1
|
Hladyshau S, Guan K, Nivedita N, Errede B, Tsygankov D, Elston TC. Multiscale Modeling of Bistability in the Yeast Polarity Circuit. Cells 2024; 13:1358. [PMID: 39195248 PMCID: PMC11352540 DOI: 10.3390/cells13161358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Cell polarity refers to the asymmetric distribution of proteins and other molecules along a specified axis within a cell. Polarity establishment is the first step in many cellular processes. For example, directed growth or migration requires the formation of a cell front and back. In many cases, polarity occurs in the absence of spatial cues. That is, the cell undergoes symmetry breaking. Understanding the molecular mechanisms that allow cells to break symmetry and polarize requires computational models that span multiple spatial and temporal scales. Here, we apply a multiscale modeling approach to examine the polarity circuit of yeast. In addition to symmetry breaking, experiments revealed two key features of the yeast polarity circuit: bistability and rapid dismantling of the polarity site following a loss of signal. We used modeling based on ordinary differential equations (ODEs) to investigate mechanisms that generate these behaviors. Our analysis revealed that a model involving positive and negative feedback acting on different time scales captured both features. We then extend our ODE model into a coarse-grained reaction-diffusion equation (RDE) model to capture the spatial profiles of polarity factors. After establishing that the coarse-grained RDE model qualitatively captures key features of the polarity circuit, we expand it to more accurately capture the biochemical reactions involved in the system. We convert the expanded model to a particle-based model that resolves individual molecules and captures fluctuations that arise from the stochastic nature of biochemical reactions. Our models assume that negative regulation results from negative feedback. However, experimental observations do not rule out the possibility that negative regulation occurs through an incoherent feedforward loop. Therefore, we conclude by using our RDE model to suggest how negative feedback might be distinguished from incoherent feedforward regulation.
Collapse
Affiliation(s)
- Siarhei Hladyshau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kaiyun Guan
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nivedita Nivedita
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Timothy C. Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Lind AC, David F, Siewers V. Evaluation and comparison of colorimetric outputs for yeast-based biosensors in laboratory and point-of-use settings. FEMS Microbiol Lett 2024; 371:fnae034. [PMID: 38782713 PMCID: PMC11166083 DOI: 10.1093/femsle/fnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Recent research has shown the potential of yeast-based biosensors (YBBs) for point-of-use detection of pathogens and target molecules in saliva, blood, and urine samples. The choice of output can greatly affect the sensitivity, dynamic range, detection time, and ease-of-use of a sensor. For visual detection without the need for additional reagents or machinery, colorimetric outputs have shown great potential. Here, we evaluated the inducible generation of prodeoxyviolacein and proviolacein as colorimetric YBB outputs and benchmarked these against lycopene. The outputs were induced via the yeast mating pathway and were compared on agar plates, in liquid culture, and on paper slips. We found that all three outputs produced comparable pigment intensity on agar plates, making them applicable for bioengineering settings. In liquid media and on paper slips, lycopene resulted in a higher intensity pigment and a decreased time-of-detection.
Collapse
Affiliation(s)
- Andrea Clausen Lind
- Department of Life Sciences, Chalmers University of Technology, 412 58 Gothenburg, Sweden
| | - Florian David
- Department of Life Sciences, Chalmers University of Technology, 412 58 Gothenburg, Sweden
| | - Verena Siewers
- Department of Life Sciences, Chalmers University of Technology, 412 58 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Pomeroy AE, Peña MI, Houser JR, Dixit G, Dohlman HG, Elston TC, Errede B. A predictive model of gene expression reveals the role of network motifs in the mating response of yeast. Sci Signal 2021; 14:14/670/eabb5235. [PMID: 33593998 DOI: 10.1126/scisignal.abb5235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cells use signaling pathways to receive and process information about their environment. These nonlinear systems rely on feedback and feedforward regulation to respond appropriately to changing environmental conditions. Mathematical models describing signaling pathways often lack predictive power because they are not trained on data that encompass the diverse time scales on which these regulatory mechanisms operate. We addressed this limitation by measuring transcriptional changes induced by the mating response in Saccharomyces cerevisiae exposed to different dynamic patterns of pheromone. We found that pheromone-induced transcription persisted after pheromone removal and showed long-term adaptation upon sustained pheromone exposure. We developed a model of the regulatory network that captured both characteristics of the mating response. We fit this model to experimental data with an evolutionary algorithm and used the parameterized model to predict scenarios for which it was not trained, including different temporal stimulus profiles and genetic perturbations to pathway components. Our model allowed us to establish the role of four architectural elements of the network in regulating gene expression. These network motifs are incoherent feedforward, positive feedback, negative feedback, and repressor binding. Experimental and computational perturbations to these network motifs established a specific role for each in coordinating the mating response to persistent and dynamic stimulation.
