1
|
Williamson G, Harris T, Bizior A, Hoskisson PA, Pritchard L, Javelle A. Biological ammonium transporters: evolution and diversification. FEBS J 2024; 291:3786-3810. [PMID: 38265636 DOI: 10.1111/febs.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paul Alan Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Kawabe Y, Du Q, Narita TB, Bell C, Schilde C, Kin K, Schaap P. Emerging roles for diguanylate cyclase during the evolution of soma in dictyostelia. BMC Ecol Evol 2023; 23:60. [PMID: 37803310 PMCID: PMC10559540 DOI: 10.1186/s12862-023-02169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Cyclic di-guanylate (c-di-GMP), synthesized by diguanylate cyclase, is a major second messenger in prokaryotes, where it triggers biofilm formation. The dictyostelid social amoebas acquired diguanylate cyclase (dgcA) by horizontal gene transfer. Dictyostelium discoideum (Ddis) in taxon group 4 uses c-di-GMP as a secreted signal to induce differentiation of stalk cells, the ancestral somatic cell type that supports the propagating spores. We here investigated how this role for c-di-GMP evolved in Dictyostelia by exploring dgcA function in the group 2 species Polysphondylium pallidum (Ppal) and in Polysphondylium violaceum (Pvio), which resides in a small sister clade to group 4. RESULTS Similar to Ddis, dgcA is upregulated after aggregation in Ppal and Pvio and predominantly expressed in the anterior region and stalks of emerging fruiting bodies. DgcA null mutants in Ppal and Pvio made fruiting bodies with very long and thin stalks and only few spores and showed delayed aggregation and larger aggregates, respectively. Ddis dgcA- cells cannot form stalks at all, but showed no aggregation defects. The long, thin stalks of Ppal and Pvio dgcA- mutants were also observed in acaA- mutants in these species. AcaA encodes adenylate cyclase A, which mediates the effects of c-di-GMP on stalk induction in Ddis. Other factors that promote stalk formation in Ddis are DIF-1, produced by the polyketide synthase StlB, low ammonia, facilitated by the ammonia transporter AmtC, and high oxygen, detected by the oxygen sensor PhyA (prolyl 4-hydroxylase). We deleted the single stlB, amtC and phyA genes in Pvio wild-type and dgcA- cells. Neither of these interventions affected stalk formation in Pvio wild-type and not or very mildly exacerbated the long thin stalk phenotype of Pvio dgcA- cells. CONCLUSIONS The study reveals a novel role for c-di-GMP in aggregation, while the reduced spore number in Pvio and Ppal dgcA- is likely an indirect effect, due to depletion of the cell pool by the extended stalk formation. The results indicate that in addition to c-di-GMP, Dictyostelia ancestrally used an as yet unknown factor for induction of stalk formation. The activation of AcaA by c-di-GMP is likely conserved throughout Dictyostelia.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Qingyou Du
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Takaaki B Narita
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, 275-0016, Japan
| | - Craig Bell
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- West of Scotland Innovation Hub, NHS Greater Glasgow and Clyde, Queen Elizabeth University Hospital, Glasgow, G514LB, UK
| | - Christina Schilde
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, DD14HN, UK
| | - Koryu Kin
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
| | - Pauline Schaap
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK.
| |
Collapse
|
3
|
Kuwayama H, Kikuchi H, Kubohara Y. Derivatives of Differentiation-Inducing Factor 1 Differentially Control Chemotaxis and Stalk Cell Differentiation in Dictyostelium discoideum. BIOLOGY 2023; 12:873. [PMID: 37372157 DOI: 10.3390/biology12060873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Differentiation-inducing factors 1 and 2 (DIF-1 and DIF-2) are small lipophilic signal molecules that induce stalk cell differentiation but differentially modulate chemotaxis toward cAMP in the cellular slime mold Dictyostelium discoideum; DIF-1 suppresses chemotactic cell movement in shallow cAMP gradients, whereas DIF-2 promotes it. The receptor(s) for DIF-1 and DIF-2 have not yet been identified. We examined the effects of nine derivatives of DIF-1 on chemotactic cell movement toward cAMP and compared their chemotaxis-modulating activity and stalk cell differentiation-inducing activity in wild-type and mutant strains. The DIF derivatives differentially affected chemotaxis and stalk cell differentiation; for example, TM-DIF-1 suppressed chemotaxis and showed poor stalk-inducing activity, DIF-1(3M) suppressed chemotaxis and showed strong stalk-inducing activity, and TH-DIF-1 promoted chemotaxis. These results suggest that DIF-1 and DIF-2 have at least three receptors: one for stalk cell induction and two for chemotaxis modulation. In addition, our results show that the DIF derivatives can be used to analyze the DIF-signaling pathways in D. discoideum.
