1
|
Zhou Y, Anthony R, Wang S, Xia H, Ou X, Zhao B, Song Y, Zheng Y, He P, Liu D, Zhao Y, van Soolingen D. Understanding the epidemiology and pathogenesis of Mycobacterium tuberculosis with non-redundant pangenome of epidemic strains in China. PLoS One 2025; 20:e0324152. [PMID: 40388514 DOI: 10.1371/journal.pone.0324152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/21/2025] [Indexed: 05/21/2025] Open
Abstract
Tuberculosis is a major public health threat resulting in more than one million lives lost every year. Many challenges exist to defeat this deadly infectious disease which address the importance of a thorough understanding of the biology of the causative agent Mycobacterium tuberculosis (MTB). We generated a non-redundant pangenome of 420 epidemic MTB strains from China including 344 Lineage 2 strains, 69 Lineage 4 strains, six Lineage 3 strains, and one Lineage 1 strain. We estimate that MTB strains have a pangenome of 4,278 genes encoding 4,183 proteins, of which 3,438 are core genes. However, due to 99,694 interruptions in 2,447 coding genes, we can only confidently confirm 1,651 of these genes are translated in all samples. Of these interruptions, 67,315 (67.52%) could be classified by various genetic variations detected by currently available tools, and more than half of them are due to structural variations, mostly small indels. Assuming a proportion of these interruptions are artifacts, the number of active core genes would still be much lower than 3,438. We further described differential evolutionary patterns of genes under the influences of selective pressure, population structure and purifying selection. While selective pressure is ubiquitous among these coding genes, evolutionary adaptations are concentrated in 1,310 genes. Genes involved in cell wall biogenesis are under the strongest selective pressure, while the biological process of disruption of host organelles indicates the direction of the most intensive positive selection. This study provides a comprehensive view on the genetic diversity and evolutionary patterns of coding genes in MTB which may deepen our understanding of its epidemiology and pathogenicity.
Collapse
Affiliation(s)
- Yang Zhou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
- Radboudumc Research Institute, Radboud University, Houtlaan XZ, Nijmegen, The Netherlands
| | - Richard Anthony
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Shengfen Wang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Hui Xia
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Bing Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Yuanyuan Song
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Yang Zheng
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Ping He
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Dongxin Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Dick van Soolingen
- Radboudumc Research Institute, Radboud University, Houtlaan XZ, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Nobre RN, Esteves AM, Borges N, Rebelo S, Liu Y, Mancia F, Santos H. Production and Purification of Phosphatidylinositol Mannosides from Mycobacterium smegmatis Biomass. Curr Protoc 2022; 2:e458. [PMID: 35758621 PMCID: PMC9245178 DOI: 10.1002/cpz1.458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis, is regarded as the most successful pathogen of humankind and a major threat to global health. The mycobacterial cell wall is vital for cell growth, virulence, and resistance to antibiotics, and thus constitutes a unique target for drug development. To characterize the enzymes catalyzing the synthesis of the cell wall components, considerable amounts of substrates are required. Since many mycobacterial cell wall lipids, particularly phosphatidylinositol mannosides (PIMs), are not commercially available, isolation from cell biomass is the most straightforward way to obtain these compounds. In this study, we optimized a protocol to extract and purify PIM species, in particular Ac1 PIM2 and Ac1 PIM4 , which can be further used for the identification and characterization of target enzymes. PIMs were extracted from Mycobacterium smegmatis mc2 155 ΔPimE using organic solvents, and purified through three consecutive chromatography steps. Thin-layer chromatography (TLC) was used in-between purification steps to evaluate the success of lipid separation, and nuclear magnetic resonance (NMR) was used for product quantification and to assess purity. Typically, from a 60 g batch of M. smegmatis biomass we were able to isolate approximately 9 mg of Ac1 PIM2 and 1.8 mg of Ac1 PIM4 . This is the first time the purification of phosphatidylinositol tetramannoside has been reported. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Growth of M. smegmatis mc2 155 ∆PimE Basic Protocol 2: Extraction of lipids from M. smegmatis mc2 155 ∆PimE Basic Protocol 3: Treatment of the lipid extract for isolation of phospholipids Basic Protocol 4: Isolation of phosphatidylinositol mannosides Basic Protocol 5: Quantification of phosphatidylinositol mannosides.
