1
|
Tekle YI, Smith AR, McGinnis M, Ghebezadik S, Patel P. A New Paramoeba Isolate From Florida Exhibits a Microtubule-Bound Endosymbiont Closely Associated With the Host Nucleus. J Eukaryot Microbiol 2025; 72:e70011. [PMID: 40370212 PMCID: PMC12079164 DOI: 10.1111/jeu.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
The genera Paramoeba and Neoparamoeba, within the family Paramoebidae (order Dactylopodida), are distinguished by their dactylopodial pseudopodia and the presence of an intracellular eukaryotic symbiont, the Perkinsela-like organism (PLO). Taxonomic classification within these genera has been challenging due to overlapping morphological traits and close phylogenetic relationships. They are marine, with some playing significant roles as parasites. Notably, they have been implicated in sea urchin mass mortality events and are known causative agents of Amoebic Gill Disease (AGD) in fish. Despite their ecological and economic importance, many aspects of their diversity, biology, evolution, and host interactions remain poorly understood. In this study, we describe a novel amoeba species, Paramoeba daytoni n. sp., isolated from Daytona Beach, Florida. Morphological and molecular analyses confirm its placement within the Paramoeba clade, closely related to P. eilhardi, P. karteshi, and P. aparasomata. Phylogenetic assessments using 18S rDNA (18S) and Cytochrome c Oxidase I (COI) markers demonstrate the limitations of the 18S gene for species delineation, highlighting COI as a more reliable genetic marker for this group. Additionally, observations on PLO morphology, movement, and microtubule association provide insights into the endosymbiotic relationship, reinforcing the need for further research into this unique eukaryote-eukaryote symbiosis.
Collapse
|
2
|
Tekle YI, Smith AR, McGinnis M, Ghebezadik S, Patel P. A new Paramoeba Isolate from Florida Exhibits a Microtubule-Bound Endosymbiont Closely Associated with the Host Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642444. [PMID: 40161691 PMCID: PMC11952465 DOI: 10.1101/2025.03.10.642444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The genera Paramoeba and Neoparamoeba , within the family Paramoebidae (order Dactylopodida), are distinguished by their dactylopodial pseudopodia and the presence of an intracellular eukaryotic symbiont, the Perkinsela -like organism (PLO). Taxonomic classification within these genera has been challenging due to overlapping morphological traits and close phylogenetic relationships. Most species are marine, with some acting as significant parasites, contributing to sea urchin mass mortality and serving as causative agents of Amoebic Gill Disease (AGD). Despite their ecological and economic importance, many aspects of their diversity, biology, evolution, and host interactions remain poorly understood. In this study, we describe a novel amoeba species, Paramoeba daytoni n. sp., isolated from Daytona Beach, Florida. Morphological and molecular analyses confirm its placement within the Paramoeba clade, closely related to P. eilhardi, P. karteshi, and P. aparasomata . Phylogenetic assessments using 18S and COI markers demonstrate the limitations of 18S gene for species delineation, highlighting COI as a more reliable genetic marker for this group. Additionally, observations on PLO morphology, movement, and microtubule association provide insights into the endosymbiotic relationship, reinforcing the need for further research into this unique eukaryote-eukaryote symbiosis.
Collapse
|
3
|
Cerón-Romero MA, Maurer-Alcalá XX, Grattepanche JD, Yan Y, Fonseca MM, Katz LA. PhyloToL: A Taxon/Gene-Rich Phylogenomic Pipeline to Explore Genome Evolution of Diverse Eukaryotes. Mol Biol Evol 2020; 36:1831-1842. [PMID: 31062861 PMCID: PMC6657734 DOI: 10.1093/molbev/msz103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Estimating multiple sequence alignments (MSAs) and inferring phylogenies are essential for many aspects of comparative biology. Yet, many bioinformatics tools for such analyses have focused on specific clades, with greatest attention paid to plants, animals, and fungi. The rapid increase in high-throughput sequencing (HTS) data from diverse lineages now provides opportunities to estimate evolutionary relationships and gene family evolution across the eukaryotic tree of life. At the same time, these types of data are known to be error-prone (e.g., substitutions, contamination). To address these opportunities and challenges, we have refined a phylogenomic pipeline, now named PhyloToL, to allow easy incorporation of data from HTS studies, to automate production of both MSAs and gene trees, and to identify and remove contaminants. PhyloToL is designed for phylogenomic analyses of diverse lineages across the tree of life (i.e., at scales of >100 My). We demonstrate the power of PhyloToL by assessing stop codon usage in Ciliophora, identifying contamination in a taxon- and gene-rich database and exploring the evolutionary history of chromosomes in the kinetoplastid parasite Trypanosoma brucei, the causative agent of African sleeping sickness. Benchmarking PhyloToL’s homology assessment against that of OrthoMCL and a published paper on superfamilies of bacterial and eukaryotic organellar outer membrane pore-forming proteins demonstrates the power of our approach for determining gene family membership and inferring gene trees. PhyloToL is highly flexible and allows users to easily explore HTS data, test hypotheses about phylogeny and gene family evolution and combine outputs with third-party tools (e.g., PhyloChromoMap, iGTP).
