1
|
Akbarzadeh-Niaki M, Derakhshandeh A, Kazemipour N, Hemmatzadeh F. A novel fusion protein candidate for the serodiagnosis of Mycoplasma agalactiae infection. BMC Vet Res 2022; 18:456. [PMID: 36581939 PMCID: PMC9798644 DOI: 10.1186/s12917-022-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim of current study was to construct, express, purify and immunogenicity evaluate of a novel recombinant fusion protein including Pyruvate dehydrogenase beta subunit (PDHB) and high antigenic region of lipoprotein P80 of Mycoplasma agalactiae. Using bioinformatics tools, antigenicity and physiochemical properties of fused protein were assessed. MATERIAL AND METHODS The recombinant fusion protein of GST-PDHB-P80 were expressed in pGEX4T-1 and purified then verified by Western blot assay. The purified protein was successfully used for immunization of mice. 30 female BALB/c mice were divided into three groups (10 mice per each group) injected with GST-PDHB-P80, inactivated bacteria vaccine and PBS as negative control, separately. RESULTS Western blot analysis confirmed the interaction between the immunized mice serum and the blotted recombinant protein GST-PDHB-P80, demonstrating the immunogenicity of this protein. Moreover, the sera of vaccinated mice with inactivated bacteria vaccine, containing whole cell proteins, detected the recombinant protein GST-PDHB-P80 confirming the antigenicity of PDHB-P80. Negative control displayed no reactivity with GST-PDHB-P80. CONCLUSION We proposed a novel designed chimeric protein of Mycoplasma agalactiae as a potential marker for serodiagnostic assays but still further field research is required.
Collapse
Affiliation(s)
- Malihe Akbarzadeh-Niaki
- Department of Pathobiology, Biotechnology Section, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA Australia
| |
Collapse
|
2
|
Comparison of commercial enzyme-linked immunosorbent assays for diagnosis of contagious agalactia caused by Mycoplasma agalactiae. J Vet Res 2022; 66:95-101. [PMID: 35582487 PMCID: PMC8959690 DOI: 10.2478/jvetres-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Contagious agalactia (CA) is a disease affecting small ruminants with worldwide distribution and caused by several mycoplasmas, especially M. agalactiae. The main option for systematic diagnosis under monitoring control programmes is the enzyme-linked immunosorbent assay (ELISA) test. Material and Methods This study was designed to appraise the performance of two commercial indirect ELISA tests using M. agalactiae p48 protein and one using total protein, for antibody detection in small ruminants after natural infection with different M. agalactiae strains. We carried out the test evaluation using sera of confirmed M. agalactiae-positive goats with clinical signs. In addition, test agreement was assessed by kappa between the three commercial ELISA tests. Results All three ELISA tests showed high validity scores (Youden’s J: 72.9–84%). The sensitivity values for the P48 protein-based tests were 76.9% and 84.6%, and was 79% for the total protein-based test. The specificity of all tests was 100%. In addition, between the total protein-based ELISA test and the other two ELISA tests based on the P48 protein, the agreement was substantial (kappa: 0.762–0.763) and the agreement between the latter two tests was almost perfect (kappa: 0.93). Conclusion The validity parameters for all tests allowed their application for diagnostic purposes in lactating goats excreting M. agalactiae in milk and presenting clinical signs. The agreements show that any of these ELISA tests could be equally well used for diagnosis in programmes against CA.
Collapse
|
3
|
Identification of conserved Mycoplasma agalactiae surface antigens by immunoproteomics. Vet Immunol Immunopathol 2021; 236:110239. [PMID: 33845295 DOI: 10.1016/j.vetimm.2021.110239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Contagious agalactia represents one of the most relevant infectious diseases of dairy sheep, with Mycoplasma agalactiae being the primary etiological agent. The early, sensitive, and specific identification of infected animals, as well as the development of efficient prophylactic tools, remain challenging. Here, we present a comprehensive characterization of M. agalactiae antigens focusing on those shared among different isolates. Leveraging on previous proteomic data obtained on individual strains, we adopted a strategy entailing sample pooling to optimize the identification of conserved proteins that induce an immune response. The liposoluble proteins from previously characterized field isolates and the type strain PG2T were enriched by Triton X-114 fractionation, pooled, analysed by one-dimensional (1D) and two-dimensional (2D) electrophoresis, and subjected to western immunoblotting against sheep sera collected during natural infection with M. agalactiae. Immunodominant antigens were identified by Matrix-Assisted Laser Desorption-Time-Of-Flight-Mass Spectrometry (MALDI-TOF-MS). This combined immunoproteomic approach confirmed the role of several known immunogens, including P80, P48, and P40, and most variable surface proteins (Vpmas), and unveiled novel immunodominant, conserved antigens, including MAG_1000, MAG_2220, MAG_1980, phnD, MAG_4740, and MAG_2430. Genomic context, functional prediction, subcellular localization, and invariable expression of these proteins in all isolates suggest their possible involvement in bacterial pathogenicity and metabolism. Moreover, most of the identified antigens elicit a host humoral response since the early stages of infection, persisting for at least 270 days. The immunodominant, conserved antigen panel identified in this work supports the development of effective vaccines and diagnostic tools with higher sensitivity and specificity in all the natural infection stages.
