1
|
Koch T, Dahl C. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME JOURNAL 2018; 12:2479-2491. [PMID: 29930335 DOI: 10.1038/s41396-018-0209-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022]
Abstract
Dimethylsulfide (DMS) plays a globally significant role in carbon and sulfur cycling and impacts Earth's climate because its oxidation products serve as nuclei for cloud formation. While the initial steps of aerobic DMS degradation and the fate of its carbon atoms are reasonably well documented, oxidation of the contained sulfur is largely unexplored. Here, we identified a novel pathway of sulfur compound oxidation in the ubiquitously occurring DMS-degrader Hyphomicrobium denitrificans XT that links the oxidation of the volatile organosulfur compound with that of the inorganic sulfur compound thiosulfate. DMS is first transformed to methanethiol from which sulfide is released and fully oxidized to sulfate. Comparative proteomics indicated thiosulfate as an intermediate of this pathway and pointed at a heterodisulfide reductase (Hdr)-like system acting as a sulfur-oxidizing entity. Indeed, marker exchange mutagenesis of hdr-like genes disrupted the ability of H. denitrificans to metabolize DMS and also prevented formation of sulfate from thiosulfate provided as an additional electron source during chemoorganoheterotrophic growth. Complementation with the hdr-like genes under a constitutive promoter rescued the phenotype on thiosulfate as well as on DMS. The production of sulfate from an organosulfur precursor via the Hdr-like system is previously undocumented and provides a new shunt in the biogeochemical sulfur cycle. Furthermore, our findings fill a long-standing knowledge gap in microbial dissimilatory sulfur metabolism because the Hdr-like pathway is abundant not only in chemoheterotrophs, but also in a wide range of chemo- and photolithoautotrophic sulfur oxidizers acting as key players in global sulfur cycling.
Collapse
Affiliation(s)
- Tobias Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.
| |
Collapse
|
2
|
Weigold P, El-Hadidi M, Ruecker A, Huson DH, Scholten T, Jochmann M, Kappler A, Behrens S. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil. Sci Rep 2016; 6:28958. [PMID: 27353292 PMCID: PMC4926216 DOI: 10.1038/srep28958] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications.
Collapse
Affiliation(s)
- Pascal Weigold
- Geomicrobiology, Center for Applied Geosciences, University of
Tuebingen, Germany
| | - Mohamed El-Hadidi
- Algorithms in Bioinformatics, Center for Bioinformatics,
University of Tuebingen, Germany
| | - Alexander Ruecker
- Geomicrobiology, Center for Applied Geosciences, University of
Tuebingen, Germany
| | - Daniel H. Huson
- Algorithms in Bioinformatics, Center for Bioinformatics,
University of Tuebingen, Germany
| | - Thomas Scholten
- Soil Science and Geomorphology, Geography, University of
Tuebingen, Germany
| | - Maik Jochmann
- Instrumental Analytical Chemistry, Faculty of Chemistry,
University of Duisburg-Essen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of
Tuebingen, Germany
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo- Engineering,
University of Minnesota, MN, USA
- BioTechnology Institute, University of Minnesota,
MN, USA
| |
Collapse
|
3
|
Roselli S, Nadalig T, Vuilleumier S, Bringel F. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study. PLoS One 2013; 8:e56598. [PMID: 23593113 PMCID: PMC3621897 DOI: 10.1371/journal.pone.0056598] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/11/2013] [Indexed: 12/24/2022] Open
Abstract
Chloromethane (CH3Cl) is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu) was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD), as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2). In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase) are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex), conversion of tetrahydrofolate-bound one-carbon units, and central metabolism. The mosaic organization of plasmid pCMU01 and the clustering of genes coding for dehalogenase enzymes and for biosynthesis of associated cofactors suggests a history of gene acquisition related to chloromethane utilization.