Collapse
Affiliation(s)
- Rodrigo N. Nobre
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Av. da República – EAN, Apartado 127, 2780-157 Oeiras, Portugal
| | - Ana M. Esteves
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Av. da República – EAN, Apartado 127, 2780-157 Oeiras, Portugal
| | - Nuno Borges
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Av. da República – EAN, Apartado 127, 2780-157 Oeiras, Portugal
| | - Sara Rebelo
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Av. da República – EAN, Apartado 127, 2780-157 Oeiras, Portugal
| | - Yaqi Liu
- Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Russ Berrie pavilion, room 520B, New York, NY 10032, USA
| | - Filippo Mancia
- Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Russ Berrie pavilion, room 520B, New York, NY 10032, USA
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Av. da República – EAN, Apartado 127, 2780-157 Oeiras, Portugal
| |
Collapse
|
3
|
Gisch N, Utpatel C, Gronbach LM, Kohl TA, Schombel U, Malm S, Dobos KM, Hesser DC, Diel R, Götsch U, Gerdes S, Shuaib YA, Ntinginya NE, Khosa C, Viegas S, Kerubo G, Ali S, Al-Hajoj SA, Ndung'u PW, Rachow A, Hoelscher M, Maurer FP, Schwudke D, Niemann S, Reiling N, Homolka S. Sub-Lineage Specific Phenolic Glycolipid Patterns in the Mycobacterium tuberculosis Complex Lineage 1. Front Microbiol 2022; 13:832054. [PMID: 35350619 PMCID: PMC8957993 DOI: 10.3389/fmicb.2022.832054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
“Ancestral” Mycobacterium tuberculosis complex (MTBC) strains of Lineage 1 (L1, East African Indian) are a prominent tuberculosis (TB) cause in countries around the Indian Ocean. However, the pathobiology of L1 strains is insufficiently characterized. Here, we used whole genome sequencing (WGS) of 312 L1 strains from 43 countries to perform a characterization of the global L1 population structure and correlate this to the analysis of the synthesis of phenolic glycolipids (PGL) – known MTBC polyketide-derived virulence factors. Our results reveal the presence of eight major L1 sub-lineages, whose members have specific mutation signatures in PGL biosynthesis genes, e.g., pks15/1 or glycosyltransferases Rv2962c and/or Rv2958c. Sub-lineage specific PGL production was studied by NMR-based lipid profiling and strains with a completely abolished phenolphthiocerol dimycoserosate biosynthesis showed in average a more prominent growth in human macrophages. In conclusion, our results show a diverse population structure of L1 strains that is associated with the presence of specific PGL types. This includes the occurrence of mycoside B in one sub-lineage, representing the first description of a PGL in an M. tuberculosis lineage other than L2. Such differences may be important for the evolution of L1 strains, e.g., allowing adaption to different human populations.
