1
|
Soudi H, Falsafi T, Mahboubi M, Gharavi S. Evaluation of Helicobacter pylori OipA protein as a vaccine candidate and propolis as an adjuvant in C57BL/6 mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1220-1230. [PMID: 35083009 PMCID: PMC8751746 DOI: 10.22038/ijbms.2021.56232.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/12/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Outer inflammatory protein A (OipA) is an essential adhesin of Helicobacter pylori. We aimed to evaluate the effects of a recombinant OipA in the induction of crucial cytokines as a vaccine candidate and propolis as an adjuvant in C57BL/6 mice. MATERIALS AND METHODS C57BL/6 mice were divided into nine groups according to the disposition of antigen and adjuvant and route of administration: subcutaneous (sc) or gavage. The administrated recombinant purified OipA and propolis concentrations were 10 μg/ml and 40 μg/ml, respectively. After vaccination, we measured expression levels of IFN-γ and IL-4 cytokine genes in the spleen cells of mice by real-time PCR. RESULTS All results were contrasted with the negative sample. By sc injection, the expression of INF-γ was increased 3.5 and 2.9-fold for OipA and OipA plus propolis, respectively. By gavage 4.4 and 11-fold increase was found for OipA and OipA plus propolis, respectively. The administration of propolis by gavage showed more increase than Sc injection concerning the production of INF-γ. The 11-fold increase for injection of OipA plus propolis by gavage was comparable OipA plus Freund's adjuvant injected subcutaneously. This result suggested an excellent immunological response toward OipA concerning the production of INF-γ in mice. In all cases there were no notable IL-4 production increases. CONCLUSION The results confirm the efficiency of OipA in induction of IFN-γ production, and thereby the cellular immune response. Propolis could be a suitable adjuvant.
Collapse
Affiliation(s)
- Hengameh Soudi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Falsafi
- Microbiology department, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohaddeseh Mahboubi
- Medicinal Plants Research Department, Research and Development, TabibDaru Pharmaceutical Company, Kashan, Iran
| | - Sara Gharavi
- Biotechnology Department, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
2
|
Fritze M, Costantini D, Fickel J, Wehner D, Czirják GÁ, Voigt CC. Immune response of hibernating European bats to a fungal challenge. Biol Open 2019; 8:bio.046078. [PMID: 31649120 PMCID: PMC6826279 DOI: 10.1242/bio.046078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunological responses of hibernating mammals are suppressed at low body temperatures, a possible explanation for the devastating effect of the white-nose syndrome on hibernating North American bats. However, European bats seem to cope well with the fungal causative agent of the disease. To better understand the immune response of hibernating bats, especially against fungal pathogens, we challenged European greater mouse-eared bats (Myotis myotis) by inoculating the fungal antigen zymosan. We monitored torpor patterns, immune gene expressions, different aspects of the acute phase response and plasma oxidative status markers, and compared them with sham-injected control animals at 30 min, 48 h and 96 h after inoculation. Torpor patterns, body temperatures, body masses, white blood cell counts, expression of immune genes, reactive oxygen metabolites and non-enzymatic antioxidant capacity did not differ between groups during the experiment. However, zymosan injected bats had significantly higher levels of haptoglobin than the control animals. Our results indicate that hibernating greater mouse-eared bats mount an inflammatory response to a fungal challenge, with only mild to negligible consequences for the energy budget of hibernation. Our study gives a first hint that hibernating European bats may have evolved a hibernation-adjusted immune response in order to balance the trade-off between competent pathogen elimination and a prudent energy-saving regime. Summary: Our experimental immunological study on European bats provides new information on the functionality of the immune system in hibernation. For this we challenged bats with a fungal antigen and measured different immunological parameters.