Collapse
Affiliation(s)
- Sandro Roselli
- Département Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR7156, Centre national de la recherche scientifique, Strasbourg, France
| | - Thierry Nadalig
- Département Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR7156, Centre national de la recherche scientifique, Strasbourg, France
| | - Stéphane Vuilleumier
- Département Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR7156, Centre national de la recherche scientifique, Strasbourg, France
| | - Françoise Bringel
- Département Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR7156, Centre national de la recherche scientifique, Strasbourg, France
- * E-mail:
| |
Collapse
|
4
|
Ferguson T, Soares JA, Lienard T, Gottschalk G, Krzycki JA. RamA, a protein required for reductive activation of corrinoid-dependent methylamine methyltransferase reactions in methanogenic archaea. J Biol Chem 2008; 284:2285-95. [PMID: 19043046 DOI: 10.1074/jbc.m807392200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Archaeal methane formation from methylamines is initiated by distinct methyltransferases with specificity for monomethylamine, dimethylamine, or trimethylamine. Each methylamine methyltransferase methylates a cognate corrinoid protein, which is subsequently demethylated by a second methyltransferase to form methyl-coenzyme M, the direct methane precursor. Methylation of the corrinoid protein requires reduction of the central cobalt to the highly reducing and nucleophilic Co(I) state. RamA, a 60-kDa monomeric iron-sulfur protein, was isolated from Methanosarcina barkeri and is required for in vitro ATP-dependent reductive activation of methylamine:CoM methyl transfer from all three methylamines. In the absence of the methyltransferases, highly purified RamA was shown to mediate the ATP-dependent reductive activation of Co(II) corrinoid to the Co(I) state for the monomethylamine corrinoid protein, MtmC. The ramA gene is located near a cluster of genes required for monomethylamine methyltransferase activity, including MtbA, the methylamine-specific CoM methylase and the pyl operon required for co-translational insertion of pyrrolysine into the active site of methylamine methyltransferases. RamA possesses a C-terminal ferredoxin-like domain capable of binding two tetranuclear iron-sulfur proteins. Mutliple ramA homologs were identified in genomes of methanogenic Archaea, often encoded near methyltrophic methyltransferase genes. RamA homologs are also encoded in a diverse selection of bacterial genomes, often located near genes for corrinoid-dependent methyltransferases. These results suggest that RamA mediates reductive activation of corrinoid proteins and that it is the first functional archetype of COG3894, a family of redox proteins of unknown function.
Collapse
Affiliation(s)
- Tsuneo Ferguson
- Department of Microbiology and The Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
5
|
Schäfer H, Miller LG, Oremland RS, Murrell JC. Bacterial Cycling of Methyl Halides. ADVANCES IN APPLIED MICROBIOLOGY 2007; 61:307-46. [PMID: 17448794 DOI: 10.1016/s0065-2164(06)61009-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hendrik Schäfer
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | |
Collapse
|
6
|
Warner KL, Larkin MJ, Harper DB, Murrell JC, McDonald IR. Analysis of genes involved in methyl halide degradation in Aminobacter lissarensis CC495. FEMS Microbiol Lett 2006; 251:45-51. [PMID: 16102909 DOI: 10.1016/j.femsle.2005.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/17/2005] [Accepted: 07/19/2005] [Indexed: 11/29/2022] Open
Abstract
Aminobacter lissarensis CC495 is an aerobic facultative methylotroph capable of growth on glucose, glycerol, pyruvate and methylamine as well as the methyl halides methyl chloride and methyl bromide. Previously, cells grown on methyl chloride have been shown to express two polypeptides with apparent molecular masses of 67 and 29 kDa. The 67 kDa protein was purified and identified as a halomethane:bisulfide/halide ion methyltransferase. This study describes a single gene cluster in A. lissarensis CC495 containing the methyl halide utilisation genes cmuB, cmuA, cmuC, orf 188, paaE and hutI. The genes correspond to the same order and have a high similarity to a gene cluster found in Aminobacter ciceronei IMB-1 and Hyphomicrobium chloromethanicum strain CM2 indicating that genes encoding methyl halide degradation are highly conserved in these strains.
