1
|
Awal RP, Lefevre CT, Schüler D. Functional expression of foreign magnetosome genes in the alphaproteobacterium Magnetospirillum gryphiswaldense. mBio 2023; 14:e0328222. [PMID: 37318230 PMCID: PMC10470508 DOI: 10.1128/mbio.03282-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
Magnetosomes of magnetotactic bacteria (MTB) consist of structurally perfect, nano-sized magnetic crystals enclosed within vesicles of a proteo-lipid membrane. In species of Magnetospirillum, biosynthesis of their cubo-octahedral-shaped magnetosomes was recently demonstrated to be a complex process, governed by about 30 specific genes that are comprised within compact magnetosome gene clusters (MGCs). Similar, yet distinct gene clusters were also identified in diverse MTB that biomineralize magnetosome crystals with different, genetically encoded morphologies. However, since most representatives of these groups are inaccessible by genetic and biochemical approaches, their analysis will require the functional expression of magnetosome genes in foreign hosts. Here, we studied whether conserved essential magnetosome genes from closely and remotely related MTB can be functionally expressed by rescue of their respective mutants in the tractable model Magnetospirillum gryphiswaldense of the Alphaproteobacteria. Upon chromosomal integration, single orthologues from other magnetotactic Alphaproteobacteria restored magnetosome biosynthesis to different degrees, while orthologues from distantly related Magnetococcia and Deltaproteobacteria were found to be expressed but failed to re-induce magnetosome biosynthesis, possibly due to poor interaction with their cognate partners within multiprotein magnetosome organelle of the host. Indeed, co-expression of the known interactors MamB and MamM from the alphaproteobacterium Magnetovibrio blakemorei increased functional complementation. Furthermore, a compact and portable version of the entire MGCs of M. magneticum was assembled by transformation-associated recombination cloning, and it restored the ability to biomineralize magnetite both in deletion mutants of the native donor and M. gryphiswaldense, while co-expression of gene clusters from both M. gryphiswaldense and M. magneticum resulted in overproduction of magnetosomes. IMPORTANCE We provide proof of principle that Magnetospirillum gryphiswaldense is a suitable surrogate host for the functional expression of foreign magnetosome genes and extended the transformation-associated recombination cloning platform for the assembly of entire large magnetosome gene cluster, which could then be transplanted to different magnetotactic bacteria. The reconstruction, transfer, and analysis of gene sets or entire magnetosome clusters will be also promising for engineering the biomineralization of magnetite crystals with different morphologies that would be valuable for biotechnical applications.
Collapse
Affiliation(s)
- Ram Prasad Awal
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Christopher T. Lefevre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Velho Rodrigues MF, Lisicki M, Lauga E. The bank of swimming organisms at the micron scale (BOSO-Micro). PLoS One 2021; 16:e0252291. [PMID: 34111118 PMCID: PMC8191957 DOI: 10.1371/journal.pone.0252291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies.
Collapse
Affiliation(s)
- Marcos F. Velho Rodrigues
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Maciej Lisicki
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Zwiener T, Mickoleit F, Dziuba M, Rückert C, Busche T, Kalinowski J, Faivre D, Uebe R, Schüler D. Identification and elimination of genomic regions irrelevant for magnetosome biosynthesis by large-scale deletion in Magnetospirillum gryphiswaldense. BMC Microbiol 2021; 21:65. [PMID: 33632118 PMCID: PMC7908775 DOI: 10.1186/s12866-021-02124-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Magnetosome formation in the alphaproteobacterium Magnetospirillum gryphiswaldense is controlled by more than 30 known mam and mms genes clustered within a large genomic region, the 'magnetosome island' (MAI), which also harbors numerous mobile genetic elements, repeats, and genetic junk. Because of the inherent genetic instability of the MAI caused by neighboring gene content, the elimination of these regions and their substitution by a compact, minimal magnetosome expression cassette would be important for future analysis and engineering. In addition, the role of the MAI boundaries and adjacent regions are still unclear, and recent studies indicated that further auxiliary determinants for magnetosome biosynthesis are encoded outside the MAI. However, techniques for large-scale genome editing of magnetic bacteria are still limited, and the full complement of genes controlling magnetosome formation has remained uncertain. RESULTS Here we demonstrate that an allelic replacement method based on homologous recombination can be applied for large-scale genome editing in M. gryphiswaldense. By analysis of 24 deletion mutants covering about 167 kb of non-redundant genome content, we identified genes and regions inside and outside the MAI irrelevant for magnetosome biosynthesis. A contiguous stretch of ~ 100 kb, including the scattered mam and mms6 operons, could be functionally substituted by a compact and contiguous ~ 38 kb cassette comprising all essential biosynthetic gene clusters, but devoid of interspersing irrelevant or problematic gene content. CONCLUSIONS Our results further delineate the genetic complement for magnetosome biosynthesis and will be useful for future large-scale genome editing and genetic engineering of magnetosome biosynthesis.