Collapse
Affiliation(s)
- Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan
| |
Collapse
|
4
|
Kim WD, Mathavarajah S, Huber RJ. The Cellular and Developmental Roles of Cullins, Neddylation, and the COP9 Signalosome in Dictyostelium discoideum. Front Physiol 2022; 13:827435. [PMID: 35586714 PMCID: PMC9108976 DOI: 10.3389/fphys.2022.827435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cullins (CULs) are a core component of cullin-RING E3 ubiquitin ligases (CRLs), which regulate the degradation, function, and subcellular trafficking of proteins. CULs are post-translationally regulated through neddylation, a process that conjugates the ubiquitin-like modifier protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target cullins, as well as non-cullin proteins. Counteracting neddylation is the deneddylase, COP9 signalosome (CSN), which removes NEDD8 from target proteins. Recent comparative genomics studies revealed that CRLs and the CSN are highly conserved in Amoebozoa. A well-studied representative of Amoebozoa, the social amoeba Dictyostelium discoideum, has been used for close to 100 years as a model organism for studying conserved cellular and developmental processes owing to its unique life cycle comprised of unicellular and multicellular phases. The organism is also recognized as an exceptional model system for studying cellular processes impacted by human diseases, including but not limited to, cancer and neurodegeneration. Recent work shows that the neddylation inhibitor, MLN4924 (Pevonedistat), inhibits growth and multicellular development in D. discoideum, which supports previous work that revealed the cullin interactome in D. discoideum and the roles of cullins and the CSN in regulating cellular and developmental processes during the D. discoideum life cycle. Here, we review the roles of cullins, neddylation, and the CSN in D. discoideum to guide future work on using this biomedical model system to further explore the evolutionarily conserved functions of cullins and neddylation.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
5
|
An Autocrine Negative Feedback Loop Inhibits Dictyostelium discoideum Proliferation through Pathways Including IP3/Ca 2. mBio 2021; 12:e0134721. [PMID: 34154396 PMCID: PMC8262924 DOI: 10.1128/mbio.01347-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about how eukaryotic cells can sense their number or spatial density and stop proliferating when the local density reaches a set value. We previously found that Dictyostelium discoideum accumulates extracellular polyphosphate to inhibit its proliferation, and this requires the G protein-coupled receptor GrlD and the small GTPase RasC. Here, we show that cells lacking the G protein component Gβ, the Ras guanine nucleotide exchange factor GefA, phosphatase and tensin homolog (PTEN), phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3) receptor-like protein A (IplA), polyphosphate kinase 1 (Ppk1), or the TOR complex 2 component PiaA have significantly reduced sensitivity to polyphosphate-induced proliferation inhibition. Polyphosphate upregulates IP3, and this requires GrlD, GefA, PTEN, PLC, and PiaA. Polyphosphate also upregulates cytosolic Ca2+, and this requires GrlD, Gβ, GefA, RasC, PLC, IplA, Ppk1, and PiaA. Together, these data suggest that polyphosphate uses signal transduction pathways including IP3/Ca2+ to inhibit the proliferation of D. discoideum. IMPORTANCE Many mammalian tissues such as the liver have the remarkable ability to regulate their size and have their cells stop proliferating when the tissue reaches the correct size. One possible mechanism involves the cells secreting a signal that they all sense, and a high level of the signal tells the cells that there are enough of them and to stop proliferating. Although regulating such mechanisms could be useful to regulate tissue size to control cancer or birth defects, little is known about such systems. Here, we use a microbial system to study such a mechanism, and we find that key elements of the mechanism have similarities to human proteins. This then suggests the possibility that we may eventually be able to regulate the proliferation of selected cell types in humans and animals.