Collapse
Affiliation(s)
- Karen L Warner
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
7
|
Leveau JHJ, Gerards S, Fritsche K, Zondag G, van Veen JA. Genomic flank-sequencing of plasposon insertion sites for rapid identification of functional genes. J Microbiol Methods 2006; 66:276-85. [PMID: 16457898 DOI: 10.1016/j.mimet.2005.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/02/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Plasposons are modified mini-Tn5 transposons for random mutagenesis of Gram-negative bacteria. Their unique design allows for the rescue cloning and sequencing of DNA that flanks insertion sites in plasposon mutants. However, this process can be laborious and time-consuming, as it involves genomic DNA isolation, restriction endonuclease treatment, subsequent religation, transformation of religated DNA into an Escherichia coli host, and re-isolation as a plasmid, which is then used as a template in sequencing reactions with primers that read from the plasposon ends into the flanking DNA regions. We describe here a method that produces flanking DNA sequences directly from genomic DNA that is isolated from plasposon mutants. By eliminating the need for rescue cloning, our protocol dramatically reduces time and effort, typically by 2 to 3 working days, as well as costs associated with digestion, ligation, transformation, and plasmid isolation. Furthermore, it allows for a high-throughput automated approach to analysis of the plasposome, i.e. the collective set of plasposon insertion sites in a plasposon mutant library. We have tested the utility of genomic flank-sequencing on three plasposon mutants of the soil bacterium Collimonas fungivorans with abolished ability to degrade chitin.
Collapse
Affiliation(s)
- Johan H J Leveau
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Microbial Ecology, Boterhoeksestraat 48, 6666 GA Heteren, The Netherlands.
| | | | | | | | | |
Collapse
|
8
|
Borodina E, Cox MJ, McDonald IR, Murrell JC. Use of DNA-stable isotope probing and functional gene probes to investigate the diversity of methyl chloride-utilizing bacteria in soil. Environ Microbiol 2005; 7:1318-28. [PMID: 16104855 DOI: 10.1111/j.1462-5822.2005.00819.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Enrichment and isolation of methyl chloride-utilizing bacteria from various terrestrial environments, including woodland and forest soils, resulted in the identification of seven methyl chloride-utilizing strains belonging to the genus Hyphomicrobium, an Aminobacter strain TW23 and strain WG1, which grouped closely with the genus Mesorhizobium. Methyl chloride enrichment cultures were dominated by Hyphomicrobium species, indicating that these bacteria were most suited to growth under the enrichment and isolation conditions used. However, the application of culture-independent techniques such as DNA-stable isotope probing and the use of a functional gene probe targeting cmuA, which encodes the methyltransferase catalysing the first step in bacterial methyl chloride metabolism, indicated a greater diversity of methyl chloride-utilizing bacteria in the terrestrial environment, compared with the diversity of soil isolates obtained via the enrichment and isolation procedure. It also revealed the presence of as yet uncultured and potentially novel methyl chloride-degrading bacteria in soil.
Collapse
Affiliation(s)
- Elena Borodina
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
9
|
Schäfer H, McDonald IR, Nightingale PD, Murrell JC. Evidence for the presence of a CmuA methyltransferase pathway in novel marine methyl halide-oxidizing bacteria. Environ Microbiol 2005; 7:839-52. [PMID: 15892703 DOI: 10.1111/j.1462-2920.2005.00757.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Marine bacteria that oxidized methyl bromide and methyl chloride were enriched and isolated from seawater samples. Six methyl halide-oxidizing enrichments were established from which 13 isolates that grew on methyl bromide and methyl chloride as sole sources of carbon and energy were isolated and maintained. All isolates belonged to three different clades in the Roseobacter group of the alpha subdivision of the Proteobacteria and were distinct from Leisingera methylohalidivorans, the only other identified marine bacterium that grows on methyl bromide as sole source of carbon and energy. Genes encoding the methyltransferase/corrinoid-binding protein CmuA, which is responsible for the initial step of methyl chloride oxidation in terrestrial methyl halide-oxidizing bacteria, were detected in enrichments and some of the novel marine strains. Gene clusters containing cmuA and other genes implicated in the metabolism of methyl halides were cloned from two of the isolates. Expression of CmuA during growth on methyl halides was demonstrated by analysis of polypeptides expressed during growth on methyl halides by SDS-PAGE and mass spectrometry in two isolates representing two of the three clades. These findings indicate that certain marine methyl halide degrading bacteria from the Roseobacter group contain a methyltransferase pathway for oxidation of methyl bromide that may be similar to that responsible for methyl chloride oxidation in Methylobacterium chloromethanicum. This pathway therefore potentially contributes to cycling of methyl halides in both terrestrial and marine environments.
Collapse
Affiliation(s)
- Hendrik Schäfer
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, England, UK
| | | | | | | |
Collapse
|