Collapse
Affiliation(s)
- Marcus Fritze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany .,Institute of Biology, Free University of Berlin, Takustr. 6, 14195 Berlin, Germany
| | - David Costantini
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,Unité Physiologie moléculaire et adaptation (PhyMA), Muséum National d'Histoire Naturelle, CNRS; CP32, 57 rue Cuvier 75005 Paris, France
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Dana Wehner
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,Institute of Biology, Free University of Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Christian C Voigt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,Institute of Biology, Free University of Berlin, Takustr. 6, 14195 Berlin, Germany
| |
Collapse
|
3
|
Saroz Y, Kho DT, Glass M, Graham ES, Grimsey NL. Cannabinoid Receptor 2 (CB 2) Signals via G-alpha-s and Induces IL-6 and IL-10 Cytokine Secretion in Human Primary Leukocytes. ACS Pharmacol Transl Sci 2019; 2:414-428. [PMID: 32259074 DOI: 10.1021/acsptsci.9b00049] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Cannabinoid receptor 2 (CB2) is a promising therapeutic target for immunological modulation. There is, however, a deficit of knowledge regarding CB2 signaling and function in human primary immunocompetent cells. We applied an experimental paradigm which closely models the in situ state of human primary leukocytes (PBMC; peripheral blood mononuclear cells) to characterize activation of a number of signaling pathways in response to a CB2-selective ligand (HU308). We observed a "lag" phase of unchanged cAMP concentration prior to development of classically expected Gαi-mediated inhibition of cAMP synthesis. Application of G protein inhibitors revealed that this apparent lag was a result of counteraction of Gαi effects by concurrent Gαs activation. Monitoring downstream signaling events showed that activation of p38 was mediated by Gαi, whereas ERK1/2 and Akt phosphorylation were mediated by Gαi-coupled βγ. Activation of CREB integrated multiple components; Gαs and βγ mediated ∼85% of the response, while ∼15% was attributed to Gαi. Responses to HU308 had an important functional outcome-secretion of interleukins 6 (IL-6) and 10 (IL-10). IL-2, IL-4, IL-12, IL-13, IL-17A, MIP-1α, and TNF-α were unaffected. IL-6/IL-10 induction had a similar G protein coupling profile to CREB activation. All response potencies were consistent with that expected for HU308 acting via CB2. Additionally, signaling and functional effects were completely blocked by a CB2-selective inverse agonist, giving additional evidence for CB2 involvement. This work expands the current paradigm regarding cannabinoid immunomodulation and reinforces the potential utility of CB2 ligands as immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Yurii Saroz
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Dan T Kho
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Euan Scott Graham
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Natasha Lillia Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
4
|
Mitchell RHB, Goldstein BI. Inflammation in children and adolescents with neuropsychiatric disorders: a systematic review. J Am Acad Child Adolesc Psychiatry 2014; 53:274-96. [PMID: 24565356 DOI: 10.1016/j.jaac.2013.11.013] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/21/2013] [Accepted: 12/13/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE There has been rapid growth in research regarding inflammation in neuropsychiatric disorders as it relates to youth. We therefore set out to systematically review the literature on inflammation and neuropsychiatric disorders in children and adolescents. METHOD A systematic review of the literature was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Studies were included if proinflammatory markers (PIMs) in children and/or adolescents with neuropsychiatric disorders were measured. RESULTS Sixty-seven studies were included, involving 3,952 youth. Evidence for a proinflammatory state is strongest for autism spectrum disorders (ASD). PIMs are elevated in children and adolescents with major depressive disorder (MDD), bipolar disorder (BD), post-traumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD), Tourette's disorder (TD), attention-deficit/hyperactivity disorder (ADHD), and schizophrenia (SZ). However, the data are inconsistent. Evidence for specific PIMs is equivocal at this stage, although the findings in youth with MDD, BD, and PTSD converge with the extant adult literature in these areas. Definitive conclusions are limited by methodologic factors including cross-sectional and retrospective study design, between-study differences in specific markers and methods of analysis, small sample size, and other sources of heterogeneity. CONCLUSION The literature regarding inflammation among children and adolescents with neuropsychiatric disorders represents nearly 4,000 youth. There is preliminary evidence for elevated markers of inflammation in this population. Larger, prospective studies are needed to realize the goal of inflammatory markers informing clinical practice. In the interim, present findings suggest that further examination of this topic is warranted.