Collapse
|
6
|
Matassi G. Horizontal gene transfer drives the evolution of Rh50 permeases in prokaryotes. BMC Evol Biol 2017; 17:2. [PMID: 28049420 PMCID: PMC5209957 DOI: 10.1186/s12862-016-0850-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/09/2016] [Indexed: 01/22/2023] Open
Abstract
Background Rh50 proteins belong to the family of ammonia permeases together with their Amt/MEP homologs. Ammonia permeases increase the permeability of NH3/NH4+ across cell membranes and are believed to be involved in excretion of toxic ammonia and in the maintenance of pH homeostasis. RH50 genes are widespread in eukaryotes but absent in land plants and fungi, and remarkably rare in prokaryotes. The evolutionary history of RH50 genes in prokaryotes is just beginning to be unveiled. Results Here, a molecular phylogenetic approach suggests horizontal gene transfer (HGT) as a primary force driving the evolution and spread of RH50 among prokaryotes. In addition, the taxonomic distribution of the RH50 gene among prokaryotes turned out to be very narrow; a single-copy RH50 is present in the genome of only a small proportion of Bacteria, and, first evidence to date, in only three methanogens among Euryarchaea. The coexistence of RH50 and AMT in prokaryotes seems also a rare event. Finally, phylogenetic analyses were used to reconstruct the HGT network along which prokaryotic RH50 evolution has taken place. Conclusions The eukaryotic or bacterial “origin” of the RH50 gene remains unsolved. The RH50 prokaryotic HGT network suggests a preferential directionality of transfer from aerobic to anaerobic organisms. The observed HGT events between archaeal methanogens, anaerobic and aerobic ammonia-oxidizing bacteria suggest that syntrophic relationships play a major role in the structuring of the network, and point to oxygen minimum zones as an ecological niche that might be of crucial importance for HGT-driven evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0850-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giorgio Matassi
- Dipartimento di Scienze Agro-alimentari, Ambientali e Animali (DI4A), Università di Udine, Via delle Scienze, 206-33100, Udine, Italy.
| |
Collapse
|
7
|
Singleton CK, Xiong Y. Loss of the histidine kinase DhkD results in mobile mounds during development of Dictyostelium discoideum. PLoS One 2013; 8:e75618. [PMID: 24086589 PMCID: PMC3783435 DOI: 10.1371/journal.pone.0075618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/15/2013] [Indexed: 12/04/2022] Open
Abstract
Background Histidine kinases are receptors for sensing cellular and environmental signals, and in response to the appropriate cue they initiate phosphorelays that regulate the activity of response regulators. The Dictyostelium discoideum genome encodes 15 histidine kinases that function to regulate several processes during the multicellular developmental program, including the slug to culmination transition, osmoregulation, and spore differentiation. While there are many histidine kinases, there is only a single response regulator, RegA. Not surprisingly given the ubiquitous involvement of cAMP in numerous processes of development in Dictyostelium, RegA is a cAMP phosphodiesterase that is activated upon receiving phosphates through a phosphorelay. Hence, all of the histidine kinases characterized to date regulate developmental processes through modulating cAMP production. Here we investigate the function of the histidine kinase DhkD. Principal Findings The dhkD gene was disrupted, and the resulting cells when developed gave a novel phenotype. Upon aggregation, which occurred without streaming, the mounds were motile, a phenotype termed the pollywog stage. The pollywog phenotype was dependent on a functional RegA. After a period of random migration, the pollywogs attempted to form fingers but mostly generated aberrant structures with no tips. While prestalk and prespore cell differentiation occurred with normal timing, proper patterning did not occur. In contrast, wild type mounds are not motile, and the cAMP chemotactic movement of cells within the mound facilitates proper prestalk and prespore patterning, tip formation, and the vertical elongation of the mound into a finger. Conclusions We postulate that DhkD functions to ensure the proper cAMP distribution within mounds that in turn results in patterning, tip formation and the transition of mounds to fingers. In the absence of DhkD, aberrant cell movements in response to an altered cAMP distribution result in mound migration, a lack of proper patterning, and an inability to generate normal finger morphology.