Collapse
Affiliation(s)
- Theresa Zwiener
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Frank Mickoleit
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Marina Dziuba
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Christian Rückert
- Center for Biotechnology, University of Bielefeld, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology, University of Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University of Bielefeld, Bielefeld, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Aix-Marseille Université, CEA, CNRS, BIAM 13108, Saint Paul lez Durance, France
| | - René Uebe
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
4
|
Spatiotemporal Organization of Chemotaxis Pathways in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2020; 87:AEM.02229-20. [PMID: 33067189 DOI: 10.1128/aem.02229-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022] Open
Abstract
Magnetospirillum gryphiswaldense employs iron-rich nanoparticles for magnetic navigation within environmental redox gradients. This behavior termed magneto-aerotaxis was previously shown to rely on the sensory pathway CheOp1, but the precise localization of CheOp1-related chemoreceptor arrays during the cell cycle and its possible interconnection with three other chemotaxis pathways have remained unstudied. Here, we analyzed the localization of chemoreceptor-associated adaptor protein CheW1 and histidine kinase CheA1 by superresolution microscopy in a spatiotemporal manner. CheW1 localized in dynamic clusters that undergo occasional segregation and fusion events at lateral sites of both cell poles. Newly formed smaller clusters originating at midcell before completion of cytokinesis were found to grow in size during the cell cycle. Bipolar CheA1 localization and formation of aerotactic swim halos were affected depending on the fluorescent protein tag, indicating that CheA1 localization is important for aerotaxis. Furthermore, polar CheW1 localization was independent of cheOp2 to cheOp4 but lost in the absence of cheOp1 or cheA1 Results were corroborated by the detection of a direct protein interaction between CheA1 and CheW1 and by the observation that cheOp2- and cheOp3-encoded CheW paralogs localized in spatially distinct smaller clusters at the cell boundary. Although the findings of a minor aerotaxis-related CheOp4 phenotype and weak protein interactions between CheOp1 and CheOp4 by two-hybrid analysis implied that CheW1 and CheW4 might be part of the same chemoreceptor array, CheW4 was localized in spatially distinct polar-lateral arrays independent of CheOp1, suggesting that CheOp1 and CheOp4 are also not connected at the molecular level.IMPORTANCE Magnetotactic bacteria (MTB) use the geomagnetic field for navigation in aquatic redox gradients. However, the highly complex signal transduction networks in these environmental microbes are poorly understood. Here, we analyzed the localization of selected chemotaxis proteins to spatially and temporally resolve chemotaxis array localization in Magnetospirillum gryphiswaldense Our findings suggest that bipolar localization of chemotaxis arrays related to the key signaling pathway CheOp1 is important for aerotaxis and that CheOp1 signaling units assemble independent of the three other chemotaxis pathways present in M. gryphiswaldense Overall, our results provide deeper insights into the complex organization of signaling pathways in MTB and add to the general understanding of environmental bacteria possessing multiple chemotaxis pathways.
Collapse
|
5
|
Quantifying the Benefit of a Dedicated "Magnetoskeleton" in Bacterial Magnetotaxis by Live-Cell Motility Tracking and Soft Agar Swimming Assay. Appl Environ Microbiol 2020; 86:AEM.01976-19. [PMID: 31732570 DOI: 10.1128/aem.01976-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
The alphaproteobacterium Magnetospirillum gryphiswaldense has the intriguing ability to navigate within magnetic fields, a behavior named magnetotaxis, governed by the formation of magnetosomes, intracellular membrane-enveloped crystals of magnetite. Magnetosomes are aligned in chains along the cell's motility axis by a dedicated multipart cytoskeleton ("magnetoskeleton"); however, precise estimates of its significance for magnetotaxis have not been reported. Here, we estimated the alignment of strains deficient in various magnetoskeletal constituents by live-cell motility tracking within defined magnetic fields ranging from 50 μT (reflecting the geomagnetic field) up to 400 μT. Motility tracking revealed that ΔmamY and ΔmamK strains (which assemble mispositioned and fragmented chains, respectively) are partially impaired in magnetotaxis, with approximately equal contributions of both proteins. This impairment was reflected by a required magnetic field strength of 200 μT to achieve a similar degree of alignment as for the wild-type strain in a 50-μT magnetic field. In contrast, the ΔmamJ strain, which predominantly forms clusters of magnetosomes, was only weakly aligned under any of the tested field conditions and could barely be distinguished from a nonmagnetic mutant. Most findings were corroborated by a soft agar swimming assay to analyze magnetotaxis based on the degree of distortion of swim halos formed in magnetic fields. Motility tracking further revealed that swimming speeds of M. gryphiswaldense are highest within the field strength equaling the geomagnetic field. In conclusion, magnetic properties and intracellular positioning of magnetosomes by a dedicated magnetoskeleton are required and optimized for bacterial magnetotaxis and most efficient locomotion within the geomagnetic field.IMPORTANCE In Magnetospirillum gryphiswaldense, magnetosomes are aligned in quasi-linear chains in a helical cell by a complex cytoskeletal network, including the actin-like MamK and adapter MamJ for magnetosome chain concatenation and segregation and MamY to position magnetosome chains along the shortest cellular axis of motility. Magnetosome chain positioning is assumed to be required for efficient magnetic navigation; however, the significance and contribution of all key constituents have not been quantified within defined and weak magnetic fields reflecting the geomagnetic field. Employing two different motility-based methods to consider the flagellum-mediated propulsion of cells, we depict individual benefits of all magnetoskeletal constituents for magnetotaxis. Whereas lack of mamJ resulted almost in an inability to align cells in weak magnetic fields, an approximately 4-fold-increased magnetic field strength was required to compensate for the loss of mamK or mamY In summary, the magnetoskeleton and optimal positioning of magnetosome chains are required for efficient magnetotaxis.
Collapse
|
6
|
High-Throughput Microfluidic Sorting of Live Magnetotactic Bacteria. Appl Environ Microbiol 2018; 84:AEM.01308-18. [PMID: 29959254 DOI: 10.1128/aem.01308-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023] Open
Abstract
Magnetic nanoparticles (MNPs) are useful for many biomedical applications, but it is challenging to synthetically produce them in large numbers with uniform properties and surface functionalization. Magnetotactic bacteria (MTB) produce magnetosomes with homogenous sizes, shapes, and magnetic properties. Consequently, there is interest in using MTB as biological factories for MNP production. Nonetheless, MTB can only be grown to low yields, and wild-type strains produce low numbers of MNPs/bacterium. There are also limited technologies to facilitate the selection of MTB with different magnetic contents, such as MTB with compromised and enhanced biomineralization ability. Here, we describe a magnetic microfluidic platform combined with transient cold/alkaline treatment to temporarily reduce the rapid flagellar motion of MTB without compromising their long-term proliferation and biomineralization ability for separating MTB on the basis of their magnetic contents. This strategy enables live MTB to be enriched, which, to the best of our knowledge, has not been achieved with another previously described magnetic microfluidic device that makes use of ferrofluid and heat. Our device also facilitates the high-throughput (25,000 cells/min) separation of wild-type Magnetospirillum gryphiswaldense (MSR-1) from nonmagnetic ΔmamAB MSR-1 mutants with a sensitivity of up to 80% and isolation purity of up to 95%, as confirmed with a gold-standard fluorescent-activated cell sorter (FACS) technique. This offers a 25-fold higher throughput than other previously described magnetic microfluidic platforms (1,000 cells/min). The device can also be used to isolate Magnetospirillum magneticum (AMB-1) mutants with different ranges of magnetosome numbers with efficiencies close to theoretical estimates. We believe this technology will facilitate the magnetic characterization of genetically engineered MTB for a variety of applications, including using MTB for large-scale, controlled MNP production.IMPORTANCE Our magnetic microfluidic technology can greatly facilitate biological applications with magnetotactic bacteria, from selection and screening to analysis. This technology will be of interest to microbiologists, chemists, and bioengineers who are interested in the biomineralization and selection of magnetotactic bacteria (MTB) for applications such as directed evolution and magnetogenetics.