Collapse
Affiliation(s)
- Nicolas Gisch
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Lisa M Gronbach
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ursula Schombel
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Malm
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Danny C Hesser
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roland Diel
- Lung Clinic Grosshansdorf, Airway Disease Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Udo Götsch
- Municipal Health Authority Frankfurt am Main, Frankfurt am Main, Germany
| | - Silke Gerdes
- Municipal Health Authority Hannover, Hanover, Germany
| | - Yassir A Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan.,WHO-Supranational Reference Laboratory of Tuberculosis, Institute of Microbiology and Laboratory Medicine (IML Red), Gauting, Germany
| | - Nyanda E Ntinginya
- National Institute for Medical Research Tanzania - Mbeya Medical Research Center, Mbeya, Tanzania
| | - Celso Khosa
- Instituto Nacional de Saúde (INS), Marracuene, Mozambique
| | - Sofia Viegas
- Instituto Nacional de Saúde (INS), Marracuene, Mozambique
| | - Glennah Kerubo
- Department of Medical Microbiology and Parasitology, School of Medicine, Kenyatta University, Nairobi, Kenya
| | - Solomon Ali
- Department of Microbiology, Immunology, and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Sahal A Al-Hajoj
- Mycobacteriology Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Perpetual W Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Florian P Maurer
- National and WHO Supranational Reference Centre for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Norbert Reiling
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Microbial Interface Biology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
4
|
Gisch N, Peters K, Thomsen S, Vollmer W, Schwudke D, Denapaite D. Commensal Streptococcus mitis produces two different lipoteichoic acids of type I and type IV. Glycobiology 2021; 31:1655-1669. [PMID: 34314482 DOI: 10.1093/glycob/cwab079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
The opportunistic pathogen Streptococcus mitis possesses, like other members of the Mitis group of viridans streptococci, phosphorylcholine (P-Cho)-containing teichoic acids (TAs) in its cell wall. Bioinformatic analyses predicted the presence of TAs that are almost identical with those identified in the pathogen S. pneumoniae, but a detailed analysis of S. mitis lipoteichoic acid (LTA) was not performed to date. Here we determined the structures of LTA from two S. mitis strains, the high-level beta-lactam and multiple antibiotic resistant strain B6 and the penicillin-sensitive strain NCTC10712. In agreement with bioinformatic predictions we found that the structure of one LTA (type IV) was like pneumococcal LTA, except the exchange of a glucose moiety with a galactose within the repeating units. Further genome comparisons suggested that the majority of S. mitis strains should contain the same type IV LTA as S. pneumoniae, providing a more complete understanding of the biosynthesis of these P-Cho-containing TAs in members of the Mitis group of streptococci. Remarkably, we observed besides type IV LTA an additional polymer belonging to LTA type I in both investigated S. mitis strains. This LTA consists of β-galactofuranosyl-(1,3)-diacylglycerol as glycolipid anchor and a poly-glycerol-phosphate chain at the O-6 position of the furanosidic galactose. Hence, these bacteria are capable of synthesizing two different LTA polymers, most likely produced by distinct biosynthesis pathways. Our bioinformatics analysis revealed the prevalence of the LTA synthase LtaS, most probably responsible for the second LTA version (type I), amongst S. mitis and S. pseudopneumoniae strains.
Collapse
Affiliation(s)
- Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - Simone Thomsen
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research (DZIF), Thematic Translational Unit Tuberculosis, Partner Site: Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Dalia Denapaite
- Department of Microbiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
Blanco FC, Gravisaco MJ, Bigi MM, García EA, Marquez C, McNeil M, Jackson M, Bigi F. Identifying Bacterial and Host Factors Involved in the Interaction of Mycobacterium bovis with the Bovine Innate Immune Cells. Front Immunol 2021; 12:674643. [PMID: 34335572 PMCID: PMC8319915 DOI: 10.3389/fimmu.2021.674643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis is an important animal and zoonotic disease caused by Mycobacterium bovis. The innate immune response is the first line of defense against pathogens and is also crucial for the development of an efficient adaptive immune response. In this study we used an in vitro co-culture model of antigen presenting cells (APC) and autologous lymphocytes derived from peripheral blood mononuclear cells to identify the cell populations and immune mediators that participate in the development of an efficient innate response capable of