixing, root-colonizing bacterium that brings about plant-growth-promoting effects mainly because of its ability to produce phytohormones. Ethylenediamine (EDA)-resistant mutants of A. brasilense were isolated and screened for their higher ability to decrease acetylene and release ammonia in the medium. One of the mutants showed considerably higher levels of acetylene decrease and ammonia excretion. Nitrogenase activity of this mutant was relatively resistant to inhibition by NH(4)Cl. Adenosine triphosphate ribosylation of dinitrogenase reductase in the mutant did not increase even in presence of 10 mM NH(4)Cl. Although the mutant showed decreased glutamine synthetase (GS) activity, neither the levels of GS synthesized by the mutant nor the NH (4) (+) -binding site in the GS differed from those of the parent. The main reason for the release of ammonia by the mutant seems to be the fixation of higher levels of nitrogen than its GS can assimilate, as well as higher levels of adenylylation of GS, which may decrease ammonia assimilation.
Collapse
Affiliation(s)
- A Srivastava
- Laboratary of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
13
|
Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 2004; 50:521-77. [PMID: 15467782 DOI: 10.1139/w04-035] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents a critical and comprehensive documentation and analysis of the developments in agricultural, environmental, molecular, and physiological studies related to Azospirillum cells, and to Azospirillum interactions with plants, based solely on information published between 1997 and 2003. It was designed as an update of previous reviews (Bashan and Levanony 1990; Bashan and Holguin 1997a), with a similar scope of interest. Apart from an update and critical analysis of the current knowledge, this review focuses on the central issues of Azospirillum research today, such as, (i) physiological and molecular studies as a general model for rhizosphere bacteria; (ii) co-inoculation with other microorganisms; (iii) hormonal studies and re-consideration of the nitrogen contribution by the bacteria under specific environmental conditions; (iv) proposed Azospirillum as a non-specific plant-growth-promoting bacterium; (v) re-introduction of the "Additive Hypothesis," which suggests involvement of multiple mechanisms employed by the bacteria to affect plant growth; (vi) comment on the less researched areas, such as inoculant and pesticide research; and (vii) proposes possible avenues for the exploitation of this bacterium in environmental areas other than agriculture.Key words: Azospirillum, plant–bacteria interaction, plant-growth-promoting bacteria, PGPB, PGPR, rhizosphere bacteria.
Collapse
Affiliation(s)
- Yoav Bashan
- Environmental Microbiology Group, Center for Biological Research of the Northwest (CIB), P.O. Box 128, La Paz, B.C.S 23000, Mexico.
| | | | | |
Collapse
|