Collapse
Affiliation(s)
- Amy E Pomeroy
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Matthew I Peña
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - John R Houser
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gauri Dixit
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G Dohlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets. Proc Natl Acad Sci U S A 2016; 113:E1835-43. [PMID: 26966232 DOI: 10.1073/pnas.1517140113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.
Collapse
|
5
|
Errede B, Vered L, Ford E, Pena MI, Elston TC. Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to Gα. Mol Biol Cell 2015; 26:3343-58. [PMID: 26179918 PMCID: PMC4569322 DOI: 10.1091/mbc.e15-03-0176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/08/2015] [Indexed: 12/20/2022] Open
Abstract
Unique roles are found for the MAPK Fus3 during the mating response of yeast. In particular, the interaction of Fus3 with the G-protein α-subunit is required for morphogenesis and gradient tracking and suppresses cell-to-cell variability between mating and chemotropic fates in a population of pheromone-responding cells. Mitogen-activated protein kinase (MAPK) pathways control many cellular processes, including differentiation and proliferation. These pathways commonly activate MAPK isoforms that have redundant or overlapping function. However, recent studies have revealed circumstances in which MAPK isoforms have specialized, nonoverlapping roles in differentiation. The mechanisms that underlie this specialization are not well understood. To address this question, we sought to establish regulatory mechanisms that are unique to the MAPK Fus3 in pheromone-induced mating and chemotropic fate transitions of the budding yeast Saccharomyces cerevisiae. Our investigations reveal a previously unappreciated role for inactive Fus3 as a potent negative regulator of pheromone-induced chemotropism. We show that this inhibitory role is dependent on inactive Fus3 binding to the α-subunit of the heterotrimeric G-protein. Further analysis revealed that the binding of catalytically active Fus3 to the G-protein is required for gradient tracking and serves to suppress cell-to-cell variability between mating and chemotropic fates in a population of pheromone-responding cells.
Collapse
Affiliation(s)
- Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Lior Vered
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Eintou Ford
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Matthew I Pena
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
6
|
Li Y, Wang Y. Ras protein/cAMP-dependent protein kinase signaling is negatively regulated by a deubiquitinating enzyme, Ubp3, in yeast. J Biol Chem 2013; 288:11358-65. [PMID: 23476013 DOI: 10.1074/jbc.m112.449751] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ras proteins and cAMP-dependent protein kinase (protein kinase A, PKA) are important components of a nutrient signaling pathway that mediates cellular responses to glucose in yeast. The molecular mechanisms that regulate Ras/PKA-mediated signaling remain to be fully understood. Here, we provide evidence that Ras/PKA signaling is negatively regulated by a deubiquitinating enzyme, Ubp3. Disrupting the activity of Ubp3 leads to hyperactivation of PKA, as evidenced by much enhanced phosphorylation of PKA substrates, decreased accumulation of glycogen, larger cell size, and increased sensitivity to heat shock. Levels of intracellular cAMP and the active forms of Ras proteins are also elevated in the ubp3Δ mutant. Consistent with a possibility that the increased cAMP is responsible for the abnormal signaling behavior of the ubp3Δ mutant, overexpressing PDE2, which encodes a phosphodiesterase that hydrolyzes cAMP, significantly relieves the cell size increase and heat shock sensitivity of the mutant. Further analysis reveals that Ubp3 interacts with a Ras GTPase-accelerating protein, Ira2, and regulates its level of ubiquitination. Together, our data indicate that Ubp3 is a new regulator of the Ras/PKA signaling pathway and suggest that Ubp3 regulates this pathway by controlling the ubiquitination of Ras GTPase-accelerating protein Ira2.