Collapse
|
4
|
Jaÿ M, Tardy F. Contagious Agalactia In Sheep And Goats: Current Perspectives. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:229-247. [PMID: 31921613 PMCID: PMC6938181 DOI: 10.2147/vmrr.s201847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022]
Abstract
Contagious agalactia (CA) is a disease caused equally by four Mycoplasma species, in single or mixed infections. Clinical signs are multiple, including mastitis, arthritis, keratoconjunctivitis, pneumonia, and septicemia, non-specific, and expressed differently depending whether sheep or goats are affected, on causative mycoplasmas as well as type of husbandry. CA has been reported worldwide and its geographic distribution maps to that of small ruminant breeding areas. However, as current diagnostic tests are expensive and difficult to implement, it is certainly underdiagnosed and prevalence data are only available for a few countries. CA control relies on vaccines, chemotherapy and good herd management practices. It requires long-term commitment but is often unsuccessful, with frequent clinical relapses. The persistence of the etiological agents, despite their overall susceptibility to antimicrobials, comes from their genetic plasticity and capacity to escape the host immune response. The existence of asymptomatic carriers and the numerous sources of infections contribute to rapid spread of the disease and complicate the control and prevention efforts. Here we review all these aspects in order to highlight recent progress made and identify gaps in knowledge or tools needed for better disease management. Discussion also underlines the detrimental effect of contagious agalactia on small ruminant welfare.
Collapse
Affiliation(s)
- Maryne Jaÿ
- Université de Lyon, ANSES, Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Lyon69364, France
| | - Florence Tardy
- Université de Lyon, ANSES, Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Lyon69364, France
| |
Collapse
|
5
|
Cheema PS, Singh S, Kathiresan S, Kumar R, Bhanot V, Singh VP. Synthesis of Recombinant P48 of Mycoplasma agalactiae by Site Directed Mutagenesis and its Immunological Characterization. Anim Biotechnol 2016; 28:11-17. [PMID: 27385225 DOI: 10.1080/10495398.2016.1189926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Contagious agalactia caused by Mycoplasma agalactiae is an economically important disease of sheep and goats and has been prevalent worldwide including India. The present study was undertaken to evaluate the membrane protein P48 of M. agalactiae for specific diagnosis of disease. For this, p48 gene of the organism was amplified by PCR and subjected to site directed mutagenesis to convert three TGA codons to TGG's and, subsequently, cloned into prokaryotic expression vector pPRO EX HTb. Purified recombinant P48 protein reacted to anti-P48 serum in western blotting, which confirmed its immunogenic nature. Furthermore, the immune-blotting of the cell lysates from various Indian isolates of M. agalactiae against anti-P48 serum resulted in a single band at ∼ 48 kDa among all isolates, indicating the conserved nature of P48 antigen in M. agalactiae. Also, the cross reactivity of P48 antigen among various Mycoplasma spp. was checked by western blotting which revealed reactivity only with M. agalactiae and M. bovis. Hence, this antigen could be exploited to differentiate M. agalactiae from other pathogenic Mycoplasma species except M. bovis. However, the inability of P48 to distinguish M. agalactiae from M. bovis does not downgrade the significance of P48 as the two species are usually host specific.