Collapse
Affiliation(s)
- Charles K. Singleton
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| | - Yanhua Xiong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
8
|
Zhang D, van der Wel H, Johnson JM, West CM. Skp1 prolyl 4-hydroxylase of dictyostelium mediates glycosylation-independent and -dependent responses to O2 without affecting Skp1 stability. J Biol Chem 2011; 287:2006-16. [PMID: 22128189 DOI: 10.1074/jbc.m111.314021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic prolyl 4-hydroxylases (PHDs) have a primary role in O(2) sensing in animals via modification of the transcriptional factor subunit HIFα, resulting in its polyubiquitination by the E3(VHL)ubiquitin (Ub) ligase and degradation in the 26 S proteasome. Previously thought to be restricted to animals, a homolog (P4H1) of HIFα-type PHDs is expressed in the social amoeba Dictyostelium where it also exhibits characteristics of an O(2) sensor for development. Dictyostelium lacks HIFα, and P4H1 modifies a different protein, Skp1, an adaptor of the SCF class of E3-Ub ligases related to the E3(VHL)Ub ligase that targets animal HIFα. Normally, the HO-Skp1 product of the P4H1 reaction is capped by a GlcNAc sugar that can be subsequently extended to a pentasaccharide by novel glycosyltransferases. To analyze the role of glycosylation, the Skp1 GlcNAc-transferase locus gnt1 was modified with a missense mutation to block catalysis or a stop codon to truncate the protein. Despite the accumulation of the hydroxylated form of Skp1, Skp1 was not destabilized based on metabolic labeling. However, hydroxylation alone allowed for partial correction of the high O(2) requirement of P4H1-null cells, therefore revealing both glycosylation-independent and glycosylation-dependent roles for hydroxylation. Genetic complementation of the latter function required an enzymatically active form of Gnt1. Because the effect of the gnt1 deficiency depended on P4H1, and Skp1 was the only protein labeled when the GlcNAc-transferase was restored to mutant extracts, Skp1 apparently mediates the cellular functions of both P4H1 and Gnt1. Although Skp1 stability itself is not affected by hydroxylation, its modification may affect the stability of targets of Skp1-dependent Ub ligases.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Biochemistry and Molecular Biology, 975 NE 10th St., BRC 417, OUHSC, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
9
|
Rodrigues TE, Souza VEP, Monteiro RA, Gerhardt ECM, Araújo LM, Chubatsu LS, Souza EM, Pedrosa FO, Huergo LF. In vitro interaction between the ammonium transport protein AmtB and partially uridylylated forms of the P(II) protein GlnZ. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1203-9. [PMID: 21645649 DOI: 10.1016/j.bbapap.2011.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/28/2011] [Accepted: 05/13/2011] [Indexed: 12/18/2022]
Abstract
The ammonium transport family Amt/Rh comprises ubiquitous integral membrane proteins that facilitate ammonium movement across biological membranes. Besides their role in transport, Amt proteins also play a role in sensing the levels of ammonium in the environment, a process that depends on complex formation with cytosolic proteins of the P(II) family. Trimeric P(II) proteins from a variety of organisms undergo a cycle of reversible posttranslational modification according to the prevailing nitrogen supply. In proteobacteria, P(II) proteins are subjected to reversible uridylylation of each monomer. In this study we used the purified proteins from Azospirillum brasilense to analyze the effect of P(II) uridylylation on the protein's ability to engage complex formation with AmtB in vitro. Our results show that partially uridylylated P(II) trimers can interact with AmtB in vitro, the implication of this finding in the regulation of nitrogen metabolism is discussed. We also report an improved expression and purification protocol for the A. brasilense AmtB protein that might be applicable to AmtB proteins from other organisms.
Collapse
Affiliation(s)
- Thiago E Rodrigues
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Signal transducers and activators of transcription (STAT) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. These proteins are components of JAK/STAT signal transduction pathways, which regulate immune responses, cell fate, proliferation, cell migration, and programmed cell death in multicellular organisms. The cellular slime mould, Dictyostelium discoideum, is the simplest multicellular organism using molecules homologous to STATs, Dd-STATa-d. The Dd-STATa null mutant displays delayed aggregation, no phototaxis and fails culmination. Here, the functions of Dictyostelium STATs during development and their associated signaling molecules are discussed.
Collapse
Affiliation(s)
- Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi 274-8510, Japan.