Collapse
Affiliation(s)
- Yang Li
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | | |
Collapse
|
7
|
Houser JR, Ford E, Nagiec MJ, Errede B, Elston TC. Positive roles for negative regulators in the mating response of yeast. Mol Syst Biol 2012; 8:586. [PMID: 22669614 PMCID: PMC3397415 DOI: 10.1038/msb.2012.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 04/30/2012] [Indexed: 11/09/2022] Open
Abstract
All cells must detect and respond to changes in their environment, often through changes in gene expression. The yeast pheromone pathway has been extensively characterized, and is an ideal system for studying transcriptional regulation. Here we combine computational and experimental approaches to study transcriptional regulation mediated by Ste12, the key transcription factor in the pheromone response. Our mathematical model is able to explain multiple counterintuitive experimental results and led to several novel findings. First, we found that the transcriptional repressors Dig1 and Dig2 positively affect transcription by stabilizing Ste12. This stabilization through protein-protein interactions creates a large pool of Ste12 that is rapidly activated following pheromone stimulation. Second, we found that protein degradation follows saturating kinetics, explaining the long half-life of Ste12 in mutants expressing elevated amounts of Ste12. Finally, our model reveals a novel mechanism for robust perfect adaptation through protein-protein interactions that enhance complex stability. This mechanism allows the transcriptional response to act on a shorter time scale than upstream pathway activity.
Collapse
Affiliation(s)
- John R Houser
- Department of Physics, University of North Carolina, Chapel Hill, NC, USA
| | - Eintou Ford
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Michal J Nagiec
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Abstract
Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host-cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways-rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)-also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior.
Collapse
|
9
|
Rispail N, Di Pietro A. The homeodomain transcription factor Ste12: Connecting fungal MAPK signalling to plant pathogenicity. Commun Integr Biol 2011; 3:327-32. [PMID: 20798817 DOI: 10.4161/cib.3.4.11908] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 11/19/2022] Open
Abstract
A conserved mitogen-activated protein kinase (MAPK) cascade orthologous to the mating/filamentation MAPK pathway in yeast is required for fungal pathogenicity on plants. One of the key targets of this signaling pathway is the homeodomain transcription factor Ste12. Mutational analysis of ste12 orthologues in a variety of plant pathogenic fungi suggests that Ste12 functions as a master regulator of invasive growth. In this mini-review we highlight recent progress in understanding the role of Ste12 in filamentous fungi and discuss future challenges of unravelling the mechanisms by which Ste12 controls fungal virulence downstream of the Pathogenicity MAPK cascade.
