1
|
Muellner J, Schmidt KH. Helicase activities of Rad5 and Rrm3 genetically interact in the prevention of recombinogenic DNA lesions in Saccharomyces cerevisiae. DNA Repair (Amst) 2023; 126:103488. [PMID: 37054652 PMCID: PMC10399609 DOI: 10.1016/j.dnarep.2023.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The genome must be monitored to ensure its duplication is completed accurately to prevent genome instability. In Saccharomyces cerevisiae, the 5' to 3' DNA helicase Rrm3, a member of the conserved PIF1 family, facilitates replication fork progression through an unknown mechanism. Disruption of Rrm3 helicase activity leads to increased replication fork pausing throughout the yeast genome. Here, we show that Rrm3 contributes to replication stress tolerance in the absence of the fork reversal activity of Rad5, defined by its HIRAN domain and DNA helicase activity, but not in the absence of Rad5's ubiquitin ligase activity. The Rrm3 and Rad5 helicase activities also interact in the prevention of recombinogenic DNA lesions, and DNA lesions that accumulate in their absence need to be salvaged by a Rad59-dependent recombination pathway. Disruption of the structure-specific endonuclease Mus81 leads to accumulation of recombinogenic DNA lesions and chromosomal rearrangements in the absence of Rrm3, but not Rad5. Thus, at least two mechanisms exist to overcome fork stalling at replication barriers, defined by Rad5-mediated fork reversal and Mus81-mediated cleavage, and contribute to the maintenance of chromosome stability in the absence of Rrm3.
Collapse
Affiliation(s)
- Julius Muellner
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, United States; Graduate program in Cell and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Kristina H Schmidt
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, United States; Graduate program in Cell and Molecular Biology, University of South Florida, Tampa, FL 33620, United States; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
2
|
Fanconi Anaemia-Like Mph1 Helicase Backs up Rad54 and Rad5 to Circumvent Replication Stress-Driven Chromosome Bridges. Genes (Basel) 2018; 9:genes9110558. [PMID: 30453647 PMCID: PMC6266064 DOI: 10.3390/genes9110558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Homologous recombination (HR) is a preferred mechanism to deal with DNA replication impairments. However, HR synapsis gives rise to joint molecules (JMs) between the nascent sister chromatids, challenging chromosome segregation in anaphase. Joint molecules are resolved by the actions of several structure-selective endonucleases (SSEs), helicases and topoisomerases. Previously, we showed that yeast double mutants for the Mus81-Mms4 and Yen1 SSEs lead to anaphase bridges (ABs) after replication stress. Here, we have studied the role of the Mph1 helicase in preventing these anaphase aberrations. Mph1, the yeast ortholog of Fanconi anaemia protein M (FANCM), is involved in the removal of the D-loop, the first JM to arise in canonical HR. Surprisingly, the absence of Mph1 alone did not increase ABs; rather, it blocked cells in G2. Interestingly, in the search for genetic interactions with functionally related helicases and translocases, we found additive effects on the G2 block and post-G2 aberrations between mph1Δ and knockout mutants for Srs2, Rad54 and Rad5. Based on these interactions, we suggest that Mph1 acts coordinately with these helicases in the non-canonical HR-driven fork regression mechanism to bypass stalled replication forks.
Collapse
|
3
|
Sgs1 Binding to Rad51 Stimulates Homology-Directed DNA Repair in Saccharomyces cerevisiae. Genetics 2017; 208:125-138. [PMID: 29162625 PMCID: PMC5753853 DOI: 10.1534/genetics.117.300545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/16/2017] [Indexed: 12/23/2022] Open
Abstract
Accurate repair of DNA breaks is essential to maintain genome integrity and cellular fitness. Sgs1, the sole member of the RecQ family of DNA helicases in Saccharomyces cerevisiae, is important for both early and late stages of homology-dependent repair. Its large number of physical and genetic interactions with DNA recombination, repair, and replication factors has established Sgs1 as a key player in the maintenance of genome integrity. To determine the significance of Sgs1 binding to the strand-exchange factor Rad51, we have identified a single amino acid change at the C-terminal of the helicase core of Sgs1 that disrupts Rad51 binding. In contrast to an SGS1 deletion or a helicase-defective sgs1 allele, this new separation-of-function allele, sgs1-FD, does not cause DNA damage hypersensitivity or genome instability, but exhibits negative and positive genetic interactions with sae2Δ, mre11Δ, exo1Δ, srs2Δ, rrm3Δ, and pol32Δ that are distinct from those of known sgs1 mutants. Our findings suggest that the Sgs1-Rad51 interaction stimulates homologous recombination (HR). However, unlike sgs1 mutations, which impair the resection of DNA double-strand ends, negative genetic interactions of the sgs1-FD allele are not suppressed by YKU70 deletion. We propose that the Sgs1-Rad51 interaction stimulates HR by facilitating the formation of the presynaptic Rad51 filament, possibly by Sgs1 competing with single-stranded DNA for replication protein A binding during resection.