Collapse
Affiliation(s)
- Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, MA.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA
| | - Xyrus X Maurer-Alcalá
- Department of Biological Sciences, Smith College, Northampton, MA.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA.,Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Jean-David Grattepanche
- Department of Biological Sciences, Smith College, Northampton, MA.,Biology Department, Temple University, Philadelphia, PA
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, MA
| | - Miguel M Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - L A Katz
- Department of Biological Sciences, Smith College, Northampton, MA.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|
4
|
Tyml T, Date SV, Woyke T. A single-cell genome perspective on studying intracellular associations in unicellular eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190082. [PMID: 31587647 PMCID: PMC6792452 DOI: 10.1098/rstb.2019.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Single-cell genomics (SCG) methods provide a unique opportunity to analyse whole genome information at the resolution of an individual cell. While SCG has been extensively used to investigate bacterial and archaeal genomes, the technique has been rarely used to access the genetic makeup of uncultivated microbial eukaryotes. In this regard, the use of SCG can provide a wealth of information; not only do the methods allow exploration of the genome, they can also help elucidate the relationship between the cell and intracellular entities extant in nearly all eukaryotes. SCG enables the study of total eukaryotic cellular DNA, which in turn allows us to better understand the evolutionary history and diversity of life, and the physiological interactions that define complex organisms. This article is part of a discussion meeting issue ‘Single cell ecology’.
Collapse
Affiliation(s)
- Tomáš Tyml
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Global Viral, San Francisco, CA, USA
| | | | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
5
|
Lukeš J, Wheeler R, Jirsová D, David V, Archibald JM. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life 2018; 70:1267-1274. [PMID: 30291814 PMCID: PMC6334171 DOI: 10.1002/iub.1894] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/25/2022]
Abstract
The mitochondrial DNA of diplonemid and kinetoplastid protists is known for its suite of bizarre features, including the presence of concatenated circular molecules, extensive trans‐splicing and various forms of RNA editing. Here we report on the existence of another remarkable characteristic: hyper‐inflated DNA content. We estimated the total amount of mitochondrial DNA in four kinetoplastid species (Trypanosoma brucei, Trypanoplasma borreli, Cryptobia helicis, and Perkinsela sp.) and the diplonemid Diplonema papillatum. Staining with 4′,6‐diamidino‐2‐phenylindole and RedDot1 followed by color deconvolution and quantification revealed massive inflation in the total amount of DNA in their organelles. This was further confirmed by electron microscopy. The most extreme case is the ∼260 Mbp of DNA in the mitochondrion of Diplonema, which greatly exceeds that in its nucleus; this is, to our knowledge, the largest amount of DNA described in any organelle. Perkinsela sp. has a total mitochondrial DNA content ~6.6× greater than its nuclear genome. This mass of DNA occupies most of the volume of the Perkinsela cell, despite the fact that it contains only six protein‐coding genes. Why so much DNA? We propose that these bloated mitochondrial DNAs accumulated by a ratchet‐like process. Despite their excessive nature, the synthesis and maintenance of these mtDNAs must incur a relatively low cost, considering that diplonemids are one of the most ubiquitous and speciose protist groups in the ocean. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology., 70(12):1267–1274, 2018
Collapse
Affiliation(s)
- Julius Lukeš
- Institute of ParasitologyBiology Centre, Czech Academy of SciencesČeské Budějovice (Budweis)Czech Republic
- Faculty of ScienceUniversity of South BohemiaČeské Budějovice (Budweis)Czech Republic
| | - Richard Wheeler
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Dagmar Jirsová
- Institute of ParasitologyBiology Centre, Czech Academy of SciencesČeské Budějovice (Budweis)Czech Republic