| |
Collapse
|
11
|
Uchikawa T, Yamamoto A, Inouye K. Origin and function of the stalk-cell vacuole in Dictyostelium. Dev Biol 2011; 352:48-57. [DOI: 10.1016/j.ydbio.2011.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/20/2023]
|
12
|
|
13
|
West CM, Wang ZA, van der Wel H. A cytoplasmic prolyl hydroxylation and glycosylation pathway modifies Skp1 and regulates O2-dependent development in Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:160-71. [PMID: 19914348 PMCID: PMC2873859 DOI: 10.1016/j.bbagen.2009.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 12/13/2022]
Abstract
The soil amoeba Dictyostelium is an obligate aerobe that monitors O(2) for informational purposes in addition to utilizing it for oxidative metabolism. Whereas low O(2) suffices for proliferation, a higher level is required for slugs to culminate into fruiting bodies, and O(2) influences slug polarity, slug migration, and cell-type proportioning. Dictyostelium expresses a cytoplasmic prolyl 4-hydroxylase (P4H1) known to mediate O(2)-sensing in animals, but lacks HIFalpha, a major hydroxylation target whose accumulation directly induces animal hypoxia-dependent transcriptional changes. The O(2)-requirement for culmination is increased by P4H1-gene disruption and reduced by P4H1 overexpression. A target of Dictyostelium P4H1 is Skp1, a subunit of the SCF-class of E3-ubiquitin ligases related to the VBC-class that mediates hydroxylation-dependent degradation of animal HIFalpha. Skp1 is a target of a novel cytoplasmic O-glycosylation pathway that modifies HyPro143 with a pentasaccharide, and glycosyltransferase mutants reveal that glycosylation intermediates have antagonistic effects toward P4H1 in O(2)-signaling. Current evidence indicates that Skp1 is the only glycosylation target in cells, based on metabolic labeling, biochemical complementation, and enzyme specificity studies. Bioinformatics studies suggest that the HyPro-modification pathway existed in the ancestral eukaryotic lineage and was retained in selected modern day unicellular organisms whose life cycles experience varying degrees of hypoxia. It is proposed that, in Dictyostelium and other protists including the agent for human toxoplasmosis Toxoplasma gondii, prolyl hydroxylation and glycosylation mediate O(2)-signaling in hierarchical fashion via Skp1 to control the proteome, directly via degradation rather than indirectly via transcription as found in animals.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 975 Northeast Tenth Street, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
14
|
Musa-Aziz R, Jiang L, Chen LM, Behar KL, Boron WF. Concentration-dependent effects on intracellular and surface pH of exposing Xenopus oocytes to solutions containing NH3/NH4(+). J Membr Biol 2009; 228:15-31. [PMID: 19242745 PMCID: PMC2929962 DOI: 10.1007/s00232-009-9155-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/21/2009] [Indexed: 11/25/2022]
Abstract
Others have shown that exposing oocytes to high levels of NH(3)/NH(4)(+) (10-20 mM) causes a paradoxical fall in intracellular pH (pH(i)), whereas low levels (e.g., 0.5 mM) cause little pH(i) change. Here we monitored pH(i) and extracellular surface pH (pH(S)) while exposing oocytes to 5 or 0.5 mM NH(3)/NH(4)(+). We confirm that 5 mM NH(3)/NH(4)(+) causes a paradoxical pH(i) fall (-DeltapH(i) approximately equal 0.2), but also observe an abrupt pH(S) fall (-DeltapH(S) approximately equal 0.2)-indicative of NH(3) influx-followed by a slow decay. Reducing [NH(3)/NH(4)(+)] to 0.5 mM minimizes pH(i) changes but maintains pH(S) changes at a reduced magnitude. Expressing AmtB (bacterial Rh homologue) exaggerates -DeltapH(S) at both NH(3)/NH(4)(+) levels. During removal of 0.5 or 5 mM NH(3)/NH(4)(+), failure of pH(S) to markedly overshoot bulk extracellular pH implies little NH(3) efflux and, thus, little free cytosolic NH(3)/NH(4)(+). A new analysis of the effects of NH(3) vs. NH(4)(+) fluxes on pH(S) and pH(i) indicates that (a) NH(3) rather than NH(4)(+) fluxes dominate pH(i) and pH(S) changes and (b) oocytes dispose of most incoming NH(3). NMR studies of oocytes exposed to (15)N-labeled NH(3)/NH(4)(+) show no significant formation of glutamine but substantial NH(3)/NH(4)(+) accumulation in what is likely an acid intracellular compartment. In conclusion, parallel measurements of pH(i) and pH(S) demonstrate that NH(3) flows across the plasma membrane and provide new insights into how a protein molecule in the plasma membrane-AmtB-enhances the flux of a gas across a biological membrane.