Collapse
|
4
|
Syed S, Desler C, Rasmussen LJ, Schmidt KH. A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression. PLoS Genet 2016; 12:e1006451. [PMID: 27923055 PMCID: PMC5140057 DOI: 10.1371/journal.pgen.1006451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022] Open
Abstract
In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186–212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks. When cells duplicate their genome, the replication machinery is constantly at risk of encountering obstacles, including unusual DNA structures, bound proteins, or transcribing polymerases and transcripts. Cells possess DNA helicases that facilitate movement of the replication fork through such obstacles. Here, we report the discovery that one of these DNA helicases, Rrm3, is also required for restricting DNA synthesis under replication stress. We find that the site in Rrm3 critical for this new replication function is also required for binding a subunit of the replication origin recognition complex, which raises the possibility that Rrm3 controls replication by affecting initiation. This is supported by our finding that Rrm3 associates with a subset of replication origins. Rrm3’s ability to restrict replication does not require its helicase activity or the phosphorylation site that regulates this activity. Notably, cells need error-free bypass pathways and homologous recombination to deal with DNA lesions that arise when the helicase function of Rrm3 is disrupted, but not when its replication function is disrupted. This indicates that the DNA lesions that form in the absence of the two distinct Rrm3 function are different, although both activate the DNA-damage checkpoint and are toxic to cells that lack the mediator of the replication checkpoint Mrc1.
Collapse
Affiliation(s)
- Salahuddin Syed
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
- Graduate Program in Cellular and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene J. Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristina H. Schmidt
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
5
|
Northam MR, Trujillo KM. Histone H2B mono-ubiquitylation maintains genomic integrity at stalled replication forks. Nucleic Acids Res 2016; 44:9245-9255. [PMID: 27458205 PMCID: PMC5100568 DOI: 10.1093/nar/gkw658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022] Open
Abstract
Histone modifications play an important role in regulating access to DNA for transcription, DNA repair and DNA replication. A central player in these events is the mono-ubiquitylation of histone H2B (H2Bub1), which has been shown to regulate nucleosome dynamics. Previously, it was shown that H2Bub1 was important for nucleosome assembly onto nascent DNA at active replication forks. In the absence of H2Bub1, incomplete chromatin structures resulted in several replication defects. Here, we report new evidence, which shows that loss of H2Bub1 contributes to genomic instability in yeast. Specifically, we demonstrate that H2Bub1-deficient yeast accumulate mutations at a high frequency under conditions of replicative stress. This phenotype is due to an aberrant DNA Damage Tolerance (DDT) response upon fork stalling. We show that H2Bub1 normally functions to promote error-free translesion synthesis (TLS) mediated by DNA polymerase eta (Polη). Without H2Bub1, DNA polymerase zeta (Polζ) is responsible for a highly mutagenic alternative mechanism. While H2Bub1 does not appear to regulate other DDT pathways, error-free DDT mechanisms are employed by H2Bub1-deficient cells as another means for survival. However, in these instances, the anti-recombinase, Srs2, is essential to prevent the accumulation of toxic HR intermediates that arise in an unconstrained chromatin environment.