| | - Vojtěch David
- Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada
| | - John M. Archibald
- Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada
| |
Collapse
|
6
|
Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology 2018; 145:1311-1323. [PMID: 29895336 DOI: 10.1017/s0031182018000781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parasitic trypanosomatids diverged from free-living kinetoplastid ancestors several hundred million years ago. These parasites are relatively well known, due in part to several unusual cell biological and molecular traits and in part to the significance of a few - pathogenic Leishmania and Trypanosoma species - as aetiological agents of serious neglected tropical diseases. However, the majority of trypanosomatid biodiversity is represented by osmotrophic monoxenous parasites of insects. In two lineages, novymonads and strigomonads, osmotrophic lifestyles are supported by cytoplasmic endosymbionts, providing hosts with macromolecular precursors and vitamins. Here we discuss the two independent origins of endosymbiosis within trypanosomatids and subsequently different evolutionary trajectories that see entrainment vs tolerance of symbiont cell divisions cycles within those of the host. With the potential to inform on the transition to obligate parasitism in the trypanosomatids, interest in the biology and ecology of free-living, phagotrophic kinetoplastids is beginning to enjoy a renaissance. Thus, we take the opportunity to additionally consider the wider relevance of endosymbiosis during kinetoplastid evolution, including the indulged lifestyle and reductive evolution of basal kinetoplastid Perkinsela.
Collapse
|
7
|
Tanifuji G, Cenci U, Moog D, Dean S, Nakayama T, David V, Fiala I, Curtis BA, Sibbald SJ, Onodera NT, Colp M, Flegontov P, Johnson-MacKinnon J, McPhee M, Inagaki Y, Hashimoto T, Kelly S, Gull K, Lukeš J, Archibald JM. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci Rep 2017; 7:11688. [PMID: 28916813 PMCID: PMC5601477 DOI: 10.1038/s41598-017-11866-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/31/2017] [Indexed: 01/12/2023] Open
Abstract
Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive ‘cross-talk’ between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.
Collapse
Affiliation(s)
- Goro Tanifuji
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| | - Ugo Cenci
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Laboratory for Cell Biology, Philipps University, Marburg, Germany
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Takuro Nakayama
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life Sciences, Tohoku University, Tohoku, Japan
| | - Vojtěch David
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Bruce A Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Naoko T Onodera
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Morgan Colp
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jessica Johnson-MacKinnon
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Marine and Antarctic Sciences, University of Tasmania, Launceston, Australia
| | - Michael McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Canada.
| |
Collapse
|
8
|
The unconventional kinetoplastid kinetochore: from discovery toward functional understanding. Biochem Soc Trans 2017; 44:1201-1217. [PMID: 27911702 PMCID: PMC5095916 DOI: 10.1042/bst20160112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
The kinetochore is the macromolecular protein complex that drives chromosome segregation in eukaryotes. Its most fundamental function is to connect centromeric DNA to dynamic spindle microtubules. Studies in popular model eukaryotes have shown that centromere protein (CENP)-A is critical for DNA-binding, whereas the Ndc80 complex is essential for microtubule-binding. Given their conservation in diverse eukaryotes, it was widely believed that all eukaryotes would utilize these components to make up a core of the kinetochore. However, a recent study identified an unconventional type of kinetochore in evolutionarily distant kinetoplastid species, showing that chromosome segregation can be achieved using a distinct set of proteins. Here, I review the discovery of the two kinetochore systems and discuss how their studies contribute to a better understanding of the eukaryotic chromosome segregation machinery.
