1
|
Garlick JM, Mapp AK. Selective Modulation of Dynamic Protein Complexes. Cell Chem Biol 2020; 27:986-997. [PMID: 32783965 PMCID: PMC7469457 DOI: 10.1016/j.chembiol.2020.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Dynamic proteins perform critical roles in cellular machines, including those that control proteostasis, transcription, translation, and signaling. Thus, dynamic proteins are prime candidates for chemical probe and drug discovery but difficult targets because they do not conform to classical rules of design and screening. Selectivity is pivotal for candidate probe molecules due to the extensive interaction network of these dynamic hubs. Recognition that the traditional rules of probe discovery are not necessarily applicable to dynamic proteins and their complexes, as well as technological advances in screening, have produced remarkable results in the last 2-4 years. Particularly notable are the improvements in target selectivity for small-molecule modulators of dynamic proteins, especially with techniques that increase the discovery likelihood of allosteric regulatory mechanisms. We focus on approaches to small-molecule screening that appear to be more suitable for highly dynamic targets and have the potential to streamline identification of selective modulators.
Collapse
Affiliation(s)
- Julie M Garlick
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Alazi E, Khosravi C, Homan TG, du Pré S, Arentshorst M, Di Falco M, Pham TTM, Peng M, Aguilar-Pontes MV, Visser J, Tsang A, de Vries RP, Ram AFJ. The pathway intermediate 2-keto-3-deoxy-L-galactonate mediates the induction of genes involved in D-galacturonic acid utilization in Aspergillus niger. FEBS Lett 2017; 591:1408-1418. [PMID: 28417461 PMCID: PMC5488244 DOI: 10.1002/1873-3468.12654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023]
Abstract
In Aspergillus niger, the enzymes encoded by gaaA, gaaB, and gaaC catabolize d‐galacturonic acid (GA) consecutively into l‐galactonate, 2‐keto‐3‐deoxy‐l‐galactonate, pyruvate, and l‐glyceraldehyde, while GaaD converts l‐glyceraldehyde to glycerol. Deletion of gaaB or gaaC results in severely impaired growth on GA and accumulation of l‐galactonate and 2‐keto‐3‐deoxy‐l‐galactonate, respectively. Expression levels of GA‐responsive genes are specifically elevated in the ∆gaaC mutant on GA as compared to the reference strain and other GA catabolic pathway deletion mutants. This indicates that 2‐keto‐3‐deoxy‐l‐galactonate is the inducer of genes required for GA utilization.
Collapse
Affiliation(s)
- Ebru Alazi
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, The Netherlands
| | - Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht University, The Netherlands
| | - Tim G Homan
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, The Netherlands
| | - Saskia du Pré
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, The Netherlands
| | - Mark Arentshorst
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, The Netherlands
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Thi T M Pham
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht University, The Netherlands
| | | | - Jaap Visser
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, The Netherlands.,Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht University, The Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht University, The Netherlands
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, The Netherlands
| |
Collapse
|
3
|
Hsp90 Maintains Proteostasis of the Galactose Utilization Pathway To Prevent Cell Lethality. Mol Cell Biol 2016; 36:1412-24. [PMID: 26951197 DOI: 10.1128/mcb.01064-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/26/2016] [Indexed: 12/15/2022] Open
Abstract
Hsp90 is a molecular chaperone that aids in the folding of its metastable client proteins. Past studies have shown that it can exert a strong impact on some cellular pathways by controlling key regulators. However, it is unknown whether several components of a single pathway are collectively regulated by Hsp90. Here, we observe that Hsp90 influences the protein abundance of multiple Gal proteins and the efficiency of galactose utilization even after the galactose utilization pathway (GAL pathway) is fully induced. The effect of Hsp90 on Gal proteins is not at the transcriptional level. Moreover, Gal1 is found to physically interact with Hsp90, and its stability is reduced in low-Hsp90 cells. When Hsp90 is compromised, several Gal proteins form protein aggregates that colocalize with the disaggregase Hsp104. These results suggest that Gal1 and other Gal proteins are probably the clients of Hsp90. An unbalanced GAL pathway has been known to cause fatal growth arrest due to accumulation of toxic galactose metabolic intermediates. It is likely that Hsp90 chaperones multiple Gal proteins to maintain proteostasis and prevent cell lethality especially in a fluctuating environment.