Collapse
Affiliation(s)
- Raif Musa-Aziz
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA,
| | - Lihong Jiang
- Department of Diagnostic Radiology and Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Li-Ming Chen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kevin L. Behar
- Department of Psychiatry and Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Walter F. Boron
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA,
| |
Collapse
|
15
|
Kirsten JH, Xiong Y, Davis CT, Singleton CK. Subcellular localization of ammonium transporters in Dictyostelium discoideum. BMC Cell Biol 2008; 9:71. [PMID: 19108721 PMCID: PMC2653498 DOI: 10.1186/1471-2121-9-71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 12/24/2008] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND With the exception of vertebrates, most organisms have plasma membrane associated ammonium transporters which primarily serve to import a source of nitrogen for nutritional purposes. Dictyostelium discoideum has three ammonium transporters, Amts A, B and C. Our present work used fluorescent fusion proteins to determine the cellular localization of the Amts and tested the hypothesis that the transporters mediate removal of ammonia generated endogenously from the elevated protein catabolism common to many protists. RESULTS Using RFP and YFP fusion constructs driven by the actin 15 promoter, we found that the three ammonium transporters were localized on the plasma membrane and on the membranes of subcellular organelles. AmtA and AmtB were localized on the membranes of endolysosomes and phagosomes, with AmtB further localized on the membranes of contractile vacuoles. AmtC also was localized on subcellular organelles when it was stabilized by coexpression with either the AmtA or AmtB fusion transporter. The three ammonium transporters exported ammonia linearly with regard to time during the first 18 hours of the developmental program as revealed by reduced export in the null strains. The fluorescently tagged transporters rescued export when expressed in the null strains, and thus they were functional transporters. CONCLUSION Unlike ammonium transporters in most organisms, which import NH3/NH4+ as a nitrogen source, those of Dictyostelium export ammonia/ammonium as a waste product from extensive catabolism of exogenously derived and endogenous proteins. Localization on proteolytic organelles and on the neutral contractile vacuole suggests that Dictyostelium ammonium transporters may have unique subcellular functions and play a role in the maintenance of intracellular ammonium distribution. A lack of correlation between the null strain phenotypes and ammonia excretion properties of the ammonium transporters suggests that it is not the excretion function that is important for coupling ammonia levels to the slug versus culmination choice, but rather a sensor and/or signaling function of these proteins that is important.
Collapse
Affiliation(s)
- Janet H Kirsten
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Yanhua Xiong
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Carter T Davis
- LSU School of Medicine – New Orleans, 2020 Gravier Street, New Orleans, LA 70112, USA
| | - Charles K Singleton
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| |
Collapse
|
16
|
Núñez-Corcuera B, Serafimidis I, Arias-Palomo E, Rivera-Calzada A, Suarez T. A new protein carrying an NmrA-like domain is required for cell differentiation and development in Dictyostelium discoideum. Dev Biol 2008; 321:331-42. [PMID: 18638468 DOI: 10.1016/j.ydbio.2008.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/15/2022]
Abstract
We have isolated a Dictyostelium mutant unable to induce expression of the prestalk-specific marker ecmB in monolayer assays. The disrupted gene, padA, leads to a range of phenotypic defects in growth and development. We show that padA is essential for growth, and we have generated a thermosensitive mutant allele, padA(-). At the permissive temperature, mutant cells grow poorly; they remain longer at the slug stage during development and are defective in terminal differentiation. At the restrictive temperature, growth is completely blocked, while development is permanently arrested prior to culmination. padA(-) slugs are deficient in prestalk A cell differentiation and present an abnormal ecmB expression pattern. Sequence comparisons and predicted three-dimensional structure analyses show that PadA carries an NmrA-like domain. NmrA is a negative transcriptional regulator involved in nitrogen metabolite repression in Aspergillus nidulans. PadA predicted structure shows a NAD(P)(+)-binding domain, which we demonstrate that is essential for function. We show that padA(-) development is more sensitive to ammonia than wild-type cells and two ammonium transporters, amtA and amtC, appear derepressed during padA(-) development. Our data suggest that PadA belongs to a new family of NAD(P)(+)-binding proteins that link metabolic changes to gene expression and is required for growth and normal development.