Collapse
Affiliation(s)
- Matthew R Northam
- University of Nebraska Medical Center, College of Medicine, Fred and Pamela Buffett Cancer Center, Department of Biochemistry and Molecular Biology, Omaha NE 68198, USA
| | - Kelly M Trujillo
- University of Nebraska Medical Center, College of Medicine, Fred and Pamela Buffett Cancer Center, Department of Biochemistry and Molecular Biology, Omaha NE 68198, USA
| |
Collapse
|
6
|
The NuA4 complex promotes translesion synthesis (TLS)-mediated DNA damage tolerance. Genetics 2015; 199:1065-76. [PMID: 25701288 DOI: 10.1534/genetics.115.174490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/13/2015] [Indexed: 01/01/2023] Open
Abstract
Lesions in DNA can block replication fork progression, leading to its collapse and gross chromosomal rearrangements. To circumvent such outcomes, the DNA damage tolerance (DDT) pathway becomes engaged, allowing the replisome to bypass a lesion and complete S phase. Chromatin remodeling complexes have been implicated in the DDT pathways, and here we identify the NuA4 remodeler, which is a histone acetyltransferase, to function on the translesion synthesis (TLS) branch of DDT. Genetic analyses in Saccharomyces cerevisiae showed synergistic sensitivity to MMS when NuA4 alleles, esa1-L254P and yng2Δ, were combined with the error-free bypass mutant ubc13Δ. The loss of viability was less pronounced when NuA4 complex mutants were disrupted in combination with error-prone/TLS factors, such as rev3Δ, suggesting an epistatic relationship between NuA4 and error-prone bypass. Consistent with cellular viability measurements, replication profiles after exposure to MMS indicated that small regions of unreplicated DNA or damage were present to a greater extent in esa1-L254P/ubc13Δ mutants, which persist beyond the completion of bulk replication compared to esa1-L254P/rev3Δ. The critical role of NuA4 in error-prone bypass is functional even after the bulk of replication is complete. Underscoring this observation, when Yng2 expression is restricted specifically to G2/M of the cell cycle, viability and TLS-dependent mutagenesis rates were restored. Lastly, disruption of HTZ1, which is a target of NuA4, also resulted in mutagenic rates of reversion on level with esa1-L254P and yng2Δ mutants, indicating that the histone variant H2A.Z functions in vivo on the TLS branch of DDT.
Collapse
|
7
|
Shirai H, Poetsch AR, Gunji A, Maeda D, Fujimori H, Fujihara H, Yoshida T, Ogino H, Masutani M. PARG dysfunction enhances DNA double strand break formation in S-phase after alkylation DNA damage and augments different cell death pathways. Cell Death Dis 2013; 4:e656. [PMID: 23744356 PMCID: PMC3698538 DOI: 10.1038/cddis.2013.133] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme responsible for the degradation of poly(ADP-ribose). PARG dysfunction sensitizes cells to alkylating agents and induces cell death; however, the details of this effect have not been fully elucidated. Here, we investigated the mechanism by which PARG deficiency leads to cell death in different cell types using methylmethanesulfonate (MMS), an alkylating agent, and Parg−/− mouse ES cells and human cancer cell lines. Parg−/− mouse ES cells showed increased levels of γ-H2AX, a marker of DNA double strand breaks (DSBs), accumulation of poly(ADP-ribose), p53 network activation, and S-phase arrest. Early apoptosis was enhanced in Parg−/− mouse ES cells. Parg−/− ES cells predominantly underwent caspase-dependent apoptosis. PARG was then knocked down in a p53-defective cell line, MIAPaCa2 cells, a human pancreatic cancer cell line. MIAPaCa2 cells were sensitized to MMS by PARG knockdown. Enhanced necrotic cell death was induced in MIAPaCa2 cells after augmenting γ-H2AX levels and S-phase arrest. Taken together, these data suggest that DSB repair defect causing S-phase arrest, but p53 status was not important for sensitization to alkylation DNA damage by PARG dysfunction, whereas the cell death pathway is dependent on the cell type. This study demonstrates that functional inhibition of PARG may be useful for sensitizing at least particular cancer cells to alkylating agents.
Collapse
Affiliation(s)
- H Shirai
- Division of Genome Stability Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Daee DL, Ferrari E, Longerich S, Zheng XF, Xue X, Branzei D, Sung P, Myung K. Rad5-dependent DNA repair functions of the Saccharomyces cerevisiae FANCM protein homolog Mph1. J Biol Chem 2012; 287:26563-75. [PMID: 22696213 DOI: 10.1074/jbc.m112.369918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstrand cross-links (ICLs) covalently link complementary DNA strands, block DNA replication, and transcription and must be removed to allow cell survival. Several pathways, including the Fanconi anemia (FA) pathway, can faithfully repair ICLs and maintain genomic integrity; however, the precise mechanisms of most ICL repair processes remain enigmatic. In this study we genetically characterized a conserved yeast ICL repair pathway composed of the yeast homologs (Mph1, Chl1, Mhf1, Mhf2) of four FA proteins (FANCM, FANCJ, MHF1, MHF2). This pathway is epistatic with Rad5-mediated DNA damage bypass and distinct from the ICL repair pathways mediated by Rad18 and Pso2. In addition, consistent with the FANCM role in stabilizing ICL-stalled replication forks, we present evidence that Mph1 prevents ICL-stalled replication forks from collapsing into double-strand breaks. This unique repair function of Mph1 is specific for ICL damage and does not extend to other types of damage. These studies reveal the functional conservation of the FA pathway and validate the yeast model for future studies to further elucidate the mechanism of the FA pathway.