Collapse
|
4
|
Song R, Peng W, Liu P, Acar M. A cell size- and cell cycle-aware stochastic model for predicting time-dynamic gene network activity in individual cells. BMC SYSTEMS BIOLOGY 2015; 9:91. [PMID: 26646617 PMCID: PMC4673848 DOI: 10.1186/s12918-015-0240-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/02/2015] [Indexed: 11/29/2022]
Abstract
Background Despite the development of various modeling approaches to predict gene network activity, a time dynamic stochastic model taking into account real-time changes in cell volume and cell cycle stages is still missing. Results Here we present a stochastic single-cell model that can be applied to any eukaryotic gene network with any number of components. The model tracks changes in cell volume, DNA replication, and cell division, and dynamically adjusts rates of stochastic reactions based on this information. By tracking cell division, the model can maintain cell lineage information, allowing the researcher to trace the descendants of any single cell and therefore study cell lineage effects. To test the predictive power of our model, we applied it to the canonical galactose network of the yeast Saccharomyces cerevisiae. Using a minimal set of free parameters and across several galactose induction conditions, the model effectively captured several details of the experimentally-obtained single-cell network activity levels as well as phenotypic switching rates. Conclusion Our model can readily be customized to model any gene network in any of the commonly used cells types, offering a novel and user-friendly stochastic modeling capability to the systems biology field. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0240-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruijie Song
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA. .,Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA.
| | - Weilin Peng
- Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA. .,Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
| | - Ping Liu
- Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA. .,Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
| | - Murat Acar
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA. .,Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA. .,Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA. .,Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
5
|
Upadhyay SK. Dynamics of Gal80p in the Gal80p-Gal3p complex differ significantly from the dynamics in the Gal80p-Gal1p complex: implications for the higher specificity of Gal3p. MOLECULAR BIOSYSTEMS 2015; 10:3120-9. [PMID: 25220841 DOI: 10.1039/c4mb00371c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The expression of the GAL gene in Sacharomyces cerevisiae is regulated by three proteins; Gal3p/Gal1p, Gal80p and Gal4p. Both Gal3p and Gal1p act as transcriptional inducers, though Gal3p has a higher activity than Gal1p. The difference in activity may depend on the strength of the interaction and dynamical behavior of these proteins during complex formation with the repressor protein Gal80p. To address these queries we have modeled the binding interface of the Gal1p-Gal80p and Gal3p-Gal80p complexes. The comparison of the dynamics of these proteins in the complex and in the Apo protein was carried out. It was observed that the binding of Gal3p with Gal80p induces significant flexibility in Gal80p on a surface different from the one involved in binding with Gal3p. Several other differences at the interface between the Gal3p-Gal80p and the Gal1p-Gal80p complex were observed, which might permit Gal3p to act as a transcriptional inducer with higher activity. Further, we have discussed the dynamical event and plausible mechanism of complex formation of Gal3p and Gal1p with Gal80p at the molecular level.