Collapse
|
9
|
Sibbald SJ, Cenci U, Colp M, Eglit Y, O'Kelly CJ, Archibald JM. Diversity and Evolution of Paramoeba spp. and their Kinetoplastid Endosymbionts. J Eukaryot Microbiol 2017; 64:598-607. [PMID: 28150358 DOI: 10.1111/jeu.12394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 11/30/2022]
Abstract
Members of the genus Paramoeba (including Neoparamoeba) (Amoebozoa) are single-celled eukaryotes of economic and ecological importance because of their association with disease in a variety of marine animals including fish, sea urchins, and lobster. Interestingly, they harbor a eukaryotic endosymbiont of kinetoplastid ancestry, Perkinsela sp. To investigate the complex relationship between Paramoeba spp. and Perkinsela sp., as well as the relationships between different Paramoeba species, molecular data was obtained for four novel isolates. We also acquired new data from the urchin pathogen P. invadens. Comprehensive molecular phylogenetic analyses were carried out using 33 newly obtained 18S rDNA sequences from the host amoebae and 16 new 18S rDNA sequences from their corresponding Perkinsela sp., together with all publicly available 18S molecular data. Intra-isolate 18S rDNA nucleotide diversity was found to be surprisingly high within the various species of Paramoeba, but relatively low within their Perkinsela sp. endosymbionts. 18S rDNA phylogenies and ParaFit co-evolution analysis revealed a high degree of congruence between the Paramoeba and Perkinsela sp. tree topologies, strongly suggesting that a single endosymbiotic event occurred in the common ancestor of known Paramoeba species, and that the endosymbionts have been inherited vertically ever since.
Collapse
Affiliation(s)
- Shannon J Sibbald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4H7, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, B3H 4H7, Canada
| | - Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4H7, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, B3H 4H7, Canada
| | - Morgan Colp
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4H7, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, B3H 4H7, Canada
| | - Yana Eglit
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, B3H 4H7, Canada.,Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, 98250, USA
| | - Charles J O'Kelly
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, 98250, USA
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4H7, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, B3H 4H7, Canada.,Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, ON, M5G 1Z8, Canada
| |
Collapse
|
10
|
Cenci U, Moog D, Curtis BA, Tanifuji G, Eme L, Lukeš J, Archibald JM. Heme pathway evolution in kinetoplastid protists. BMC Evol Biol 2016; 16:109. [PMID: 27193376 PMCID: PMC4870792 DOI: 10.1186/s12862-016-0664-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023] Open
Abstract
Background Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway—a core metabolic pathway in a wide range of organisms—is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. Results Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. Conclusion We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0664-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Goro Tanifuji
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budӗjovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
11
|
Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep 2016; 6:23704. [PMID: 27021793 PMCID: PMC4810370 DOI: 10.1038/srep23704] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/24/2016] [Indexed: 01/22/2023] Open
Abstract
Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.
Collapse
|
12
|
Gene Loss and Error-Prone RNA Editing in the Mitochondrion of Perkinsela, an Endosymbiotic Kinetoplastid. mBio 2015; 6:e01498-15. [PMID: 26628723 PMCID: PMC4669381 DOI: 10.1128/mbio.01498-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Perkinsela is an enigmatic early-branching kinetoplastid protist that lives as an obligate endosymbiont inside Paramoeba (Amoebozoa). We have sequenced the highly reduced mitochondrial genome of Perkinsela, which possesses only six protein-coding genes (cox1, cox2, cox3, cob, atp6, and rps12), despite the fact that the organelle itself contains more DNA than is present in either the host or endosymbiont nuclear genomes. An in silico analysis of two Perkinsela strains showed that mitochondrial RNA editing and processing machineries typical of kinetoplastid flagellates are generally conserved, and all mitochondrial transcripts undergo U-insertion/deletion editing. Canonical kinetoplastid mitochondrial ribosomes are also present. We have developed software tools for accurate and exhaustive mapping of transcriptome sequencing (RNA-seq) reads with extensive U-insertions/deletions, which allows detailed investigation of RNA editing via deep sequencing. With these methods, we show that up to 50% of reads for a given edited region contain errors of the editing system or, less likely, correspond to alternatively edited transcripts. Uridine insertion/deletion-type RNA editing, which occurs in the mitochondrion of kinetoplastid protists, has been well-studied in the model parasite genera Trypanosoma, Leishmania, and Crithidia. Perkinsela provides a unique opportunity to broaden our knowledge of RNA editing machinery from an evolutionary perspective, as it represents the earliest kinetoplastid branch and is an obligatory endosymbiont with extensive reductive trends. Interestingly, up to 50% of mitochondrial transcripts in Perkinsela contain errors. Our study was complemented by use of newly developed software designed for accurate mapping of extensively edited RNA-seq reads obtained by deep sequencing.