Collapse
|
5
|
Clemente MI, Álvarez S, Serramía MJ, Martínez-Bonet M, Muñoz-Fernández MÁ. Prostaglandin E2 reduces the release and infectivity of new cell-free virions and cell-to-cell HIV-1 transfer. PLoS One 2014; 9:e85230. [PMID: 24586238 PMCID: PMC3934822 DOI: 10.1371/journal.pone.0085230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/25/2013] [Indexed: 12/23/2022] Open
Abstract
Background The course of human immunodeficiency virus type-1 (HIV-1) infection is influenced by a complex interplay between viral and host factors. HIV infection stimulates several proinflammatory genes, such as cyclooxigense-2 (COX-2), which leads to an increase in prostaglandin (PG) levels in the plasma of HIV-1-infected patients. These genes play an indeterminate role in HIV replication and pathogenesis. The effect of prostaglandin E2 (PGE2) on HIV infection is quite controversial and even contradictory, so we sought to determine the role of PGE2 and the signal transduction pathways involved in HIV infection to elucidate possible new targets for antiretrovirals. Results Our results suggest that PGE2 post-infection treatment acts in the late stages of the viral cycle to reduce HIV replication. Interestingly, viral protein synthesis was not affected, but a loss of progeny virus production was observed. No modulation of CD4 CXCR4 and CCR5 receptor expression, cell proliferation, or activation after PGE2 treatment was detected. Moreover, PGE2 induced an increase in intracellular cAMP (cyclic AMP) levels through the EP2/EP4 receptors. PGE2 effects were mimicked by dbcAMP and by a specific Epac (exchange protein directly activated by cyclic AMP) agonist, 8-Cpt-cAMP. Treatment with PGE2 increased Rap1 activity, decreased RhoA activity and subsequently reduced the polymerization of actin by approximately 30% compared with untreated cells. In connection with this finding, polarized viral assembly platforms enriched in Gag were disrupted, altering HIV cell-to-cell transfer and the infectivity of new virions. Conclusions Our results demonstrate that PGE2, through Epac and Rap activation, alters the transport of newly synthesized HIV-1 components to the assembly site, reducing the release and infectivity of new cell-free virions and cell-to-cell HIV-1 transfer.
Collapse
Affiliation(s)
- María Isabel Clemente
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Susana Álvarez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - María Jesús Serramía
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Marta Martínez-Bonet
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - María Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- * E-mail:
| |
Collapse
|
6
|
Chuchawankul S, Khorana N, Poovorawan Y. Piperine inhibits cytokine production by human peripheral blood mononuclear cells. GENETICS AND MOLECULAR RESEARCH 2012; 11:617-627. [PMID: 22535397 DOI: 10.4238/2012.march.14.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Piperine, an amide isolated from Piper species (Piperaceae), has been reported to exhibit central nervous system depression, anti-pyretic and anti-inflammatory activity. Immunomodulatory and anti-tumor activity of piperine has been demonstrated in mouse carcinomas. However, there is little information available concerning the effect of piperine on humans. We evaluated the immunopharmacological activity of this compound in human immune cells. Human peripheral blood mononuclear cells (PBMCs) were exposed to piperine, and cell proliferation was determined by the MTS assay. Piperine significantly inhibited phytohemagglutinin-stimulated human PBMC proliferation after exposure for 72 h. This compound inhibited PBMC activity, with an IC(50) of 100.73 ± 11.16 μg/mL. Production of interleukin-2 (IL-2) and interferon-γ (IFN-γ) was measured using an ELISA assay and RT-PCR. Piperine inhibited IL-2 and IFN-γ production in the PBMCs. RT-PCR data indicated that IL-2 and IFN-γ mRNA expression in PBMCs is suppressed by piperine. This compound significantly inhibited the production of these two cytokines by activated PBMCs in a dose-dependent manner. In conclusion, piperine appears to have potential as an immunomodulatory agent for immune system suppression.