Collapse
Affiliation(s)
- Sanjay K Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
6
|
Lichius A, Seidl-Seiboth V, Seiboth B, Kubicek CP. Nucleo-cytoplasmic shuttling dynamics of the transcriptional regulators XYR1 and CRE1 under conditions of cellulase and xylanase gene expression in Trichoderma reesei. Mol Microbiol 2014; 94:1162-1178. [PMID: 25302561 PMCID: PMC4282317 DOI: 10.1111/mmi.12824] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 01/26/2023]
Abstract
Trichoderma reesei is a model for investigating the regulation of (hemi-)cellulase gene expression. Cellulases are formed adaptively, and the transcriptional activator XYR1 and the carbon catabolite repressor CRE1 are main regulators of their expression. We quantified the nucleo-cytoplasmic shuttling dynamics of GFP-fusion proteins of both transcription factors under cellulase and xylanase inducing conditions, and correlated their nuclear presence/absence with transcriptional changes. We also compared their subcellular localization in conidial germlings and mature hyphae. We show that cellulase gene expression requires de novo biosynthesis of XYR1 and its simultaneous nuclear import, whereas carbon catabolite repression is regulated through preformed CRE1 imported from the cytoplasmic pool. Termination of induction immediately stopped cellulase gene transcription and was accompanied by rapid nuclear degradation of XYR1. In contrast, nuclear CRE1 rapidly decreased upon glucose depletion, and became recycled into the cytoplasm. In mature hyphae, nuclei containing activated XYR1 were concentrated in the colony center, indicating that this is the main region of XYR1 synthesis and cellulase transcription. CRE1 was found to be evenly distributed throughout the entire mycelium. Taken together, our data revealed novel aspects of the dynamic shuttling and spatial bias of the major regulator of (hemi-)cellulase gene expression, XYR1, in T. reesei.
Collapse
Affiliation(s)
- Alexander Lichius
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Bernhard Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Christian P Kubicek
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
- Austrian Center of Industrial BiotechnologyGraz, Austria
| |
Collapse
|
7
|
Regulations of sugar transporters: insights from yeast. Curr Genet 2013; 59:1-31. [PMID: 23455612 DOI: 10.1007/s00294-013-0388-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 12/24/2022]
Abstract
Transport across the plasma membrane is the first step at which nutrient supply is tightly regulated in response to intracellular needs and often also rapidly changing external environment. In this review, I describe primarily our current understanding of multiple interconnected glucose-sensing systems and signal-transduction pathways that ensure fast and optimum expression of genes encoding hexose transporters in three yeast species, Saccharomyces cerevisiae, Kluyveromyces lactis and Candida albicans. In addition, an overview of GAL- and MAL-specific regulatory networks, controlling galactose and maltose utilization, is provided. Finally, pathways generating signals inducing posttranslational degradation of sugar transporters will be highlighted.
Collapse
|
8
|
Pannala VR, Hazarika SJ, Bhat PJ, Bhartiya S, Venkatesh KV. Growth-related model of the GAL system in Saccharomyces cerevisiae predicts behaviour of several mutant strains. IET Syst Biol 2012; 6:44-53. [PMID: 22519357 DOI: 10.1049/iet-syb.2010.0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic regulatory network responds dynamically to perturbations in the intracellular and extracellular environments of an organism. The GAL system in the yeast Saccharomyces cerevisiae has evolved to utilise galactose as an alternative carbon and energy source, in the absence of glucose in the environment. This work contains a modified dynamic model for GAL system in S. cerevisiae, which includes a novel mechanism for Gal3p activation upon induction with galactose. The modification enables the model to simulate the experimental observation that in absence of galactose, oversynthesis of Gal3p can also induce the GAL system. Subsequently, the model is related to growth on galactose and glucose in a structured manner. The growth-related models are validated with experimental data for growth on individual substrates as well as mixed substrates. Finally, the model is tested for its prediction of a variety of known mutant behaviours. The exercise shows that the authors' model with a single set of parameters is able to capture the rich behaviour of the GAL system in S. cerevisiae. [Includes supplementary material].