Collapse
|
13
|
Read LK, Lukeš J, Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:33-51. [PMID: 26522170 DOI: 10.1002/wrna.1313] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
RNA editing, which adds sequence information to RNAs post-transcriptionally, is a widespread phenomenon throughout eukaryotes. The most complex form of this process is the uridine (U) insertion/deletion editing that occurs in the mitochondria of kinetoplastid protists. RNA editing in these flagellates is specified by trans-acting guide RNAs and entails the insertion of hundreds and deletion of dozens of U residues from mitochondrial RNAs to produce mature, translatable mRNAs. An emerging model indicates that the machinery required for trypanosome RNA editing is much more complicated than previously appreciated. A family of RNA editing core complexes (RECCs), which contain the required enzymes and several structural proteins, catalyze cycles of U insertion and deletion. A second, dynamic multiprotein complex, the Mitochondrial RNA Binding 1 (MRB1) complex, has recently come to light as another essential component of the trypanosome RNA editing machinery. MRB1 likely serves as the platform for kinetoplastid RNA editing, and plays critical roles in RNA utilization and editing processivity. MRB1 also appears to act as a hub for coordination of RNA editing with additional mitochondrial RNA processing events. This review highlights the current knowledge regarding the complex molecular machinery involved in trypanosome RNA editing. WIREs RNA 2016, 7:33-51. doi: 10.1002/wrna.1313 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Laurie K Read
- University at Buffalo School of Medicine, Buffalo, NY, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Grant JR, Katz LA. Phylogenomic study indicates widespread lateral gene transfer in Entamoeba and suggests a past intimate relationship with parabasalids. Genome Biol Evol 2014; 6:2350-60. [PMID: 25146649 PMCID: PMC4217692 DOI: 10.1093/gbe/evu179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 12/13/2022] Open
Abstract
Lateral gene transfer (LGT) has impacted the evolutionary history of eukaryotes, though to a lesser extent than in bacteria and archaea. Detecting LGT and distinguishing it from single gene tree artifacts is difficult, particularly when considering very ancient events (i.e., over hundreds of millions of years). Here, we use two independent lines of evidence--a taxon-rich phylogenetic approach and an assessment of the patterns of gene presence/absence--to evaluate the extent of LGT in the parasitic amoebozoan genus Entamoeba. Previous work has suggested that a number of genes in the genome of Entamoeba spp. were acquired by LGT. Our approach, using an automated phylogenomic pipeline to build taxon-rich gene trees, suggests that LGT is more extensive than previously thought. Our analyses reveal that genes have frequently entered the Entamoeba genome via nonvertical events, including at least 116 genes acquired directly from bacteria or archaea, plus an additional 22 genes in which Entamoeba plus one other eukaryote are nested among bacteria and/or archaea. These genes may make good candidates for novel therapeutics, as drugs targeting these genes are less likely to impact the human host. Although we recognize the challenges of inferring intradomain transfers given systematic errors in gene trees, we find 109 genes supporting LGT from a eukaryote to Entamoeba spp., and 178 genes unique to Entamoeba spp. and one other eukaryotic taxon (i.e., presence/absence data). Inspection of these intradomain LGTs provide evidence of a common sister relationship between genes of Entamoeba (Amoebozoa) and parabasalids (Excavata). We speculate that this indicates a past close relationship (e.g., symbiosis) between ancestors of these extant lineages.
Collapse
Affiliation(s)
- Jessica R Grant
- Department of Biological Sciences, Smith College, Northampton, MA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA Program in Organismic and Evolutionary Biology, University of Massachusetts
| |
Collapse
|
15
|
Sühnel S, Ivachuk CDS, Schaefer ALC, Pontinha VA, Martins ML, Figueras A, Meyer GR, Jones SRM, Stewart JC, Gurney-Smith HJ, Magalhães ARM, Bower SM. Detection of a parasitic amoeba (Order Dactylopodida) in the female gonads of oysters in Brazil. DISEASES OF AQUATIC ORGANISMS 2014; 109:241-250. [PMID: 24991850 DOI: 10.3354/dao02748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The impacts of oocyte parasites on the reproductive success of molluscs are largely unknown. In this study, we evaluated the presence of gonad parasites in 6 species of marine bivalve molluscs native to southern Brazil. Cultured bivalves included the mangrove oyster Crassostrea gasar (sometimes called C. brasiliana), the brown mussel Perna perna, the lion's paw scallop Nodipecten nodosus and the wing pearl oyster Pteria hirundo. Another species of mangrove oyster, C. rhizophorae, and the carib pointed venus clam Anomalocardia brasiliana (syn. A. flexuosa) were collected from the wild. Molluscs were collected in winter 2009 and summer 2010 for histopathological and molecular evaluation. An unknown ovarian parasite (UOP) was observed in histopathological sections of female gonads of C. gasar and C. rhizophorae. The UOP possessed features suggestive of amoebae, including an irregular outer membrane, frothy cytoplasm, a nucleus with a prominent central nucleolus and a closely associated basophilic parasome. PCR analysis was negative for Marteilioides chungmuensis, Perkinsus spp. and Paramoeba perurans. However, real-time PCR successfully amplified DNA from oyster gonads when using universal Paramoeba spp. primers. Also, conventional PCR amplified DNA using primers specific for Perkinsela amoebae-like organisms (syn. Perkinsiella), which are considered as endosymbionts of Parameoba spp., previously thought to be the parasome. Our results suggest that this UOP is a species of amoeba belonging to 1 of the 2 families of the order Dactylopodida, possibly related to Paramoeba spp. This study represents the first report of this type of organism in oysters. We found that C. gasar and C. rhizophorae were the most susceptible molluscs to these UOPs.