Collapse
Affiliation(s)
| | | | | | - Ramesh Kumar
- a Indian Veterinary Research Institute , Izatnagar , India
| | - Vandna Bhanot
- a Indian Veterinary Research Institute , Izatnagar , India
| | | |
Collapse
|
6
|
Sanna G, Lecca V, Foddai A, Tola S. Development of a specific immunomagnetic capture-PCR for rapid detection of viable Mycoplasma agalactiae in sheep milk samples. J Appl Microbiol 2014; 117:1585-91. [PMID: 25272958 DOI: 10.1111/jam.12657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/27/2014] [Accepted: 09/26/2014] [Indexed: 11/29/2022]
Abstract
AIMS To develop an immunomagnetic capture (IMC) to detect viable Mycoplasma agalactiae in routine ovine milk samples. METHODS AND RESULTS Polyclonal antibodies against two M. agalactiae membrane surface proteins (P80 and P55) were covalently conjugated to magnetic beads (MBs) to form MB-Ab80 and MB-Ab55. Mycoplasma agalactiae cells were captured by a specific antigen-antibody reaction and magnetic separation. Immunomagnetic capture (IMC) was used to isolate and concentrate M. agalactiae in serial decimal dilutions and in artificially contaminated milk to facilitate subsequent detection by PCR. A 375-bp fragment of M. agalactiae was amplified using a pair of M. agalactiae-specific primers in PCR. The limit of detection of IMC-PCR method ranged from 10 to 10(2) CCU ml(-1) when mycoplasmas were resuspended in PBS and from 10(2) to 10(3) CCU ml(-1) when mycoplasmas were resuspended in uncontaminated ovine milk. This study also describes the application of IMC-PCR method to test for M. agalactiae in 516 milk samples collected from sheep with suspected contagious agalactia. Its performance was evaluated relative to culture. CONCLUSIONS This report has demonstrated for the first time, the effective use of rapid and reliable IMC combined with PCR assay for the detection of viable M. agalactiae. SIGNIFICANCE AND IMPACT OF THE STUDY The method IMC-PCR provides an alternative to conventional microbiological detection, method and it could be applied to quick detection of M. agalactiae in routine sheep milk samples.
Collapse
Affiliation(s)
- G Sanna
- Istituto ZooprofilatticoSperimentale della Sardegna "G. Pegreffi", Sassari, Italy
| | | | | | | |
Collapse
|
7
|
Corona L, Amores J, Onni T, de la Fe C, Tola S. Characterization of Mycoplasma mycoides subsp. capri isolates by SDS-PAGE, immunoblotting and PFGE. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Poumarat F, Le Grand D, Gaurivaud P, Gay E, Chazel M, Game Y, Bergonier D. Comparative assessment of two commonly used commercial ELISA tests for the serological diagnosis of contagious agalactia of small ruminants caused by Mycoplasma agalactiae. BMC Vet Res 2012; 8:109. [PMID: 22776779 PMCID: PMC3439703 DOI: 10.1186/1746-6148-8-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/04/2012] [Indexed: 12/05/2022] Open
Abstract
Background Contagious agalactia (CA) of sheep and goats caused by Mycoplasma agalactiae is a widely occurring economically important disease that is difficult to control. The ELISA is commonly used for the serological detection of CA but it has some limitations and the performance of the available tests have not been properly evaluated. Two commercial ELISA kits are widely used, one involving a fusion protein as target antigen and the other a total antigen. The objectives were to compare these tests by evaluating: i. Their diagnostic sensitivity and specificity, the relevance of the recommended cut-off points, the correlation between the two tests, and, the correlation between serology data and the milk shedding of M. agalatiae; ii. The influence of extrinsic factors such as the targeted animal species, geographical origin of the samples, intra-specific variability of M. agalactiae and concurrent mycoplasma infections. A sample of 5900 animals from 211 farms with continuous CA monitoring for 20 years and no prior vaccination history was used. The infection status was known from prior bacteriological, epidemiological and serological monitoring with a complementary immunoblotting test. Results The average diagnostic sensitivity was 56% [51.8–59.8] for the fusion protein ELISA and 84% [81.3–87.2] for the total antigen ELISA, with noteworthy flock-related variations. The average diagnostic specificity for the fusion protein ELISA was 100% [99.9–100], and for the total antigen ELISA differed significantly between goats and sheep: 99.3% [97.4–99.9] and 95.7% [93.8–97.2] respectively. Experimental inoculations with different M. agalactiae strains revealed that the ELISA kits poorly detected the antibody response to certain strains. Furthermore, test performances varied according to the host species or geographical origin of the samples. Finally, the correlation between milk shedding of M. agalactiae and the presence of detectable antibodies in the blood was poor. Conclusions These serological tests are not interchangeable. The choice of a test will depend on the objectives (early detection of infection or disease control program), on the prevalence of infection and the control protocol used. Given the variety of factors that may influence performance, a preliminary assessment of the test in a given situation is recommended prior to widespread use.