Collapse
Affiliation(s)
- V R Pannala
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | | | | | |
Collapse
|
9
|
Upadhyay SK, Sasidhar YU. Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes. J Comput Aided Mol Des 2012; 26:847-64. [PMID: 22639079 DOI: 10.1007/s10822-012-9579-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
The Gal4p mediated transcriptional activation of GAL genes requires the interaction between Gal3p bound with ATP and galactose and Gal80p. Though numerous studies suggest that galactose and ATP activate Gal3p/Gal1p interaction with Gal80p, neither the mechanism of activation nor the interacting surface that binds to Gal80p is well understood. In this study we investigated the dynamics of Gal3p and Gal1p in the presence and absence of ligands ATP and galactose to understand the role played by dynamics in the function of these proteins through molecular dynamics simulation and protein-protein docking studies. We performed simulations totaling to 510 ns on both Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose. We find that, while binding of ligands ATP and galactose to Gal3p/Gal1p do not affect the global conformation of proteins, some local conformational changes around upper-lip helix including insertion domain are observed. We observed that only in the presence of ATP and galactose, Gal3p displays opening and closing motion between the two domains. And because of this motion, a binding interface, which is largely hydrophobic, opens up on the surface of Gal3p and this surface can bind to Gal80p. From our simulation studies we infer probable docking sites for Gal80p on Gal3p/Gal1p, which were further ascertained by the docking of Gal80p on to ligand bound Gal1p and Gal3p proteins, and the residues at the interface between Gal3p and Gal80p are identified. Our results correlate quite well with the existing body of literature on functional and dynamical aspects of Gal1p and Gal3p proteins.
Collapse
Affiliation(s)
- Sanjay K Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
10
|
Transplantation of the GAL regulon into G-protein signaling circuitry in yeast. Anal Biochem 2012; 424:27-31. [DOI: 10.1016/j.ab.2012.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/03/2012] [Indexed: 12/21/2022]
|
11
|
Lavy T, Kumar PR, He H, Joshua-Tor L. The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation. Genes Dev 2012; 26:294-303. [PMID: 22302941 DOI: 10.1101/gad.182691.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A wealth of genetic information and some biochemical analysis have made the GAL regulon of the yeast Saccharomyces cerevisiae a classic model system for studying transcriptional activation in eukaryotes. Galactose induces this transcriptional switch, which is regulated by three proteins: the transcriptional activator Gal4p, bound to DNA; the repressor Gal80p; and the transducer Gal3p. We showed previously that NADP appears to act as a trigger to kick the repressor off the activator. Sustained activation involves a complex of the transducer Gal3p and Gal80p mediated by galactose and ATP. We solved the crystal structure of the complex of Gal3p-Gal80p with α-D-galactose and ATP to 2.1 Å resolution. The interaction between the proteins occurs only when Gal3p is in a "closed" state induced by ligand binding. The structure of the complex provides a rationale for the phenotypes of several well-known Gal80p and Gal3p mutants as well as the lack of galactokinase activity of Gal3p.
Collapse
Affiliation(s)
- Tali Lavy
- Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
12
|
Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 2012; 189:705-36. [PMID: 22084422 DOI: 10.1534/genetics.111.127019] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms.
Collapse
|
13
|
Interplay of a ligand sensor and an enzyme in controlling expression of the Saccharomyces cerevisiae GAL genes. EUKARYOTIC CELL 2011; 11:334-42. [PMID: 22210830 DOI: 10.1128/ec.05294-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of the Saccharomyces cerevisiae GAL genes in response to galactose as a source of carbon has served as a paradigm for eukaryotic transcriptional control over the last 50 years. Three proteins--a transcriptional activator (Gal4p), an inhibitor (Gal80p), and a ligand sensor (Gal3p)--control the switch between inert and active gene expression. The molecular mechanism by which the recognition of galactose within the cell is converted into a transcriptional response has been the subject of considerable debate. In this study, using a novel and powerful method of localizing active transcription factors within the nuclei of cells, we show that a short-lived complex between Gal4p, Gal80p, and Gal3p occurs soon after the addition of galactose to cells to activate GAL gene expression. Gal3p is subsequently replaced in this complex by Gal1p, and a Gal4p-Gal80p-Gal1p complex is responsible for the continued expression of the GAL genes. The transient role of the ligand sensor indicates that current models for the induction and continued expression of the yeast GAL genes need to be reevaluated.