controlling the intracellular replication of M. bovis. After M. bovis infection, bovine immune cell cultures displayed upregulated levels of iNOS, IL-22 and IFN-γ and the induction of the innate immune response was dependent on the presence of differentiated APC. Among the analyzed M. bovis isolates, only a live virulent M. bovis isolate induced an efficient innate immune response, which was increased upon stimulation of cell co-cultures with the M. bovis culture supernatant. Moreover, we demonstrated that an allelic variation of the early secreted protein ESAT-6 (ESAT6 T63A) expressed in the virulent strain is involved in this increased innate immune response. These results highlight the relevance of the compounds secreted by live M. bovis as well as the variability among the assessed M. bovis strains to induce an efficient innate immune response.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
- (Consejo Nacional de Investigaciones Científicas y Tecnológicas) National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María José Gravisaco
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - María Mercedes Bigi
- (Facultad de Agronomía, Universidad de Buenos Aires) School of Agronomy, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Elizabeth Andrea García
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - Cecilia Marquez
- High Technology Analytical Centre, Laboratory, Buenos Aires, Argentina
| | - Mike McNeil
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Fabiana Bigi
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
- (Consejo Nacional de Investigaciones Científicas y Tecnológicas) National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Knaack W, Hölzl G, Gisch N. Structural Analysis of Glycosylglycerolipids Using NMR Spectroscopy. Methods Mol Biol 2021; 2295:249-272. [PMID: 34047981 DOI: 10.1007/978-1-0716-1362-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glycosylglycerolipids are essential components of plant and bacterial membranes. These lipids exert central roles in physiological processes such as photosynthesis in plants or to maintain membrane stability in bacteria. They are composed of a glycerol backbone esterified with two fatty acids at the sn-1 and sn-2 positions, and carbohydrate moieties connected via a glycosidic bond at the sn-3 position. Nuclear magnetic resonance (NMR) spectroscopy is a state-of-the-art technique to determine the nature of the bound carbohydrates as well as their anomeric configurations. Here we describe the analysis of intact glycosylglycerolipids by NMR spectroscopy to determine structural details of their sugar head groups without the need of chemical derivatization.
Collapse
Affiliation(s)
- Wiebke Knaack
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| |
Collapse
|
7
|
Benedictus L, Steinbach S, Holder T, Bakker D, Vrettou C, Morrison WI, Vordermeier M, Connelley T. Hydrophobic Mycobacterial Antigens Elicit Polyfunctional T Cells in Mycobacterium bovis Immunized Cattle: Association With Protection Against Challenge? Front Immunol 2020; 11:588180. [PMID: 33281817 PMCID: PMC7688591 DOI: 10.3389/fimmu.2020.588180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease of cattle with a detrimental impact on food quality and production. Research on bTB vaccines has predominantly been focused on proteinaceous antigens. However, mycobacteria have a thick and intricate lipid outer layer and lipids as well as lipopeptides are important for immune-evasion and virulence. In humans, lipid extracts of M. tuberculosis have been shown to elicit immune responses effective against M. tuberculosis in vitro. Chloroform-methanol extraction (CME) was applied to M. bovis BCG to obtain a hydrophobic antigen extract (CMEbcg) containing lipids and lipopeptides. CMEbcg stimulated IFN-γ+IL-2+ and IL-17A+IL-22+ polyfunctional T cells and elicited T cell responses with a Th1 and Th17 cytokine release profile in both M. bovis BCG vaccinated and M. bovis challenged calves. Lipopeptides were shown to be the immunodominant antigens in CMEbcg, stimulating CD4 T cells via MHC class II. CMEbcg expanded T cells killed CMEbcg loaded monocytes and the CMEbcg-specific CD3 T cell proliferative response following M. bovis BCG vaccination was the best predictor for reduced pathology following challenge with M. bovis. Although the high predictive value of CMEbcg-specific immune responses does not confirm a causal relationship with protection against M. bovis challenge, when taking into account the in vitro antimycobacterial phenotype of CMEbcg-specific T cells (e.g. Th1/Th17 cytokine profile), it is indicative that CMEbcg-specific immune responses could play a functional role in immunity against M. bovis. Based on these findings we conclude that lipopeptides of M. bovis are potential novel subunit vaccine candidates and that further studies into the functional characterization of lipopeptide-specific immune responses together with their role in protection against bovine tuberculosis are warranted.