Collapse
Affiliation(s)
- Nicolas Rispail
- Departamento de Gen'etica; Universidad de C'ordoba; Campus de Rabanales Edif. C5; C'ordoba, Spain
| | | |
Collapse
|
10
|
Zhu M, Torres MP, Kelley JB, Dohlman HG, Wang Y. Pheromone- and RSP5-dependent ubiquitination of the G protein beta subunit Ste4 in yeast. J Biol Chem 2011; 286:27147-55. [PMID: 21685393 DOI: 10.1074/jbc.m111.254193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ste4 is the β subunit of a heterotrimeric G protein that mediates mating responses in Saccharomyces cerevisiae. Here we show that Ste4 undergoes ubiquitination in response to pheromone stimulation. Ubiquitination of Ste4 is dependent on the E3 ligase Rsp5. Disrupting the activity of Rsp5 abolishes ubiquitination of Ste4 in vivo, and recombinant Rsp5 is capable of ubiquitinating Ste4 in vitro. We find also that Lys-340 is a major ubiquitination site on Ste4, as pheromone-induced ubiquitination of the protein is prevented when this residue is mutated to an arginine. Functionally, ubiquitination does not appear to regulate the stability of Ste4, as blocking ubiquitination has no apparent effect on either the abundance or the half-life of the protein. However, when presented with a concentration gradient of pheromone, Ste4(K340R) mutant cells polarize significantly faster than wild-type cells, indicating that ubiquitination limits pheromone-directed polarized growth. Together, these findings reveal a novel stimulus-dependent posttranslational modification of a Gβ subunit, establish Ste4 as a new substrate of the E3 ligase Rsp5, and demonstrate a role for G protein ubiquitination in cell polarization.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | | | | | | | | |
Collapse
|
11
|
Rispail N, Di Pietro A. The homeodomain transcription factor Ste12: Connecting fungal MAPK signalling to plant pathogenicity. Commun Integr Biol 2010. [PMID: 20798817 DOI: 10.4161/cib.3.4.11908.pmid:20798817;pmcid:pmc2928309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
A conserved mitogen-activated protein kinase (MAPK) cascade orthologous to the mating/filamentation MAPK pathway in yeast is required for fungal pathogenicity on plants. One of the key targets of this signaling pathway is the homeodomain transcription factor Ste12. Mutational analysis of ste12 orthologues in a variety of plant pathogenic fungi suggests that Ste12 functions as a master regulator of invasive growth. In this mini-review we highlight recent progress in understanding the role of Ste12 in filamentous fungi and discuss future challenges of unravelling the mechanisms by which Ste12 controls fungal virulence downstream of the Pathogenicity MAPK cascade.
Collapse
Affiliation(s)
- Nicolas Rispail
- Departamento de Gen'etica; Universidad de C'ordoba; Campus de Rabanales Edif. C5; C'ordoba, Spain
| | | |
Collapse
|
12
|
Ste12 and Ste12-like proteins, fungal transcription factors regulating development and pathogenicity. EUKARYOTIC CELL 2010; 9:480-5. [PMID: 20139240 DOI: 10.1128/ec.00333-09] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ste12 and Ste12-like proteins are transcription factors found exclusively in the fungal kingdom. In the yeast model Saccharomyces cerevisiae, where the first member was identified, Ste12p was shown to regulate mating and invasive/pseudohyphal growth. In recent literature, there have been several reports of Ste12-like factors in multiple fungal systems, yeasts or filamentous fungi, with saprophytic or parasitic life-styles. In all these models, Ste12 and Ste12-like factors are involved in the regulation of fungal development and pathogenicity. In this review, we discuss the features, the regulation, and the role of Ste12 and Ste12-like factors by highlighting the similarities and dissimilarities that occur within this group.
Collapse
|
13
|
Wang Y, Abu Irqeba A, Ayalew M, Suntay K. Sumoylation of transcription factor Tec1 regulates signaling of mitogen-activated protein kinase pathways in yeast. PLoS One 2009; 4:e7456. [PMID: 19826484 PMCID: PMC2758588 DOI: 10.1371/journal.pone.0007456] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022] Open
Abstract
Tec1 is a transcription factor in the yeast mitogen-activated protein kinase (MAPK) pathway that controls invasive growth. Previously we reported that a fraction of Tec1 protein is sumoylated on residue lysine 54 in normally growing cells. Here we describe regulation and functional consequences of Tec1 sumoylation. We found that activation of Kss1, the MAPK that directly activates Tec1, results in a decrease in Tec1 sumoylation and a concurrent increase of Tec1 transcriptional activity. Consistent with a role of sumoylation in inhibiting Tec1 activity, specifically increasing sumoylation of Tec1 by fusing it to the sumoylating enzyme Ubc9 leads to a dramatic decrease of Tec1 transcriptional activity. Invasive growth is also compromised in Tec1-Ubc9. In contrast, fusing sumoylation-site mutant Tec1, i.e., Tec1K54R, to Ubc9 did not significantly alter transcriptional activation and had a less effect on invasive growth. Taken together, these findings provide evidence for regulated sumoylation as a mechanism to modulate the activity of Tec1 and validate Ubc9 fusion-directed sumoylation as a useful approach for studying protein sumoylation.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America.