Collapse
Affiliation(s)
- Danielle L Daee
- Genome Instability Section, Genetics, and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kang YH, Munashingha PR, Lee CH, Nguyen TA, Seo YS. Biochemical studies of the Saccharomyces cerevisiae Mph1 helicase on junction-containing DNA structures. Nucleic Acids Res 2011; 40:2089-106. [PMID: 22090425 PMCID: PMC3300029 DOI: 10.1093/nar/gkr983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saccharomyces cerevisiae Mph1 is a 3–5′ DNA helicase, required for the maintenance of genome integrity. In order to understand the ATPase/helicase role of Mph1 in genome stability, we characterized its helicase activity with a variety of DNA substrates, focusing on its action on junction structures containing three or four DNA strands. Consistent with its 3′ to 5′ directionality, Mph1 displaced 3′-flap substrates in double-fixed or equilibrating flap substrates. Surprisingly, Mph1 displaced the 5′-flap strand more efficiently than the 3′ flap strand from double-flap substrates, which is not expected for a 3–5′ DNA helicase. For this to occur, Mph1 required a threshold size (>5 nt) of 5′ single-stranded DNA flap. Based on the unique substrate requirements of Mph1 defined in this study, we propose that the helicase/ATPase activity of Mph1 play roles in converting multiple-stranded DNA structures into structures cleavable by processing enzymes such as Fen1. We also found that the helicase activity of Mph1 was used to cause structural alterations required for restoration of replication forks stalled due to damaged template. The helicase properties of Mph1 reported here could explain how it resolves D-loop structure, and are in keeping with a model proposed for the error-free damage avoidance pathway.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Department of Biological Sciences, Center for DNA Replication and Genome Instability, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | | | | | | | | |
Collapse
|
10
|
Doerfler L, Harris L, Viebranz E, Schmidt KH. Differential genetic interactions between Sgs1, DNA-damage checkpoint components and DNA repair factors in the maintenance of chromosome stability. Genome Integr 2011; 2:8. [PMID: 22040455 PMCID: PMC3231943 DOI: 10.1186/2041-9414-2-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/31/2011] [Indexed: 11/21/2022] Open
Abstract
Background Genome instability is associated with human cancers and chromosome breakage syndromes, including Bloom's syndrome, caused by inactivation of BLM helicase. Numerous mutations that lead to genome instability are known, yet how they interact genetically is poorly understood. Results We show that spontaneous translocations that arise by nonallelic homologous recombination in DNA-damage-checkpoint-defective yeast lacking the BLM-related Sgs1 helicase (sgs1Δ mec3Δ) are inhibited if cells lack Mec1/ATR kinase. Tel1/ATM, in contrast, acts as a suppressor independently of Mec3 and Sgs1. Translocations are also inhibited in cells lacking Dun1 kinase, but not in cells defective in a parallel checkpoint branch defined by Chk1 kinase. While we had previously shown that RAD51 deletion did not inhibit translocation formation, RAD59 deletion led to inhibition comparable to the rad52Δ mutation. A candidate screen of other DNA metabolic factors identified Exo1 as a strong suppressor of chromosomal rearrangements in the sgs1Δ mutant, becoming even more important for chromosomal stability upon MEC3 deletion. We determined that the C-terminal third of Exo1, harboring mismatch repair protein binding sites and phosphorylation sites, is dispensable for Exo1's roles in chromosomal rearrangement suppression, mutation avoidance and resistance to DNA-damaging agents. Conclusions Our findings suggest that translocations between related genes can form by Rad59-dependent, Rad51-independent homologous recombination, which is independently suppressed by Sgs1, Tel1, Mec3 and Exo1 but promoted by Dun1 and the telomerase-inhibitor Mec1. We propose a model for the functional interaction between mitotic recombination and the DNA-damage checkpoint in the suppression of chromosomal rearrangements in sgs1Δ cells.
Collapse
Affiliation(s)
- Lillian Doerfler
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Lorena Harris
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Emilie Viebranz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|