Collapse
Affiliation(s)
- Lindert Benedictus
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - Sabine Steinbach
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Thomas Holder
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Douwe Bakker
- Independent Researcher and Technical Consultant, Lelystad, Netherlands
| | - Christina Vrettou
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - W Ivan Morrison
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,Centre for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom
| | - Timothy Connelley
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
8
|
Vötsch D, Willenborg M, Oelemann WM, Brogden G, Valentin-Weigand P. Membrane Binding, Cellular Cholesterol Content and Resealing Capacity Contribute to Epithelial Cell Damage Induced by Suilysin of Streptococcus suis. Pathogens 2019; 9:pathogens9010033. [PMID: 31905867 PMCID: PMC7168673 DOI: 10.3390/pathogens9010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
Streptococcus (S.) suis is a major cause of economic losses in the pig industry worldwide and is an emerging zoonotic pathogen. One important virulence-associated factor is suilysin (SLY), a toxin that belongs to the family of cholesterol-dependent pore-forming cytolysins (CDC). However, the precise role of SLY in host–pathogen interactions is still unclear. Here, we investigated the susceptibility of different respiratory epithelial cells to SLY, including immortalized cell lines (HEp-2 and NPTr cells), which are frequently used in in vitro studies on S. suis virulence mechanisms, as well as primary porcine respiratory cells, which represent the first line of barrier during S. suis infections. SLY-induced cell damage was determined by measuring the release of lactate dehydrogenase after infection with a virulent S. suis serotype 2 strain, its isogenic SLY-deficient mutant strain, or treatment with the recombinant protein. HEp-2 cells were most susceptible, whereas primary epithelial cells were hardly affected by the toxin. This prompted us to study possible explanations for these differences. We first investigated the binding capacity of SLY using flow cytometry analysis. Since binding and pore-formation of CDC is dependent on the membrane composition, we also determined the cellular cholesterol content of the different cell types using TLC and HPLC. Finally, we examined the ability of those cells to reseal SLY-induced pores using flow cytometry analysis. Our results indicated that the amount of membrane-bound SLY, the cholesterol content of the cells, as well as their resealing capacity all affect the susceptibility of the different cells regarding the effects of SLY. These findings underline the differences of in vitro pathogenicity models and may further help to dissect the biological role of SLY during S. suis infections.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Walter M.R. Oelemann
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro (UFRJ), 21941-901 Rio de Janeiro, Brazil
| | - Graham Brogden
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Correspondence: ; Tel.: +49-(0)511-856-7362
| |
Collapse
|
9
|
Koets AP, van den Esker MH, Riepema K, Bakker D. The Role of Phosphatidylinositol Mannosides in the Serological Diagnosis of Mycobacterial Infections. Vet Sci 2019; 6:E91. [PMID: 31766256 PMCID: PMC6958488 DOI: 10.3390/vetsci6040091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022] Open
Abstract
Accurate diagnosis of mycobacterial infections, such as bovine tuberculosis and paratuberculosis, remains challenging. Available direct diagnostic tests aimed at detecting the pathogen are highly specific but lack sensitivity, depending on the stage of infection and the prevalence of infection in a population. The sensitivity of indirect diagnostic assays that measure the host immune response to infection is similarly affected by disease characteristics. The choice of antigen used to detect a host response to infection has a critical impact on test sensitivity and specificity. Many indirect tests rely on crude antigen preparations and cell-free extracts, of which the production is poorly standardized. Moreover, these preparations contain ample uncharacterized cross-reactive compounds. To enhance serological test specificity, existing assays depend on the pre-treatment of samples and a relatively high cut-off value, that in turn influences test sensitivity. Research therefore focuses on the identification of more specific, defined antigens to improve diagnostics. In the current study, we extracted phosphatidylinositol mannosides (PIMs) and investigated their potential use in antibody-based tests. Our results demonstrate that specific IgG class antibodies are generated against PIMs in cows, but this is unrelated to tuberculosis or paratuberculosis infection status, making these antigens unsuitable for diagnostic applications. In addition, we demonstrate that PIMs are widely present in crude antigen preparations and in serum pre-absorption buffer. Our results indicate that PIMs are cross-reactive compounds with immunodominant B cell epitopes that could impair serological test specificity.