| | | | | | | |
Collapse
|
14
|
Hu B, Rappel WJ, Levine H. Mechanisms and constraints on yeast MAPK signaling specificity. Biophys J 2009; 96:4755-63. [PMID: 19527636 DOI: 10.1016/j.bpj.2009.02.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 12/22/2008] [Accepted: 02/11/2009] [Indexed: 02/02/2023] Open
Abstract
The survival of cells relies on their ability to respond specifically to diverse environmental signals. Surprisingly, intracellular signaling pathways often share the same or homologous protein components, yet undesirable crosstalk is, in general, suppressed. This signaling specificity has been well studied in the yeast model system Saccharomyces cerevisiae, where the mitogen-activated protein kinase (MAPK) cascades are repeatedly employed in mediating distinct biological processes including pheromone-induced mating and filamentous growth under starvation. Although various mechanisms have been proposed to interpret the yeast MAPK signaling specificity, a consistent theory is still lacking. Here, we present a mathematical model that shows signaling specificity can arise through asymmetric hierarchical inhibition. The parameters of our model are, where possible, based on experimental data that allow us to determine the constraints imposed by signaling specificity on these parameters. Our model is in broad agreement with experimental observations to date and generates testable predictions that may stimulate further research.
Collapse
Affiliation(s)
- Bo Hu
- Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
15
|
Nucleus-specific and cell cycle-regulated degradation of mitogen-activated protein kinase scaffold protein Ste5 contributes to the control of signaling competence. Mol Cell Biol 2008; 29:582-601. [PMID: 19001089 DOI: 10.1128/mcb.01019-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae cells are capable of responding to mating pheromone only prior to their exit from the G(1) phase of the cell cycle. Ste5 scaffold protein is essential for pheromone response because it couples pheromone receptor stimulation to activation of the appropriate mitogen-activated protein kinase (MAPK) cascade. In naïve cells, Ste5 resides primarily in the nucleus. Upon pheromone treatment, Ste5 is rapidly exported from the nucleus and accumulates at the tip of the mating projection via its association with multiple plasma membrane-localized molecules. We found that concomitant with its nuclear export, the rate of Ste5 turnover is markedly reduced. Preventing nuclear export destabilized Ste5, whereas preventing nuclear entry stabilized Ste5, indicating that Ste5 degradation occurs mainly in the nucleus. This degradation is dependent on ubiquitin and the proteasome. We show that Ste5 ubiquitinylation is mediated by the SCF(Cdc4) ubiquitin ligase and requires phosphorylation by the G(1) cyclin-dependent protein kinase (cdk1). The inability to efficiently degrade Ste5 resulted in pathway activation and cell cycle arrest in the absence of pheromone. These findings reveal that maintenance of this MAPK scaffold at an appropriately low level depends on its compartment-specific and cell cycle-dependent degradation. Overall, this mechanism provides a novel means for helping to prevent inadvertent stimulus-independent activation of a response and for restricting and maximizing the signaling competence of the cell to a specific cell cycle stage, which likely works hand in hand with the demonstrated role that G(1) Cdk1-dependent phosphorylation of Ste5 has in preventing its association with the plasma membrane.