Collapse
|
7
|
Reevaluation of the Complete Genome Sequence of Magnetospirillum gryphiswaldense MSR-1 with Single-Molecule Real-Time Sequencing Data. GENOME ANNOUNCEMENTS 2018; 6:6/17/e00309-18. [PMID: 29700148 PMCID: PMC5920173 DOI: 10.1128/genomea.00309-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Magnetospirillum gryphiswaldense is a key organism for understanding magnetosome formation and magnetotaxis. As earlier studies suggested a high genomic plasticity, we (re)sequenced the type strain MSR-1 and the laboratory strain R3/S1. Both sequences differ by only 11 point mutations, but organization of the magnetosome island deviates from that of previous genome sequences.
Collapse
|
8
|
Zahn C, Keller S, Toro-Nahuelpan M, Dorscht P, Gross W, Laumann M, Gekle S, Zimmermann W, Schüler D, Kress H. Measurement of the magnetic moment of single Magnetospirillum gryphiswaldense cells by magnetic tweezers. Sci Rep 2017; 7:3558. [PMID: 28620230 PMCID: PMC5472611 DOI: 10.1038/s41598-017-03756-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/03/2017] [Indexed: 11/26/2022] Open
Abstract
Magnetospirillum gryphiswaldense is a helix-shaped magnetotactic bacterium that synthesizes iron-oxide nanocrystals, which allow navigation along the geomagnetic field. The bacterium has already been thoroughly investigated at the molecular and cellular levels. However, the fundamental physical property enabling it to perform magnetotaxis, its magnetic moment, remains to be elucidated at the single cell level. We present a method based on magnetic tweezers; in combination with Stokesian dynamics and Boundary Integral Method calculations, this method allows the simultaneous measurement of the magnetic moments of multiple single bacteria. The method is demonstrated by quantifying the distribution of the individual magnetic moments of several hundred cells of M. gryphiswaldense. In contrast to other techniques for measuring the average magnetic moment of bacterial populations, our method accounts for the size and the helical shape of each individual cell. In addition, we determined the distribution of the saturation magnetic moments of the bacteria from electron microscopy data. Our results are in agreement with the known relative magnetization behavior of the bacteria. Our method can be combined with single cell imaging techniques and thus can address novel questions about the functions of components of the molecular magnetosome biosynthesis machinery and their correlation with the resulting magnetic moment.
Collapse
Affiliation(s)
- C Zahn
- Biological Physics, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - S Keller
- Biological Physics, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - M Toro-Nahuelpan
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany
| | - P Dorscht
- Biological Physics, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - W Gross
- Biological Physics, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - M Laumann
- Theoretical Physics I, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - S Gekle
- Biofluid Simulation and Modeling, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - W Zimmermann
- Theoretical Physics I, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - D Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - H Kress
- Biological Physics, Department of Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
9
|
Bresan S, Sznajder A, Hauf W, Forchhammer K, Pfeiffer D, Jendrossek D. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids. Sci Rep 2016; 6:26612. [PMID: 27222167 PMCID: PMC4879537 DOI: 10.1038/srep26612] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022] Open
Abstract
Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only.
Collapse
Affiliation(s)
| | - Anna Sznajder
- Institute of Microbiology, University Stuttgart, Germany
| | - Waldemar Hauf
- Department of Organismic Interactions, Eberhard Karls Universität Tübingen, Germany
| | - Karl Forchhammer
- Department of Organismic Interactions, Eberhard Karls Universität Tübingen, Germany
| | | | | |
Collapse
|
10
|
Abstract
Owing to their small size and enhanced stability, nanobodies derived from camelids have previously been used for the construction of intracellular “nanotraps,” which enable redirection and manipulation of green fluorescent protein (GFP)-tagged targets within living plant and animal cells. By taking advantage of intracellular compartmentalization in the magnetic bacterium Magnetospirillum gryphiswaldense, we demonstrate that proteins and even entire organelles can be retargeted also within prokaryotic cells by versatile nanotrap technology. Expression of multivalent GFP-binding nanobodies on magnetosomes ectopically recruited the chemotaxis protein CheW1-GFP from polar chemoreceptor clusters to the midcell, resulting in a gradual knockdown of aerotaxis. Conversely, entire magnetosome chains could be redirected from the midcell and tethered to one of the cell poles. Similar approaches could potentially be used for building synthetic cellular structures and targeted protein knockdowns in other bacteria. Importance Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular “nanotraps” in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for building synthetic cellular structures, manipulating protein function, and creating gradual targeted knockdowns. Our findings provide a proof of principle for the universal use of fluorescently tagged proteins as targets for nanotraps to fulfill these tasks. Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular “nanotraps” in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for building synthetic cellular structures, manipulating protein function, and creating gradual targeted knockdowns. Our findings provide a proof of principle for the universal use of fluorescently tagged proteins as targets for nanotraps to fulfill these tasks.