Collapse
Affiliation(s)
- S Chuchawankul
- Innovation Center for Research and Development of Medical Diagnostic Technology Project, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | | | | |
Collapse
|
7
|
Jarcho MR, Mendoza SP, Mason WA, Yang X, Bales KL. Intranasal vasopressin affects pair bonding and peripheral gene expression in male Callicebus cupreus. GENES, BRAIN, AND BEHAVIOR 2011; 10:375-83. [PMID: 21255269 PMCID: PMC3086990 DOI: 10.1111/j.1601-183x.2010.00677.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arginine vasopressin (AVP) is a neuropeptide hormone and neurotransmitter that has peripheral functions in water regulation, and central functions in the stress response and social bonding in male rodents. In this study, we investigated the role of AVP in partner preference behavior in a monogamous primate, the coppery titi monkey (Callicebus cupreus). Seven titi males each received three intranasal treatments: saline, low AVP (40 IU) and high AVP (80 IU) in random order, 1 week apart. They experienced a series of stimulus exposures to their female partner, a female stranger and an empty cage. Males were more likely to contact the stimulus and do so faster when either female stimulus was present. When pretreated with saline, males contacted the stranger more frequently than their partner; when pretreated with the high dosage of AVP, males contacted their partner more frequently than the stranger. We used microarray to measure peripheral changes in gene expression associated with intranasal AVP and found reduced expression of several genes coding for proinflammatory cytokines. The data presented here suggest that intranasally administered AVP has both central influences on social behavior and peripheral influences on inflammation in a nonhuman primate.
Collapse
Affiliation(s)
- M R Jarcho
- Psychology Department, University of California Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
8
|
Sachdeva RK, Wanchu A, Bagga R, Malla N, Sharma M. Effect of non-nucleoside reverse transcriptase inhibitors on cytokine, chemokine, and immunoglobulin profiles in serum and genital secretions of HIV-infected women. J Interferon Cytokine Res 2010; 30:299-310. [PMID: 20187769 DOI: 10.1089/jir.2009.0056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Non-protease inhibitor-based antiretroviral therapy (ART) is widely accepted as first-line ART in developing countries. Although reverse transcriptase inhibitor-based regimens have been studied in the peripheral blood, no studies have analyzed alterations in cytokine and chemokine levels, together in peripheral blood and genital secretions. Forty HIV-infected women with CD4 cell counts <200 cells/mm(3), asymptomatic, with no genital tract infection, willing to participate in the study, and adhere to ART were enrolled. Cervicovaginal lavage (CVL) was collected in the mid-cycle phase of menstrual cycle. Patients were initiated with reverse transcriptase-based antiretrovirals. Repeat sampling was performed at 24 weeks. Cytokines and chemokines were measured using ultrasensitive ELISA kits. Viral load declined to undetectable levels in 29 patients in the blood and in 33 cases in the CVL. Proinflammatory cytokines (tumor necrosis factor-alpha [TNF-alpha, interleukin-6 [IL-6], IL-1beta) in the serum and CVL showed a significant decrease in mean levels after therapy. IL-2 levels increased significantly whereas IL-12 and (IFN-gamma decreased in both compartments. Mean levels of IL-4 and IL-10 decreased significantly in the serum. There was direct correlation between serum and CVL levels of IL-2 and IL-10. IL-10 had a negative correlation with CD4% at baseline and 6 months of therapy. Mean levels of all alpha- and beta-chemokines decreased in serum after therapy. In CVL, mean levels of MIP-1alpha, RANTES, and IL-8 reduced and SDF-1alpha increased significantly (P value <0.001). Serum levels of all the cytokines, except IL-2, and all chemokines prior to therapy, were significantly higher than healthy controls. In CVL, mean levels of TNF-alpha, IL-6, IL-1beta, IL-12, IFN-gamma, IL-10, RANTES, and IL-8 were significantly higher, whereas IL-2, MIP-1alpha, and MIP-1beta were significantly lower than healthy controls. The mean levels of proinflammatory cytokines and chemokines significantly decreased in serum and CVL after therapy, possibly due to reduced viral load.