Collapse
|
14
|
Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae. J Theor Biol 2011; 293:219-35. [PMID: 22024631 DOI: 10.1016/j.jtbi.2011.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/24/2011] [Accepted: 10/11/2011] [Indexed: 11/21/2022]
Abstract
Genetic switches are prevalent in nature and provide cells with a strategy to adapt to changing environments. The GAL switch is an intriguing example which is not understood in all detail. The GAL switch allows organisms to metabolize galactose, and controls whether the machinery responsible for the galactose metabolism is turned on or off. Currently, it is not known exactly how the galactose signal is sensed by the transcriptional machinery. Here we utilize quantitative tools to understand the S. cerevisiae cell response to galactose challenge, and to analyze the plausible molecular mechanisms underlying its operation. We work at a population level to develop a dynamic model based on the interplay of the key regulatory proteins Gal4p, Gal80p, and Gal3p. To our knowledge, the model presented here is the first to reproduce qualitatively the bistable network behavior found experimentally. Given the current understanding of the GAL circuit induction (Wightman et al., 2008; Jiang et al., 2009), we propose that the most likely in vivo mechanism leading to the transcriptional activation of the GAL genes is the physical interaction between galactose-activated Gal3p and Gal80p, with the complex Gal3p-Gal80p remaining bound at the GAL promoters. Our mathematical model is in agreement with the flow cytometry profiles of wild type, gal3Δ and gal80Δ mutant strains from Acar et al. (2005), and involves a fraction of actively transcribing cells with the same qualitative features as in the data set collected by Acar et al. (2010). Furthermore, the computational modeling provides an explanation for the contradictory results obtained by independent laboratories when tackling experimentally the issue of binary versus graded response to galactose induction.
Collapse
|
15
|
Rapid GAL gene switch of Saccharomyces cerevisiae depends on nuclear Gal3, not nucleocytoplasmic trafficking of Gal3 and Gal80. Genetics 2011; 189:825-36. [PMID: 21890741 DOI: 10.1534/genetics.111.131839] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The yeast transcriptional activator Gal4 localizes to UAS(GAL) sites even in the absence of galactose but cannot activate transcription due to an association with the Gal80 protein. By 4 min after galactose addition, Gal4-activated gene transcription ensues. It is well established that this rapid induction arises through a galactose-triggered association between the Gal80 and Gal3 proteins that decreases the association of Gal80 and Gal4. How this happens mechanistically remains unclear. Strikingly different hypotheses prevail concerning the possible roles of nucleocytoplasmic distribution and trafficking of Gal3 and Gal80 and where in the cell the initial Gal3-Gal80 association occurs. Here we tested two conflicting hypotheses by evaluating the subcellular distribution and dynamics of Gal3 and Gal80 with reference to induction kinetics. We determined that the rates of nucleocytoplasmic trafficking for both Gal80 and Gal3 are slow relative to the rate of induction. We find that depletion of the nuclear pool of Gal3 slows the induction kinetics. Thus, nuclear Gal3 is critical for rapid induction. Fluorescence-recovery-after-photobleaching experiments provided data suggesting that the Gal80-Gal4 complex exhibits kinetic stability in the absence of galactose. Finally, we detect Gal3 at the UAS(GAL) only if Gal80 is covalently linked to the DNA-binding domain. Taken altogether, these new findings lead us to propose that a transient interaction of Gal3 with Gal4-associated Gal80 could explain the rapid response of this system. This notion could also explain earlier observations.