Collapse
|
11
|
Macwan I, Zhao Z, Sobh O, Patra P. A flagellum based study of semiconductor nanofabrication through magnetotaxis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:2777-80. [PMID: 25570567 DOI: 10.1109/embc.2014.6944199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Magnetospirillum magneticum (AMB-1), which belong to alpha-protobacterium are gram-negative, single-celled prokaryotic organisms consisting of a lash-like cellular appendage called flagella. These filamentous structures are made up of a protein called flagellin that in turn consist of four sub-domains, two inner domains (D0, D1) made up of alpha-helices and two outer domains (D2, D3) made up of beta sheets. It is wrapped in a helical fashion around the longitudinal filament with the outermost sub-domain (D3) exposed to the surrounding environment. This study focuses on the interaction of the D3 with semiconducting as well as metallic single-walled carbon nanotubes (m-SWNT) and in turn presents the interactive forces between the SWNT and D3 from the perspective of size and type of SWNT. It is found that the SWNT interacts the most with glycine and threonine residues of flagellin both electrostatically as well as through van der waals. Further, the viability of magnetotactic bacteria Magnetospirillum magneticum (AMB-1) in the presence of SWNT is experimentally investigated and it is found that magnetotaxis in AMB-1 is preserved without any toxic effects due to SWNT. It is proposed that AMB-1 can be used as an efficient carrier of carbon nanotubes through its flagellum for semiconductor nanofabrication tasks.
Collapse
|
12
|
Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway. Nat Commun 2014; 5:5398. [DOI: 10.1038/ncomms6398] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/26/2014] [Indexed: 02/04/2023] Open
|
13
|
A tailored galK counterselection system for efficient markerless gene deletion and chromosomal tagging in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2014; 80:4323-30. [PMID: 24814778 DOI: 10.1128/aem.00588-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria have emerged as excellent model systems to study bacterial cell biology, biomineralization, vesicle formation, and protein targeting because of their ability to synthesize single-domain magnetite crystals within unique organelles (magnetosomes). However, only few species are amenable to genetic manipulation, and the limited methods for site-specific mutagenesis are tedious and time-consuming. Here, we report the adaptation and application of a fast and convenient technique for markerless chromosomal manipulation of Magnetospirillum gryphiswaldense using a single antibiotic resistance cassette and galK-based counterselection for marker recycling. We demonstrate the potential of this technique by genomic excision of the phbCAB operon, encoding enzymes for polyhydroxyalkanoate (PHA) synthesis, followed by chromosomal fusion of magnetosome-associated proteins to fluorescent proteins. Because of the absence of interfering PHA particles, these engineered strains are particularly suitable for microscopic analyses of cell biology and magnetosome biosynthesis.
Collapse
|
14
|
Raschdorf O, Müller FD, Pósfai M, Plitzko JM, Schüler D. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol Microbiol 2013; 89:872-86. [PMID: 23889511 DOI: 10.1111/mmi.12317] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2013] [Indexed: 11/30/2022]
Abstract
Magnetospirillum gryphiswaldense uses intracellular chains of membrane-enveloped magnetite crystals, the magnetosomes, to navigate within magnetic fields. The biomineralization of magnetite nanocrystals requires several magnetosome-associated proteins, whose precise functions so far have remained mostly unknown. Here, we analysed the functions of MamX and the Major Facilitator Superfamily (MFS) proteins MamZ and MamH. Deletion of either the entire mamX gene or elimination of its putative haem c-binding magnetochrome domains, and deletion of either mamZ or its C-terminal ferric reductase-like component resulted in an identical phenotype. All mutants displayed WT-like magnetite crystals, flanked within the magnetosome chains by poorly crystalline flake-like particles partly consisting of haematite. Double deletions of both mamZ and its homologue mamH further impaired magnetite crystallization in an additive manner, indicating that the two MFS proteins have partially redundant functions. Deprivation of ΔmamX and ΔmamZ cells from nitrate, or additional loss of the respiratory nitrate reductase Nap from ΔmamX severely exacerbated the magnetosome defects and entirely inhibited the formation of regular crystals, suggesting that MamXZ and Nap have similar, but independent roles in redox control of biomineralization. We propose a model in which MamX, MamZ and MamH functionally interact to balance the redox state of iron within the magnetosome compartment.
Collapse
Affiliation(s)
- Oliver Raschdorf
- Ludwig Maximilian University Munich, Dept. Biology I, Microbiology, D-82152, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
15
|
Zhang WJ, Santini CL, Bernadac A, Ruan J, Zhang SD, Kato T, Li Y, Namba K, Wu LF. Complex spatial organization and flagellin composition of flagellar propeller from marine magnetotactic ovoid strain MO-1. J Mol Biol 2012; 416:558-70. [PMID: 22245577 DOI: 10.1016/j.jmb.2011.12.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/15/2011] [Accepted: 12/30/2011] [Indexed: 12/24/2022]
Abstract
Marine magnetotactic ovoid bacterium MO-1 is capable of swimming along the geomagnetic field lines by means of its two sheathed flagellar bundles at a speed up to 300 μm/s. In this study, by using electron microscopy, we showed that, in each bundle, six individual flagella were organized in hexagon with a seventh in the middle. We identified 12 flagellin paralogs and 2 putative flagellins in the genome of MO-1. Among them, 13 were tandemly located on an ~ 17-kb segment while the 14th was on a separated locus. Using reverse transcription PCR and quantitative PCR, we found that all the 14 flagellin or putative flagellin genes were transcribed and that 2 of them were more abundantly expressed than others. A nLC (nanoliquid chromatography)-ESI (electrospray ionization)-MS/MS (mass spectrometry/mass spectrometry) mass spectrometry analysis identified all the 12 flagellin proteins in three glycosylated polypeptide bands resolved by one-dimensional denaturing polyacrylamide gel electrophoresis and 10 of them in 21 spots obtained by means of two-dimensional electrophoresis of flagellar extracts. Most spots contained more than one flagellin, and eight of the ten identified flagellins existed in multiple isoforms. Taken together, these results show unprecedented complexity in the spatial organization and flagellin composition of the flagellar propeller. Such architecture is observed only for ovoid-coccoid, bilophotrichously flagellated magnetotactic bacteria living in marine sediments, suggesting a species and environmental specificity.
Collapse
Affiliation(s)
- Wei-Jia Zhang
- State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lohße A, Ullrich S, Katzmann E, Borg S, Wanner G, Richter M, Voigt B, Schweder T, Schüler D. Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS One 2011; 6:e25561. [PMID: 22043287 PMCID: PMC3197154 DOI: 10.1371/journal.pone.0025561] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022] Open
Abstract
Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority of MAI genes have no detectable function in magnetosome formation and could be eliminated without any effect. Only <25% of the region comprising four major operons could be associated with magnetite biomineralization, which correlated with high expression of these genes and their conservation among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to severe defects in morphology, size and organization of magnetite crystals. However, strains in which these operons were eliminated together retained the ability to synthesize small irregular crystallites, and weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY operons have crucial and partially overlapping functions for the formation of functional magnetosomes, the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomineralization. Our data further reduce the known minimal gene set required for magnetosome formation and will be useful for future genome engineering approaches.