Collapse
Affiliation(s)
- Ravinder Kaur Sachdeva
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research , Chandigarh, India
| | | | | | | | | |
Collapse
|
9
|
Aiello AE, Kaplan GA. Socioeconomic position and inflammatory and immune biomarkers of cardiovascular disease: applications to the Panel Study of Income Dynamics. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2009; 55:178-205. [PMID: 20183904 PMCID: PMC3319671 DOI: 10.1080/19485560903382304] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biomarkers are an important aspect of research linking psychosocial stress and health. This article aims to characterize the biological pathways that may mediate the relationship between socioeconomic position (SEP) and cardiovascular disease (CVD) and address opportunities for further research within the Panel Study of Income Dynamics (PSID), with a focus on psychosocial stressors related to SEP. We review the literature on CVD biomarkers, including adhesion and proinflammatory molecules (interleukin-6, other cytokines, C-reactive proteins, fibrinogen, etc.) and microbial pathogens. The impact of socioeconomic determinants and related psychosocial stressors on CVD biomarkers mediated by behavioral and central nervous system pathways are described. We also address measurement and feasibility issues, including specimen collection methods, processing and storage procedures, laboratory error, and within-person variability. In conclusion, we suggest that PSID consider adding important assessments of specific CVD biomarkers and mediating behavioral measures, health, and medications that will ultimately address many of the gaps in the literature regarding the relationship between SEP and cardiovascular health.
Collapse
Affiliation(s)
- Allison E Aiello
- Department of Epidemiology, Center for Social Epidemiology and Population Health, University of Michigan, School of Public Health, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
10
|
[HLA-B*5701 and hypersensitivity reactions to abacavir. Study methods and clinical relevance]. Enferm Infecc Microbiol Clin 2008; 26 Suppl 6:34-9. [PMID: 18680694 DOI: 10.1016/s0213-005x(08)76510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hypersensitivity reactions to abacavir occur in 5-8% of patients starting treatment with this drug and limits future treatment. Some host genetic factors, especially the HLA-B*5701 allele, have been identified as risk factors for hypersensitivity reaction in Caucasians. Consequently, the possibility of routine implementation of a genetic test to rule out the presence of this allele has been proposed to achieve a personalized therapeutic profile. The present article discusses all the information related to hypersensitivity to abacavir and its genetic and immunological markers, as well as the distinct techniques for HLA-B*5701 allele detection. The various studies performed to date in distinct population are also discussed.
Collapse
|
11
|
Moriconi F, Raddatz D, Ho NAH, Yeruva S, Dudas J, Ramadori G. Quantitative gene expression of cytokines in peripheral blood leukocytes stimulated in vitro: modulation by the anti-tumor nerosis factor-alpha antibody infliximab and comparison with the mucosal cytokine expression in patients with ulcerative colitis. Transl Res 2007; 150:223-32. [PMID: 17900510 DOI: 10.1016/j.trsl.2007.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 04/04/2007] [Accepted: 04/06/2007] [Indexed: 01/02/2023]
Abstract
Emerging data indicate that alterations in cytokine synthesis play a role in inflammatory bowel disease (IBD) pathogenesis. In this study, we quantified mRNA expression of the main acute-phase cytokines and T-cell cytokines in biopsies from patients with established ulcerative colitis (UC) and compared it with that obtained in biopsies from normal controls. Quantification of cytokine gene expression was also evaluated in in vitro phytohemagglutinin (PHA)-treated peripheral blood leukocytes (PBLs) at the RNA and protein levels. The in vitro influence of the anti-tumor necrosis factor-alpha (TNF-alpha) antibody infliximab (INFL) on PHA-treated PBLs was also evaluated. Analyzing inflamed specimens from UC patients compared with control samples, interleukin (IL)-6 was sharply the most induced cytokine. Interestingly, similar results were found in activated PBLs, where acute-phase cytokines were more abundantly expressed compared with T-cell cytokines. IL-6 was confirmed to be the most induced with a maximum increase of 1110-fold after 4 h of PHA stimulation, followed by TNF-alpha and IL-1beta as well as interferon-gamma (IFN-gamma). Surprisingly, analyzing cytokine-mRNA expression from activated PBLs, the time kinetics and quantity of IFN-gamma was more similar to that of the acute-phase proteins than to that of the T-cell cytokines, which were upregulated after 1 h. The upregulation of cytokine-mRNA was translated into protein as demonstrated by enzyme-linked immunosorbent assay. IFN-gamma was also strongly expressed in the RNA from UC biopsies. TNF-alpha protein was not detectable at all in INFL-treated cultures. INFL did not induce a reduction of TNF-alpha-mRNA nor of IL-1beta-mRNA, but it reduced IFN-gamma- mRNA and, to a lesser extent, IL-6-mRNA; it also reduced the T-cell-derived cytokine IL-2. The in vitro model of PHA-stimulated PBLs may mimic inflammation processes observed in vivo. INFL may reduce inflammation in vivo through inhibition of both monocyte and T-cell activation.