Collapse
Affiliation(s)
- Beatriz Núñez-Corcuera
- Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas (CSIC), 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J. A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:3028-39. [PMID: 18434596 DOI: 10.1091/mbc.e08-01-0033] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ammonium permease Mep2 is required for the induction of pseudohyphal growth, a process in Saccharomyces cerevisiae that occurs in response to nutrient limitation. Mep2 has both a transport and a regulatory function, supporting models in which Mep2 acts as a sensor of ammonium availability. Potentially similar ammonium permease-dependent regulatory cascades operate in other fungi, and they may also function in animals via the homologous Rh proteins; however, little is known about the molecular mechanisms that mediate ammonium sensing. We show that Mep2 is localized to the cell surface during pseudohyphal growth, and it is required for both filamentous and invasive growth. Analysis of site-directed Mep2 mutants in residues lining the ammonia-conducting channel reveal separation of function alleles (transport and signaling defective; transport-proficient/signaling defective), indicating transport is necessary but not sufficient to sense ammonia. Furthermore, Mep2 overexpression enhances differentiation under normally repressive conditions and induces a transcriptional profile that is consistent with activation of the mitogen-activated protein (MAP) kinase pathway. This finding is supported by epistasis analysis establishing that the known role of the MAP kinase pathway in pseudohyphal growth is linked to Mep2 function. Together, these data strengthen the model that Mep2-like proteins are nutrient sensing transceptors that govern cellular differentiation.
Collapse
Affiliation(s)
- Julian C Rutherford
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
18
|
Huergo LF, Merrick M, Pedrosa FO, Chubatsu LS, Araujo LM, Souza EM. Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol Microbiol 2007; 66:1523-35. [PMID: 18028310 DOI: 10.1111/j.1365-2958.2007.06016.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ammonium movement across biological membranes is facilitated by a class of ubiquitous channel proteins from the Amt/Rh family. Amt proteins have also been implicated in cellular responses to ammonium availability in many organisms. Ammonium sensing by Amt in bacteria is mediated by complex formation with cytosolic proteins of the P(II) family. In this study we have characterized in vitro complex formation between the AmtB and P(II) proteins (GlnB and GlnZ) from the diazotrophic plant-associative bacterium Azospirillum brasilense. AmtB-P(II) complex formation only occurred in the presence of adenine nucleotides and was sensitive to 2-oxoglutarate when Mg(2+) and ATP were present, but not when ATP was substituted by ADP. We have also shown in vitro complex formation between GlnZ and the nitrogenase regulatory enzyme DraG, which was stimulated by ADP. The stoichiometry of this complex was 1:1 (DraG monomer : GlnZ trimer). We have previously reported that in vivo high levels of extracellular ammonium cause DraG to be sequestered to the cell membrane in an AmtB and GlnZ-dependent manner. We now report the reconstitution of a ternary complex involving AmtB, GlnZ and DraG in vitro. Sequestration of a regulatory protein by the membrane-bound AmtB-P(II) complex defines a new regulatory role for Amt proteins in Prokaryotes.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Regulation of ammonia homeostasis by the ammonium transporter AmtA in Dictyostelium discoideum. EUKARYOTIC CELL 2007; 6:2419-28. [PMID: 17951519 DOI: 10.1128/ec.00204-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ammonia has been shown to function as a morphogen at multiple steps during the development of the cellular slime mold Dictyostelium discoideum; however, it is largely unknown how intracellular ammonia levels are controlled. In the Dictyostelium genome, there are five genes that encode putative ammonium transporters: amtA, amtB, amtC, rhgA, and rhgB. Here, we show that AmtA regulates ammonia homeostasis during growth and development. We found that cells lacking amtA had increased levels of ammonia/ammonium, whereas their extracellular ammonia/ammonium levels were highly decreased. These results suggest that AmtA mediates the excretion of ammonium. In support of a role for AmtA in ammonia homeostasis, AmtA mRNA is expressed throughout the life cycle, and its expression level increases during development. Importantly, AmtA-mediated ammonia homeostasis is critical for many developmental processes. amtA(-) cells are more sensitive to NH(4)Cl than wild-type cells in inhibition of chemotaxis toward cyclic AMP and of formation of multicellular aggregates. Furthermore, even in the absence of exogenously added ammonia, we found that amtA(-) cells produced many small fruiting bodies and that the viability and germination of amtA(-) spores were dramatically compromised. Taken together, our data clearly demonstrate that AmtA regulates ammonia homeostasis and plays important roles in multiple developmental processes in Dictyostelium.