Collapse
Affiliation(s)
- François Poumarat
- Anses, Lyon Laboratory, UMR «Mycoplasmoses of Ruminants», Lyon cedex, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Mycoplasma agassizii strain variation and distinct host antibody responses explain differences between enzyme-linked immunosorbent assays and Western blot assays. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1739-45. [PMID: 20810678 DOI: 10.1128/cvi.00215-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The precarious status of desert (Gopherus agassizii) and gopher (G. polyphemus) tortoises has resulted in conservation efforts that now include health assessment as an important component of management decision-making. Mycoplasmal upper respiratory tract disease (URTD) is one of very few diseases in chelonians for which comprehensive and rigorously validated diagnostic tests exist. In this study, serum samples obtained from eight Gopherus tortoises documented at necropsy to (i) be enzyme-linked immunosorbent assay (ELISA) seropositive using the PS6 antigen, (ii) be infected with Mycoplasma agassizii as indicated by direct isolation of the pathogen from the respiratory surfaces, and (iii) have histological lesions of mycoplasmal URTD were used to evaluate four distinct clinical isolates of M. agassizii as antigens for ELISA and Western blot analyses. Each animal sample reacted in the Western blot with its homologous M. agassizii strain, but recognition of heterologous M. agassizii strains was variable. Further, individual animals varied significantly with respect to the specific proteins recognized by the humoral immune response. An additional 114 Gopherus serum samples were evaluated using ELISA antigens prepared from the four distinct M. agassizii strains; A₄₀₅ values were significantly correlated (r² goodness of fit range, 0.708 to 0.771; P < 0.0001) for all antigens tested. The results confirm that strain variation is responsible for the observed differences between Western blot binding patterns. Thus, reliance on a single M. agassizii strain as an antigen in Western blot assays may provide false-negative results. This could have adverse consequences for the well-being of these environmentally sensitive hosts if false-negative animals were relocated to sites consisting of true-negative populations.
Collapse
|
10
|
Cacciotto C, Addis MF, Pagnozzi D, Chessa B, Coradduzza E, Carcangiu L, Uzzau S, Alberti A, Pittau M. The liposoluble proteome of Mycoplasma agalactiae: an insight into the minimal protein complement of a bacterial membrane. BMC Microbiol 2010; 10:225. [PMID: 20738845 PMCID: PMC2941501 DOI: 10.1186/1471-2180-10-225] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/25/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mycoplasmas are the simplest bacteria capable of autonomous replication. Their evolution proceeded from gram-positive bacteria, with the loss of many biosynthetic pathways and of the cell wall. In this work, the liposoluble protein complement of Mycoplasma agalactiae, a minimal bacterial pathogen causing mastitis, polyarthritis, keratoconjunctivitis, and abortion in small ruminants, was subjected to systematic characterization in order to gain insights into its membrane proteome composition. RESULTS The selective enrichment for M. agalactiae PG2T liposoluble proteins was accomplished by means of Triton X-114 fractionation. Liposoluble proteins were subjected to 2-D PAGE-MS, leading to the identification of 40 unique proteins and to the generation of a reference 2D map of the M. agalactiae liposoluble proteome. Liposoluble proteins from the type strain PG2 and two field isolates were then compared by means of 2D DIGE, revealing reproducible differences in protein expression among isolates. An in-depth analysis was then performed by GeLC-MS/MS in order to achieve a higher coverage of the liposoluble proteome. Using this approach, a total of 194 unique proteins were identified, corresponding to 26% of all M. agalactiae PG2T genes. A gene ontology analysis and classification for localization and function was also carried out on all protein identifications. Interestingly, the 11.5% of expressed membrane proteins derived from putative horizontal gene transfer events. CONCLUSIONS This study led to the in-depth systematic characterization of the M. agalactiae liposoluble protein component, providing useful insights into its membrane organization.
Collapse
Affiliation(s)
- Carla Cacciotto
- Dipartimento di Patologia e Clinica Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Maria Filippa Addis
- Dipartimento di Patologia e Clinica Veterinaria, Università degli Studi di Sassari, Sassari, Italy
- Porto Conte Ricerche Srl, Tramariglio, Alghero (SS), Italy
| | | | - Bernardo Chessa
- Dipartimento di Patologia e Clinica Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Elisabetta Coradduzza
- Dipartimento di Patologia e Clinica Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Laura Carcangiu
- Dipartimento di Patologia e Clinica Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche Srl, Tramariglio, Alghero (SS), Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Alberto Alberti
- Dipartimento di Patologia e Clinica Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Marco Pittau
- Dipartimento di Patologia e Clinica Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
11
|
Use of recombinant chimeric antigens for the serodiagnosis of Mycoplasma pneumoniae infection. Eur J Clin Microbiol Infect Dis 2010; 29:1377-86. [DOI: 10.1007/s10096-010-1010-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
12
|
|