Collapse
Affiliation(s)
- Federico Moriconi
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg-August University, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Huang CC, Duffy KE, San Mateo LR, Amegadzie BY, Sarisky RT, Mbow ML. A pathway analysis of poly(I:C)-induced global gene expression change in human peripheral blood mononuclear cells. Physiol Genomics 2006; 26:125-33. [PMID: 16554548 DOI: 10.1152/physiolgenomics.00002.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To gain global pathway perspective of ex vivo viral infection models using human peripheral blood mononuclear cells (PBMCs), we conducted expression analysis on PBMCs of healthy donors. RNA samples were collected at 3 and 24 h after PBMCs were challenged with the Toll-like receptor-3 (TLR3) agonist polyinosinic acid-polycytidylic acid [poly(I:C)] and analyzed by internally developed cDNA microarrays and TaqMan PCR. Our results demonstrate that poly(I:C) challenge can elicit certain gene expression changes, similar to acute viral infection. Hierarchical clustering revealed distinct immediate early, early-to-late, and late gene regulation patterns. The early responses were innate immune responses that involve TLR3, the NF-kappaB-dependent pathway, and the IFN-stimulated pathway, whereas the late responses were mostly cell-mediated immune response that involve activation of cell adhesion, cell mobility, and phagocytosis. Overall, our results expanded the utilities of this ex vivo model, which could be used to screen molecules that can modulate viral stress-induced inflammation, in particular those mediated via TLRs.
Collapse
Affiliation(s)
- C Chris Huang
- Centocor Research & Development, Incorporated, Malvern, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Martin A, Nolan D, Almeida CA, Rauch A, Mallal S. Predicting and diagnosing abacavir and nevirapine drug hypersensitivity: from bedside to bench and back again. Pharmacogenomics 2006; 7:15-23. [PMID: 16354121 DOI: 10.2217/14622416.7.1.15] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is a growing discussion surrounding the issue of personalized approaches to drug prescription based on an individual's genetic makeup. This field of investigation has focused primarily on identifying genetic factors that influence drug metabolism and cellular disposition, thereby contributing to dose-dependent toxicities and/or variable drug efficacy. However, pharmacogenetic approaches have also proved valuable in predicting drug hypersensitivity reactions in selected patient populations, including HIV-infected patients receiving long-term antiretroviral therapy. In this instance, susceptibility has been strongly linked to genetic loci involved in antigen recognition and presentation to the immune system--most notably within the major histocompatibility complex (MHC) region--consistent with the notion that hypersensitivity reactions represent drug-specific immune responses that are largely dose independent. Here the authors describe their experiences with the development of pharmacogenetic approaches to hypersensitivity reactions associated with abacavir and nevirapine, two commonly prescribed antiretroviral drugs. It is demonstrated that prospective screening tests to identify and exclude individuals with a certain genetic makeup may be largely successful in decreasing or eliminating incidence of these adverse drug reactions in certain populations. This review also explores the broader implications of these findings.
Collapse
Affiliation(s)
- Annalise Martin
- Royal Perth Hospital and Murdoch University, Centre for Clinical Immunology and Biomedical Statistics, 2nd floor, North Block, Perth, 6000 Western Australia
| | | | | | | | | |
Collapse
|