Collapse
Affiliation(s)
- Anna Lohße
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
| | - Susanne Ullrich
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
| | - Emanuel Katzmann
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
| | - Sarah Borg
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
| | - Gerd Wanner
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
| | - Michael Richter
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Birgit Voigt
- Department of Microbial Physiology, Institute of Microbiology, Ernst Moritz Arndt University, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology Research Group, Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany
| | - Dirk Schüler
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
- * E-mail:
| |
Collapse
|
17
|
Pollithy A, Romer T, Lang C, Müller FD, Helma J, Leonhardt H, Rothbauer U, Schüler D. Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2011; 77:6165-71. [PMID: 21764974 PMCID: PMC3165405 DOI: 10.1128/aem.05282-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/28/2011] [Indexed: 11/20/2022] Open
Abstract
Numerous applications of conventional and biogenic magnetic nanoparticles (MNPs), such as in diagnostics, immunomagnetic separations, and magnetic cell labeling, require the immobilization of antibodies. This is usually accomplished by chemical conjugation, which, however, has several disadvantages, such as poor efficiency and the need for coupling chemistry. Here, we describe a novel strategy to display a functional camelid antibody fragment (nanobody) from an alpaca (Lama pacos) on the surface of bacterial biogenic magnetic nanoparticles (magnetosomes). Magnetosome-specific expression of a red fluorescent protein (RFP)-binding nanobody (RBP) in vivo was accomplished by genetic fusion of RBP to the magnetosome protein MamC in the magnetite-synthesizing bacterium Magnetospirillum gryphiswaldense. We demonstrate that isolated magnetosomes expressing MamC-RBP efficiently recognize and bind their antigen in vitro and can be used for immunoprecipitation of RFP-tagged proteins and their interaction partners from cell extracts. In addition, we show that coexpression of monomeric RFP (mRFP or its variant mCherry) and MamC-RBP results in intracellular recognition and magnetosome recruitment of RFP within living bacteria. The intracellular expression of a functional nanobody targeted to a specific bacterial compartment opens new possibilities for in vivo synthesis of MNP-immobilized nanobodies. Moreover, intracellular nanotraps can be generated to manipulate bacterial structures in live cells.
Collapse
Affiliation(s)
- Anna Pollithy
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Tina Romer
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
- ChromoTek GmbH, Am Klopferspitz 19, D-82152 Martinsried, Germany
| | - Claus Lang
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Frank D. Müller
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Jonas Helma
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Heinrich Leonhardt
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Ulrich Rothbauer
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
- ChromoTek GmbH, Am Klopferspitz 19, D-82152 Martinsried, Germany
| | - Dirk Schüler
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| |
Collapse
|
18
|
Frequent mutations within the genomic magnetosome island of Magnetospirillum gryphiswaldense are mediated by RecA. J Bacteriol 2011; 193:5328-34. [PMID: 21821768 DOI: 10.1128/jb.05491-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes for magnetosome formation in magnetotactic bacteria are clustered in large genomic magnetosome islands (MAI). Spontaneous deletions and rearrangements were frequently observed within these regions upon metabolic stress. This instability was speculated to be due to RecA-dependent homologous recombination between the numerous sequence repeats present within the MAI. Here we show that a RecA-deficient strain of Magnetospirillum gryphiswaldense (IK-1) no longer exhibits genetic instability of magnetosome formation. Strain IK-1 displayed higher sensitivity to oxygen and UV irradiation. Furthermore, the lack of RecA abolished allelic exchange in the mutant. Cells of strain IK-1 displayed a slightly altered (i.e., more elongated) morphology, whereas the absence of RecA did not affect the ability to synthesize wild-type-like magnetosomes. Our data provide evidence that the observed genetic instability of magnetosome formation in the wild type is due predominantly to RecA-mediated recombination. In addition, increased genetic stability could make strain IK-1 a useful tool for the expression of genes and further genetic engineering, as well as for biotechnological production of bacterial magnetosomes.
Collapse
|
19
|
Lefèvre CT, Santini CL, Bernadac A, Zhang WJ, Li Y, Wu LF. Calcium ion-mediated assembly and function of glycosylated flagellar sheath of marine magnetotactic bacterium. Mol Microbiol 2010; 78:1304-12. [DOI: 10.1111/j.1365-2958.2010.07404.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol 2010; 77:208-24. [PMID: 20487281 DOI: 10.1111/j.1365-2958.2010.07202.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnetotactic bacteria synthesize magnetosomes, which are unique organelles consisting of membrane-enclosed magnetite crystals. For magnetic orientation individual magnetosome particles are assembled into well-organized chains. The actin-like MamK and the acidic MamJ proteins were previously implicated in chain assembly. While MamK was suggested to form magnetosome-associated cytoskeletal filaments, MamJ is assumed to attach the magnetosome vesicles to these structures. Although the deletion of either mamK in Magnetospirillum magneticum, or mamJ in Magnetospirillum gryphiswaldense affected chain formation, the previously observed phenotypes were not fully consistent, suggesting different mechanisms of magnetosome chain assembly in both organisms. Here we show that in M. gryphiswaldense MamK is not absolutely required for chain formation. Straight chains, albeit shorter, fragmented and ectopic, were still formed in a mamK deletion mutant, although magnetosome filaments were absent as shown by cryo-electron tomography. Loss of MamK also resulted in reduced numbers of magnetite crystals and magnetosome vesicles and led to the mislocalization of MamJ. In addition, extensive analysis of wild type and mutant cells revealed previously unidentified ultrastructural characteristics in M. gryphiswaldense. Our results suggest that, despite of their functional equivalence, loss of MamK proteins in different bacteria may result in distinct phenotypes, which might be due to a species-specific genetic context.