Collapse
|
16
|
Dose-to-duration encoding and signaling beyond saturation in intracellular signaling networks. PLoS Comput Biol 2008; 4:e1000197. [PMID: 18846202 PMCID: PMC2543107 DOI: 10.1371/journal.pcbi.1000197] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 09/02/2008] [Indexed: 11/27/2022] Open
Abstract
The cellular response elicited by an environmental cue typically varies with the strength of the stimulus. For example, in the yeast Saccharomyces cerevisiae, the concentration of mating pheromone determines whether cells undergo vegetative growth, chemotropic growth, or mating. This implies that the signaling pathways responsible for detecting the stimulus and initiating a response must transmit quantitative information about the intensity of the signal. Our previous experimental results suggest that yeast encode pheromone concentration as the duration of the transmitted signal. Here we use mathematical modeling to analyze possible biochemical mechanisms for performing this “dose-to-duration” conversion. We demonstrate that modulation of signal duration increases the range of stimulus concentrations for which dose-dependent responses are possible; this increased dynamic range produces the counterintuitive result of “signaling beyond saturation” in which dose-dependent responses are still possible after apparent saturation of the receptors. We propose a mechanism for dose-to-duration encoding in the yeast pheromone pathway that is consistent with current experimental observations. Most previous investigations of information processing by signaling pathways have focused on amplitude encoding without considering temporal aspects of signal transduction. Here we demonstrate that dose-to-duration encoding provides cells with an alternative mechanism for processing and transmitting quantitative information about their surrounding environment. The ability of signaling pathways to convert stimulus strength into signal duration results directly from the nonlinear nature of these systems and emphasizes the importance of considering the dynamic properties of signaling pathways when characterizing their behavior. Understanding how signaling pathways encode and transmit quantitative information about the external environment will not only deepen our understanding of these systems but also provide insight into how to reestablish proper function of pathways that have become dysregulated by disease. Cells must be able to detect and respond to changes in their surroundings. Often environmental cues, such as hormones or growth factors, are received by membrane receptors that in turn activate intracellular signaling pathways. These pathways then transmit information about the stimulus to the cellular components required to elicit an appropriate response. In many cases, the nature of the response depends on the dose of the stimulus. Thus, in addition to relaying qualitative information (e.g., the presence or absence of a stimulus), signaling pathways must also transmit quantitative information about the intensity of the stimulus. Here we introduce “dose-to-duration” encoding as an effective strategy for relaying such information. We demonstrate that by providing a mechanism for overcoming saturation effects, modulation of signal duration increases the range of stimulus concentrations for which dose-dependent responses are possible. This increased dynamic range produces the counterintuitive result of “signaling beyond saturation” in which dose-dependent responses are still possible after apparent saturation of the receptors. Finally, we demonstrate that dose-to-duration encoding is used in the yeast mating response pathway and presents a simple mechanism that can account for current experimental observations.
Collapse
|
17
|
Yi S, Sahni N, Daniels KJ, Pujol C, Srikantha T, Soll DR. The same receptor, G protein, and mitogen-activated protein kinase pathway activate different downstream regulators in the alternative white and opaque pheromone responses of Candida albicans. Mol Biol Cell 2007; 19:957-70. [PMID: 18162580 DOI: 10.1091/mbc.e07-07-0688] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida albicans must undergo a switch from white to opaque to mate. Opaque cells then release mating type-specific pheromones that induce mating responses in opaque cells. Uniquely in C. albicans, the same pheromones induce mating-incompetent white cells to become cohesive, form an adhesive basal layer of cells on a surface, and then generate a thicker biofilm that, in vitro, facilitates mating between minority opaque cells. Through mutant analysis, it is demonstrated that the pathways regulating the white and opaque cell responses to the same pheromone share the same upstream components, including receptors, heterotrimeric G protein, and mitogen-activated protein kinase cascade, but they use different downstream transcription factors that regulate the expression of genes specific to the alternative responses. This configuration, although common in higher, multicellular systems, is not common in fungi, and it has not been reported in Saccharomyces cerevisiae. The implications in the evolution of multicellularity in higher eukaryotes are discussed.
Collapse
Affiliation(s)
- Song Yi
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
18
|
Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1311-40. [PMID: 17604854 PMCID: PMC2031910 DOI: 10.1016/j.bbamcr.2007.05.003] [Citation(s) in RCA: 469] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.
Collapse
Affiliation(s)
- Raymond E Chen
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|