Collapse
|
16
|
Campbell RN, Westhorpe F, Reece RJ. Isolation of compensatory inhibitor domain mutants to novel activation domain variants using the split-ubiquitin screen. Yeast 2011; 28:569-78. [DOI: 10.1002/yea.1861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/17/2011] [Indexed: 12/13/2022] Open
|
17
|
Pannala VR, Ahammed Sherief KY, Bhartiya S, Venkatesh KV. Dynamic analysis of the KlGAL regulatory system in Kluyveromyces lactis: a comparative study with Saccharomyces cerevisiae. SYSTEMS AND SYNTHETIC BIOLOGY 2011; 5:69-85. [PMID: 22654995 DOI: 10.1007/s11693-011-9082-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/29/2011] [Accepted: 05/18/2011] [Indexed: 01/01/2023]
Abstract
UNLABELLED The GAL regulatory system is highly conserved in yeast species of Saccharomyces cerevisiae and Kluyveromyces lactis. While the GAL system is a well studied system in S. cerevisiae, the dynamic behavior of the KlGAL system in K. lactis has not been characterized. Here, we have characterized the GAL system in yeast K. lactis by developing a dynamic model and comparing its performance to its not-so-distant cousin S. cerevisiae. The present analysis demonstrates the significance of the autoregulatory feedbacks due to KlGal4p, KlGal80p, KlGal1p and Lac12p on the dynamic performance of the KlGAL switch. The model predicts the experimentally observed absence of bistability in the wild type strain of K. lactis, unlike the short term memory of preculturing conditions observed in S. cerevisiae. The performance of the GAL switch is distinct for the two yeast species although they share similarities in the molecular components. The analysis suggests that the whole genome duplication of S. cerevisiae, which resulted in a dedicated inducer protein, Gal3p, may be responsible for the high sensitivity of the system to galactose concentrations. On the other hand, K. lactis uses a bifunctional protein as an inducer in addition to its galactokinase activity, which restricts its regulatory role and hence higher galactose levels in the medium are needed to trigger the GAL system. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11693-011-9082-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venkat Reddy Pannala
- Department of Chemical Engineering, Indian Institute of Technology, Powai, Mumbai, 400076 India
| | | | | | | |
Collapse
|
18
|
Barnard E, Timson DJ. The GAL genetic switch: visualisation of the interacting proteins by split-EGFP bimolecular fluorescence complementation. J Basic Microbiol 2011; 51:312-7. [PMID: 21298679 DOI: 10.1002/jobm.201000198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/09/2010] [Indexed: 11/08/2022]
Abstract
A split-EGFP bimolecular fluorescence complementation assay was used to visualise and locate three interacting pairs of proteins from the GAL genetic switch of the budding yeast, Saccharomyces cerevisiae. Both the Gal4p-Gal80p and Gal80p-Gal3p pairs were found to be located in the nucleus under inducing conditions. However, the Gal80p-Gal1p complex was located throughout the cell. These results support recent work establishing an initial interaction between Gal3p and Gal80p occurring in the nucleus. Labelling of all three protein pairs impaired the growth of the yeast strains and resulted in reduced galactokinase activity in cell extracts. The most likely cause of this impairment is decreased dissociation rates of the complexes, caused by the essentially irreversible reassembly of the EGFP fragments. This suggests that a fully functional GAL genetic switch requires dynamic interactions between the protein components. These results also highlight the need for caution in the interpretation of in vivo split-EGFP experiments.