Collapse
Affiliation(s)
- Emanuel Katzmann
- Ludwig-Maximillians-Universität München, Department Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
21
|
Cre-lox-based method for generation of large deletions within the genomic magnetosome island of Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2010; 76:2439-44. [PMID: 20173068 DOI: 10.1128/aem.02805-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetosome biomineralization and magnetotaxis in magnetotactic bacteria are controlled by numerous, mostly unknown gene functions that are predominantly encoded by several operons located within the genomic magnetosome island (MAI). Genetic analysis of magnetotactic bacteria has remained difficult and requires the development of novel tools. We established a Cre-lox-based deletion method which allows the excision of large genomic fragments in Magnetospirillum gryphiswaldense. Two conjugative suicide plasmids harboring lox sites that flanked the target region were subsequently inserted into the chromosome by homologous recombination, requiring only one single-crossover event, respectively, and resulting in a double cointegrate. Excision of the targeted chromosomal segment that included the inserted plasmids and their resistance markers was induced by trans expression of Cre recombinase, which leaves behind a scar of only a single loxP site. The Cre helper plasmid was then cured from the deletant strain by relief of antibiotic selection. We have used this method for the deletion of 16.3-kb, 61-kb, and 67.3-kb fragments from the genomic MAI, either in a single round or in subsequent rounds of deletion, covering a region of approximately 87 kb that comprises the mamAB, mms6, and mamGFDC operons. As expected, all mutants were Mag(-) and some were Mot(-); otherwise, they showed normal growth patterns, which indicates that the deleted region is not essential for viability in the laboratory. The method will facilitate future functional analysis of magnetosome genes and also can be utilized for large-scale genome engineering in magnetotactic bacteria.
Collapse
|
22
|
Abstract
Magnetosomes are specialized organelles for magnetic navigation that comprise membrane-enveloped, nano-sized crystals of a magnetic iron mineral; they are formed by a diverse group of magnetotactic bacteria (MTB). The synthesis of magnetosomes involves strict genetic control over intracellular differentiation, biomineralization, and their assembly into highly ordered chains. Physicochemical control over biomineralization is achieved by compartmentalization within vesicles of the magnetosome membrane, which is a phospholipid bilayer associated with a specific set of proteins that have known or suspected functions in vesicle formation, iron transport, control of crystallization, and arrangement of magnetite particles. Magnetosome formation is genetically complex, and relevant genes are predominantly located in several operons within a conserved genomic magnetosome island that has been likely transferred horizontally and subsequently adapted between diverse MTB during evolution. This review summarizes the recent progress in our understanding of magnetobacterial cell biology, genomics, and the genetic control of magnetosome formation and magnetotaxis.
Collapse
Affiliation(s)
- Christian Jogler
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany.
| | | |
Collapse
|
23
|
Identification of promoters for efficient gene expression in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2009; 75:4206-10. [PMID: 19395573 DOI: 10.1128/aem.02906-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To develop an expression system for the magnetotactic bacterium Magnetospirillum gryphiswaldense, we compared gene expression from the widely used Escherichia coli P(lac) promoter with that from known and predicted genuine M. gryphiswaldense promoters. With the use of green fluorescent protein as a reporter, the highest expression level was observed with the magnetosomal P(mamDC) promoter. We demonstrate that this promoter can be used for the expression of modified magnetosome proteins to generate "antibody-binding" magnetosomes.
Collapse
|
24
|
Affiliation(s)
- Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | | |
Collapse
|
25
|
Expression of green fluorescent protein fused to magnetosome proteins in microaerophilic magnetotactic bacteria. Appl Environ Microbiol 2008; 74:4944-53. [PMID: 18539817 DOI: 10.1128/aem.00231-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The magnetosomes of magnetotactic bacteria are prokaryotic organelles consisting of a magnetite crystal bounded by a phospholipid bilayer that contains a distinct set of proteins with various functions. Because of their unique magnetic and crystalline properties, magnetosome particles are potentially useful as magnetic nanoparticles in a number of applications, which in many cases requires the coupling of functional moieties to the magnetosome membrane. In this work, we studied the use of green fluorescent protein (GFP) as a reporter for the magnetosomal localization and expression of fusion proteins in the microaerophilic Magnetospirillum gryphiswaldense by flow cytometry, fluorescence microscopy, and biochemical analysis. Although optimum conditions for high fluorescence and magnetite synthesis were mutually exclusive, we established oxygen-limited growth conditions, which supported growth, magnetite biomineralization, and GFP fluorophore formation at reasonable rates. Under these optimized conditions, we studied the subcellular localization and expression of the GFP-tagged magnetosome proteins MamC, MamF, and MamG by fluorescence microscopy and immunoblotting. While all fusions specifically localized at the magnetosome membrane, MamC-GFP displayed the strongest expression and fluorescence. MamC-GFP-tagged magnetosomes purified from cells displayed strong fluorescence, which was sensitive to detergents but stable under a wide range of temperature and salt concentrations. In summary, our data demonstrate the use of GFP as a reporter for protein localization under magnetite-forming conditions and the utility of MamC as an anchor for magnetosome-specific display of heterologous gene fusions.
Collapse
|
26
|
Schüler D. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 2008; 32:654-72. [PMID: 18537832 DOI: 10.1111/j.1574-6976.2008.00116.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ability of magnetotactic bacteria (MTB) to orient in magnetic fields is based on the synthesis of magnetosomes, which are unique prokaryotic organelles comprising membrane-enveloped, nano-sized crystals of a magnetic iron mineral that are aligned in well-ordered intracellular chains. Magnetosome crystals have species-specific morphologies, sizes, and arrangements. The magnetosome membrane, which originates from the cytoplasmic membrane by invagination, represents a distinct subcellular compartment and has a unique biochemical composition. The roughly 20 magnetosome-specific proteins have functions in vesicle formation, magnetosomal iron transport, and the control of crystallization and intracellular arrangement of magnetite particles. The assembly of magnetosome chains is under genetic control and involves the action of an acidic protein that links magnetosomes to a novel cytoskeletal structure, presumably formed by a specific actin-like protein. A total of 28 conserved genes present in various magnetic bacteria were identified to be specifically associated with the magnetotactic phenotype, most of which are located in the genomic magnetosome island. The unique properties of magnetosomes attracted broad interdisciplinary interest, and MTB have recently emerged as a model to study prokaryotic organelle formation and evolution.