Collapse
Affiliation(s)
- Simone Sühnel
- Nucleus for Aquatic Pathology Studies, Federal University of Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, 88040-900, Florianópolis, Santa Catarina (SC), Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Evolutionary mechanisms for establishing eukaryotic cellular complexity. Trends Cell Biol 2014; 24:435-42. [DOI: 10.1016/j.tcb.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 01/20/2023]
|
17
|
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 2014; 195:115-22. [PMID: 24893339 DOI: 10.1016/j.molbiopara.2014.05.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 12/01/2022]
Abstract
Kinetoplastid protists offer a unique opportunity for studying the evolution of parasitism. While all their close relatives are either photo- or phagotrophic, a number of kinetoplastid species are facultative or obligatory parasites, supporting a hypothesis that parasitism has emerged within this group of flagellates. In this review we discuss origin and evolution of parasitism in bodonids and trypanosomatids and specific adaptations allowing these protozoa to co-exist with their hosts. We also explore the limits of biodiversity of monoxenous (one host) trypanosomatids and some features distinguishing them from their dixenous (two hosts) relatives.
Collapse
Affiliation(s)
- Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Tomáš Skalický
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Department of Parasitology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
18
|
Fokin SI, Schrallhammer M, Chiellini C, Verni F, Petroni G. Free-living ciliates as potential reservoirs for eukaryotic parasites: occurrence of a trypanosomatid in the macronucleus of Euplotes encysticus. Parasit Vectors 2014; 7:203. [PMID: 24774858 PMCID: PMC4022238 DOI: 10.1186/1756-3305-7-203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/13/2014] [Indexed: 12/27/2022] Open
Abstract
Background Flagellates of the family Trypanosomatidae are obligate endoparasites, which can be found in various hosts. Several genera infect insects and occur as monoxenous parasites especially in representatives of Diptera and Hemiptera. These trypanosomatid flagellates probably share the worldwide distribution of their hosts, which are often infested by large numbers of endoparasites. Traditionally, their taxonomy was based on morphology, host origin, and life cycle. Here we report the characterization of a trypanosomatid infection detected in a protozoan, a ciliate collected from a polluted freshwater pond in a suburb of New Delhi (India). Methods Live observations and morphological studies applying light, fluorescence and transmission electron microscopy were conducted. Molecular analyses of host and parasite were performed and used for phylogenetic reconstructions and species (host) or genus level (parasite) identification. Results Although the morphological characteristics were not revealing, a high similarity of the trypanosomatids 18S rRNA gene sequence to Herpetomonas ztiplika and Herpetomonas trimorpha (Kinetoplastida, Trypanosomatidae), both parasites of biting midges (Culicoides kibunensis and Culicoides truncorum, respectively) allowed the assignment to this genus. The majority of the host population displayed a heavy infection that significantly affected the shape of the host macronucleus, which was the main site of parasite localization. In addition, the growth rate of host cultures, identified as Euplotes encysticus according to cell morphology and 18S rRNA gene sequence, was severely impacted by the infection. Conclusions The host-parasite system described here represents a recent example of free-living protists acting as environmental reservoirs for parasitic eukaryotic microorganisms.
Collapse
Affiliation(s)
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany.
| | | | | | | |
Collapse
|