Collapse
Affiliation(s)
- Emma Barnard
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | | |
Collapse
|
19
|
Pannala VR, Bhat PJ, Bhartiya S, Venkatesh KV. Systems biology ofGALregulon inSaccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:98-106. [DOI: 10.1002/wsbm.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Venkat Reddy Pannala
- Department of Chemical Engineering, Indian Institute of Technology, Bombay Mumbai, India 400076
| | - Paike Jayadeva Bhat
- School of Bioscience and Bioengineering, Indian Institute of Technology, Bombay Mumbai, India 400076
| | - Sharad Bhartiya
- Department of Chemical Engineering, Indian Institute of Technology, Bombay Mumbai, India 400076
| | - K. V. Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology, Bombay Mumbai, India 400076
- School of Bioscience and Bioengineering, Indian Institute of Technology, Bombay Mumbai, India 400076
| |
Collapse
|
20
|
Majmudar CY, Lee LW, Lancia JK, Nwokoye A, Wang Q, Wands AM, Wang L, Mapp AK. Impact of nonnatural amino acid mutagenesis on the in vivo function and binding modes of a transcriptional activator. J Am Chem Soc 2009; 131:14240-2. [PMID: 19764747 DOI: 10.1021/ja904378z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions play an essential role in cellular function, and methods to discover and characterize them in their native context are of paramount importance for gaining a deeper understanding of biological networks. In this study, an enhanced nonsense suppression system was utilized to incorporate the nonnatural amino acid p-benzoyl-L-phenylalanine (pBpa) throughout the transcriptional activation domain of the prototypical eukaryotic transcriptional activator Gal4 in vivo (S. cerevisiae). Functional studies of the pBpa-containing Gal4 mutants suggest that this essential binding interface of Gal4 is minimally impacted by these substitutions, with both transcriptional activity and sensitivity to growth conditions maintained. Further supporting this are in vivo cross-linking studies, including the detection of a key binding partner of Gal4, the inhibitor protein Gal80. Cross-linking with a range of pBpa-containing mutants revealed a Gal4 x Gal80 binding interface that extends beyond that previously predicted by conventional strategies. Thus, this approach can be broadened to the discovery of novel binding partners of transcription factors, information that will be critical for the development of therapeutically useful small molecule modulators of these protein-protein interactions.
Collapse
Affiliation(s)
- Chinmay Y Majmudar
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gene activation by dissociation of an inhibitor from a transcriptional activation domain. Mol Cell Biol 2009; 29:5604-10. [PMID: 19651897 DOI: 10.1128/mcb.00632-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gal4 is a prototypical eukaryotic transcriptional activator whose recruitment function is inhibited in the absence of galactose by the Gal80 protein through masking of its transcriptional activation domain (AD). A long-standing nondissociation model posits that galactose-activated Gal3 interacts with Gal4-bound Gal80 at the promoter, yielding a tripartite Gal3-Gal80-Gal4 complex with altered Gal80-Gal4 conformation to enable Gal4 AD activity. Some recent data challenge this model, whereas other recent data support the model. To address this controversy, we imaged fluorescent-protein-tagged Gal80, Gal4, and Gal3 in live cells containing a novel GAL gene array. We find that Gal80 rapidly dissociates from Gal4 in response to galactose. Importantly, this dissociation is Gal3 dependent and concurrent with Gal4-activated GAL gene expression. When galactose-triggered dissociation is followed by galactose depletion, preexisting Gal80 reassociates with Gal4, indicating that sequestration of Gal80 by Gal3 contributes to the observed Gal80-Gal4 dissociation. Moreover, the ratio of nuclear Gal80 to cytoplasmic Gal80 decreases in response to Gal80-Gal3 interaction. Taken together, these and other results provide strong support for a GAL gene switch model wherein Gal80 rapidly dissociates from Gal4 through a mechanism that involves sequestration of Gal80 by galactose-activated Gal3.
Collapse
|
22
|
Role of chromatin states in transcriptional memory. Biochim Biophys Acta Gen Subj 2009; 1790:445-55. [PMID: 19236904 DOI: 10.1016/j.bbagen.2009.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/16/2022]
Abstract
Establishment of cellular memory and its faithful propagation is critical for successful development of multicellular organisms. As pluripotent cells differentiate, choices in cell fate are inherited and maintained by their progeny throughout the lifetime of the organism. A major factor in this process is the epigenetic inheritance of specific transcriptional states or transcriptional memory. In this review, we discuss chromatin transitions and mechanisms by which they are inherited by subsequent generations. We also discuss illuminating cases of cellular memory in budding yeast and evaluate whether transcriptional memory in yeast is nuclear or cytoplasmically inherited.
Collapse
|
23
|
Current awareness on yeast. Yeast 1990. [DOI: 10.1002/yea.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|