Collapse
Affiliation(s)
- Dirk Schüler
- Faculty of Biology, Microbiology, Ludwig Maximilians University, München, Germany.
| |
Collapse
|
27
|
Bazylinski DA, Schübbe S. Controlled biomineralization by and applications of magnetotactic bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:21-62. [PMID: 17869601 DOI: 10.1016/s0065-2164(07)62002-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada 89154, USA
| | | |
Collapse
|
28
|
The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J Bacteriol 2007; 190:377-86. [PMID: 17965152 DOI: 10.1128/jb.01371-07] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetospirillum gryphiswaldense and related magnetotactic bacteria form magnetosomes, which are membrane-enclosed organelles containing crystals of magnetite (Fe3O4) that cause the cells to orient in magnetic fields. The characteristic sizes, morphologies, and patterns of alignment of magnetite crystals are controlled by vesicles formed of the magnetosome membrane (MM), which contains a number of specific proteins whose precise roles in magnetosome formation have remained largely elusive. Here, we report on a functional analysis of the small hydrophobic MamGFDC proteins, which altogether account for nearly 35% of all proteins associated with the MM. Although their high levels of abundance and conservation among magnetotactic bacteria had suggested a major role in magnetosome formation, we found that the MamGFDC proteins are not essential for biomineralization, as the deletion of neither mamC, encoding the most abundant magnetosome protein, nor the entire mamGFDC operon abolished the formation of magnetite crystals. However, cells lacking mamGFDC produced crystals that were only 75% of the wild-type size and were less regular than wild-type crystals with respect to morphology and chain-like organization. The inhibition of crystal formation could not be eliminated by increased iron concentrations. The growth of mutant crystals apparently was not spatially constrained by the sizes of MM vesicles, as cells lacking mamGFDC formed vesicles with sizes and shapes nearly identical to those formed by wild-type cells. However, the formation of wild-type-size magnetite crystals could be gradually restored by in-trans complementation with one, two, and three genes of the mamGFDC operon, regardless of the combination, whereas the expression of all four genes resulted in crystals exceeding the wild-type size. Our data suggest that the MamGFDC proteins have partially redundant functions and, in a cumulative manner, control the growth of magnetite crystals by an as-yet-unknown mechanism.
Collapse
|
29
|
Erglis K, Wen Q, Ose V, Zeltins A, Sharipo A, Janmey PA, Cēbers A. Dynamics of magnetotactic bacteria in a rotating magnetic field. Biophys J 2007; 93:1402-12. [PMID: 17526564 PMCID: PMC1929029 DOI: 10.1529/biophysj.107.107474] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 04/17/2007] [Indexed: 11/18/2022] Open
Abstract
The dynamics of the motile magnetotactic bacterium Magnetospirillum gryphiswaldense in a rotating magnetic field is investigated experimentally and analyzed by a theoretical model. These elongated bacteria are propelled by single flagella at each bacterial end and contain a magnetic filament formed by a linear assembly of approximately 40 ferromagnetic nanoparticles. The movements of the bacteria in suspension are analyzed by consideration of the orientation of their magnetic dipoles in the field, the hydrodynamic resistance of the bacteria, and the propulsive force of the flagella. Several novel features found in experiments include a velocity reversal during motion in the rotating field and an interesting diffusive wandering of the trajectory curvature centers. A new method to measure the magnetic moment of an individual bacterium is proposed based on the theory developed.
Collapse
|
30
|
Silva KT, Abreu F, Almeida FP, Keim CN, Farina M, Lins U. Flagellar apparatus of south-seeking many-celled magnetotactic prokaryotes. Microsc Res Tech 2007; 70:10-7. [PMID: 17019700 DOI: 10.1002/jemt.20380] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetotactic bacteria orient and migrate along geomagnetic field lines. Each cell contains membrane-enclosed, nano-scale, iron-mineral particles called magnetosomes that cause alignment of the cell in the geomagnetic field as the bacteria swim propelled by flagella. In this work we studied the ultrastructure of the flagellar apparatus in many-celled magnetotactic prokaryotes (MMP) that consist of several Gram-negative cells arranged radially around an acellular compartment. Flagella covered the organism surface, and were observed exclusively at the portion of each cell that faced the environment. The flagella were helical tubes never as long as a complete turn of the helix. Flagellar filaments varied in length from 0.9 to 3.8 micro m (average 2.4 +/- 0.5 micro m, n = 150) and in width from 12.0 to 19.5 nm (average 15.9 +/- 1.4 nm, n = 52), which is different from previous reports for similar microorganisms. At the base of the flagella, a curved hook structure slightly thicker than the flagellar filaments was observed. In freeze-fractured samples, macromolecular complexes about 50 nm in diameter, which possibly corresponded to part of the flagella basal body, were observed in both the P-face of the cytoplasmic membrane and the E-face of the outer membrane. Transmission electron microscopy showed that magnetosomes occurred in planar groups in the cytoplasm close and parallel to the organism surface. A striated structure, which could be involved in maintaining magnetosomes fixed in the cell, was usually observed running along magnetosome chains. The coordinated movement of the MMP depends on the interaction between the flagella of each cell with the flagella of adjacent cells of the microorganism.