Collapse
Affiliation(s)
- Ad P. Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 398221 RA Lelystad, The Netherlands; (M.H.v.d.E.); (K.R.)
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 73584 CL Utrecht, The Netherlands
| | - Marielle H. van den Esker
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 398221 RA Lelystad, The Netherlands; (M.H.v.d.E.); (K.R.)
| | - Karel Riepema
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 398221 RA Lelystad, The Netherlands; (M.H.v.d.E.); (K.R.)
| | - Douwe Bakker
- Independent Researcher, 8212 AM Lelystad, The Netherlands;
| |
Collapse
|
10
|
Sharma R, Kumari M, Kumari A, Sharma A, Gulati A, Gupta M, Padwad Y. Diet supplemented with phytochemical epigallocatechin gallate and probiotic Lactobacillus fermentum confers second generation synbiotic effects by modulating cellular immune responses and antioxidant capacity in aging mice. Eur J Nutr 2019; 58:2943-2957. [DOI: 10.1007/s00394-018-01890-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
|
11
|
Osman RA, Griebel PJ. CD335 (NKp46) + T-Cell Recruitment to the Bovine Upper Respiratory Tract during a Primary Bovine Herpesvirus-1 Infection. Front Immunol 2017; 8:1393. [PMID: 29114252 PMCID: PMC5660870 DOI: 10.3389/fimmu.2017.01393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/09/2017] [Indexed: 01/30/2023] Open
Abstract
Bovine natural killer (NK) cells were originally defined by the NK activation receptor CD335 [natural killer cell p46-related protein (NKp46)], but following the discovery of NKp46 expression on human T-cells, the definition of conventional bovine NK cells was modified to CD335+CD3− cells. Recently, a bovine T-cell population co-expressing CD335 was identified and these non-conventional T-cells were shown to produce interferon (IFN)-γ and share functional properties with both conventional NK cells and T-cells. It is not known, however, if CD335+ bovine T-cells are recruited to mucosal surfaces and what chemokines play a role in recruiting this unique T-cell subpopulation. In this study, bovine herpesvirus-1 (BHV-1), which is closely related to herpes simplex virus-1, was used to investigate bovine lymphocyte cell populations recruited to the upper respiratory tract following a primary respiratory infection. Immunohistochemical staining with individual monoclonal antibodies revealed significant (P < 0.05) recruitment of CD335+, CD3+, and CD8+ lymphocyte populations to the nasal turbinates on day 5 following primary BHV-1 infection. Dual-color immunofluorescence revealed that cells recruited to nasal turbinates were primarily T-cells that co-expressed both CD335 and CD8. This non-conventional T-cell population represented 77.5% of CD355+ cells and 89.5% of CD8+ cells recruited to nasal turbinates on day 5 post-BHV-1 infection. However, due to diffuse IFN-γ staining of nasal turbinate tissue, it was not possible to directly link increased IFN-γ production following BHV-1 infection with the recruitment of non-conventional T-cells. Transcriptional analysis revealed CCL4, CCL5, and CXCL9 gene expression was significantly (P < 0.05) upregulated in nasal turbinate tissue following BHV-1 infection. Therefore, no single chemokine was associated with recruitment of non-conventional T-cells. In conclusion, the specific recruitment of CD335+ and CD8+ non-conventional T-cells to viral-infected tissue suggests that these cells may play an important role in either the clearance of a primary BHV-1 infection or regulating host responses during viral infection. The early recruitment of non-conventional T-cells following a primary viral infection may enable the host to recognize viral-infected cells through NKp46 while retaining the possibility of establishing T-cell immune memory.
Collapse
Affiliation(s)
- Rahwa A Osman
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip John Griebel
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|