Collapse
|
20
|
West CM, van der Wel H, Wang ZA. Prolyl 4-hydroxylase-1 mediates O2 signaling during development of Dictyostelium. Development 2007; 134:3349-58. [PMID: 17699611 DOI: 10.1242/dev.000893] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development in multicellular organisms is subject to both environmental and internal signals. In Dictyostelium, starvation induces amoebae to form migratory slugs that translocate from subterranean areas to exposed sites, where they culminate to form sessile fruiting bodies. Culmination, thought to be regulated by anterior tip cells, is selectively suppressed by mild hypoxia by a mechanism that can be partially overridden by another environmental signal, overhead light, or genetic activation of protein kinase A. Dictyostelium expresses, in all cells, an O2-dependent prolyl 4-hydroxylase (P4H1) required for O-glycosylation of Skp1, a subunit of E3SCF-Ub-ligases. P4H1-null cells differentiate the basic pre-stalk and pre-spore cell types but exhibit a selectively increased O2 requirement for culmination, from approximately 12% to near or above ambient (21%) levels. Overexpression of P4H1 reduces the O2 requirement to <5%. The requirement for P4H1 can be met by forced expression of the active enzyme in either pre-stalk (anterior) or pre-spore (posterior) cells, or replaced by protein kinase A activation or addition of small numbers of wild-type cells. P4H1-expressing cells accumulate at the anterior end, suggesting that P4H1 enables transcellular signaling by the tip. The evidence provides novel genetic support for the animal-derived O2-sensor model of prolyl 4-hydroxylase function, in an organism that lacks the canonical HIFalpha transcriptional factor subunit substrate target that is a feature of animal hypoxic signaling.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry and Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA.
| | | | | |
Collapse
|
21
|
Shimada N, Kawata T. Evidence that noncoding RNA dutA is a multicopy suppressor of Dictyostelium discoideum STAT protein Dd-STATa. EUKARYOTIC CELL 2007; 6:1030-40. [PMID: 17435008 PMCID: PMC1951520 DOI: 10.1128/ec.00035-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dd-STATa, a Dictyostelium discoideum homologue of metazoan STAT transcription factors, is necessary for culmination. We created a mutant strain with partial Dd-STATa activity and used it to screen for unlinked suppressor genes. We screened approximately 450,000 clones from a slug-stage cDNA library for their ability to rescue the culmination defect when overexpressed. There were 12 multicopy suppressors of Dd-STATa, of which 4 encoded segments of a known noncoding RNA, dutA. Expression of dutA is specific to the pstA zone, the region where Dd-STATa is activated. In suppressed strains the expression patterns of several putative Dd-STATa target genes become similar to the wild-type strain. In addition, the amount of the tyrosine-phosphorylated form of Dd-STATa is significantly increased in the suppressed strain. These results indicate that partial copies of dutA may act upstream of Dd-STATa to regulate tyrosine phosphorylation by an unknown mechanism.
Collapse
Affiliation(s)
- Nao Shimada
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | | |
Collapse
|
22
|
Marino R, Melillo D, Di Filippo M, Yamada A, Pinto MR, De Santis R, Brown ER, Matassi G. Ammonium channel expression is essential for brain development and function in the larva ofCiona intestinalis. J Comp Neurol 2007; 503:135-47. [PMID: 17480017 DOI: 10.1002/cne.21370] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ammonium uptake into the cell is known to be mediated by ammonium transport (Amt) proteins, which are present in all domains of life. The physiological role of Amt proteins remains elusive; indeed, loss-of-function experiments suggested that Amt proteins do not play an essential role in bacteria, yeast, and plants. Here we show that the reverse holds true in the tunicate Ciona intestinalis. The genome of C. intestinalis contains two AMT genes, Ci-AMT1a and Ci-AMT1b, which we show derive from an ascidian-specific gene duplication. We analyzed Ci-AMT expression during embryo development. Notably, Ci-AMT1a is expressed in the larval brain in a small number of cells defining a previously unseen V-shaped territory; these cells connect the brain cavity to the external environment. We show that the knockdown of Ci-AMT1a impairs the formation of the brain cavity and consequently the function of the otolith, the gravity-sensing organ contained in it. We speculate that the normal mechanical functioning (flotation and free movement) of the otolith may require a close regulation of ammonium salt(s) concentration in the brain cavity, because ammonium is known to affect both fluid density and viscosity; the cells forming the V territory may act as a conduit in achieving such a regulation.
Collapse
Affiliation(s)
- Rita Marino
- Stazione Zoologica A Dohrn, Villa Comunale, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|