Collapse
Affiliation(s)
- Karen Tavares Silva
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Würdemann C, Peplies J, Schübbe S, Ellrott A, Schüler D, Glöckner FO. Evaluation of gene expression analysis using RNA-targeted partial genome arrays. Syst Appl Microbiol 2006; 29:349-57. [PMID: 16644169 DOI: 10.1016/j.syapm.2006.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Highly parallel cDNA targeting microarrays have been established over the last years as the quasi-standard for genome wide expression profiling in pro- and eukaryotes. Protocols for the direct detection of RNA or aRNA (amplified RNA) are currently emerging. This allows to circumvent the bias introduced by enzymatic target molecule preparation. To systematically evaluate the extent of non-specific target binding on oligonucleotide microarrays designed for total RNA expression profiling, a model system of 70-mer probes targeting genes involved in magnetosome formation (mam genes) of the bacterium Magnetospirillum gryphiswaldense was established utilizing wild-type strain MSR-1 and an isogenic deletion mutant MSR-1B that lacks all mam genes. An optimized protocol for the direct chemical labelling of total cellular RNAs was used. A linear correlation between the amount of applied RNA and the mean global background intensity was found which enables a simple and unbiased way of normalizing the data. The results obtained with the mam deletion mutant MSR-1B revealed a significant number of false positive signals, even under optimal hybridization conditions. This indicates a high degree of non-specific binding in microarray experiments when using longer oligo- or polynucleotides and RNA as target molecule. Comparative microarray analysis of an MSR-1B culture and two MSR-1 wild-type cultures grown under different conditions was done via a three-colour hybridization assay. The additional information provided by the MSR-1B transcriptome revealed differential gene expression in the two MSR-1 cultures, which was otherwise undetectable.
Collapse
Affiliation(s)
- Chris Würdemann
- Microbial Genomics Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 2005; 187:7176-84. [PMID: 16237001 PMCID: PMC1272989 DOI: 10.1128/jb.187.21.7176-7184.2005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes involved in magnetite biomineralization are clustered in the genome of the magnetotactic bacterium Magnetospirillum gryphiswaldense. We analyzed a 482-kb genomic fragment, in which we identified an approximately 130-kb region representing a putative genomic "magnetosome island" (MAI). In addition to all known magnetosome genes, the MAI contains genes putatively involved in magnetosome biomineralization and numerous genes with unknown functions, as well as pseudogenes, and it is particularly rich in insertion elements. Substantial sequence polymorphism of clones from different subcultures indicated that this region undergoes frequent rearrangements during serial subcultivation in the laboratory. Spontaneous mutants affected in magnetosome formation arise at a frequency of up to 10(-2) after prolonged storage of cells at 4 degrees C or exposure to oxidative stress. All nonmagnetic mutants exhibited extended and multiple deletions in the MAI and had lost either parts of or the entire mms and mam gene clusters encoding magnetosome proteins. The mutations were polymorphic with respect to the sites and extents of deletions, but all mutations were found to be associated with the loss of various copies of insertion elements, as revealed by Southern hybridization and PCR analysis. Insertions and deletions in the MAI were also found in different magnetosome-producing clones, indicating that parts of this region are not essential for the magnetic phenotype. Our data suggest that the genomic MAI undergoes frequent transposition events, which lead to subsequent deletion by homologous recombination under physiological stress conditions. This can be interpreted in terms of adaptation to physiological stress and might contribute to the genetic plasticity and mobilization of the magnetosome island.
Collapse
Affiliation(s)
- Susanne Ullrich
- MPI für Marine Mikrobiologie, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
33
|
Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 2005; 440:110-4. [PMID: 16299495 DOI: 10.1038/nature04382] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2005] [Accepted: 10/28/2005] [Indexed: 11/09/2022]
Abstract
Magnetotactic bacteria are widespread aquatic microorganisms that use unique intracellular organelles to navigate along the Earth's magnetic field. These organelles, called magnetosomes, consist of membrane-enclosed magnetite crystals that are thought to help to direct bacterial swimming towards growth-favouring microoxic zones at the bottom of natural waters. Questions in the study of magnetosome formation include understanding the factors governing the size and redox-controlled synthesis of the nano-sized magnetosomes and their assembly into a regular chain in order to achieve the maximum possible magnetic moment, against the physical tendency of magnetosome agglomeration. A deeper understanding of these mechanisms is expected from studying the genes present in the identified chromosomal 'magnetosome island', for which the connection with magnetosome synthesis has become evident. Here we use gene deletion in Magnetospirillum gryphiswaldense to show that magnetosome alignment is coupled to the presence of the mamJ gene product. MamJ is an acidic protein associated with a novel filamentous structure, as revealed by fluorescence microscopy and cryo-electron tomography. We suggest a mechanism in which MamJ interacts with the magnetosome surface as well as with a cytoskeleton-like structure. According to our hypothesis, magnetosome architecture represents one of the highest structural levels achieved in prokaryotic cells.
Collapse
Affiliation(s)
- André Scheffel
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D. The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol 2005; 187:2416-25. [PMID: 15774885 PMCID: PMC1065218 DOI: 10.1128/jb.187.7.2416-2425.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mms16 protein has been previously found to be associated with isolated magnetosomes from two Magnetospirillum strains. A function of this protein as a magnetosome-specific GTPase involved in the formation of intracellular magnetosome membrane vesicles was suggested. Here we present a study of the Mms16 protein from Magnetospirillum gryphiswaldense to clarify its function. Insertion-duplication mutagenesis of the mms16 gene did not affect the formation of magnetosome particles but resulted in the loss of the ability of M. gryphiswaldense cell extracts to activate poly(3-hydroxybutyrate) (PHB) depolymerization in vitro, which was coincident with loss of the most abundant 16-kDa polypeptide from preparations of PHB granule-bound proteins. The mms16 mutation could be functionally complemented by enhanced yellow fluorescent protein (EYFP) fused to ApdA, which is a PHB granule-bound protein (phasin) in Rhodospirillum rubrum sharing 55% identity to Mms16. Fusions of Mms16 and ApdA to enhanced green fluorescent protein (EGFP) or EYFP were colocalized in vivo with the PHB granules but not with the magnetosome particles after conjugative transfer to M. gryphiswaldense. Although the Mms16-EGFP fusion protein became detectable by Western analysis in all cell fractions upon cell disruption, it was predominantly associated with isolated PHB granules. Contrary to previous suggestions, our results argue against an essential role of Mms16 in magnetosome formation, and the previously observed magnetosome localization is likely an artifact due to unspecific adsorption during preparation. Instead, we conclude that Mms16 in vivo is a PHB granule-bound protein (phasin) and acts in vitro as an activator of PHB hydrolysis by R. rubrum PHB depolymerase PhaZ1. Accordingly, we suggest renaming the Mms16 protein of Magnetospirillum species to ApdA, as in R. rubrum.
Collapse
Affiliation(s)
- Daniel Schultheiss
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany.
| | | | | | | | | |
Collapse
|