1
|
Viigand K, Põšnograjeva K, Visnapuu T, Alamäe T. Genome Mining of Non-Conventional Yeasts: Search and Analysis of MAL Clusters and Proteins. Genes (Basel) 2018; 9:E354. [PMID: 30013016 PMCID: PMC6070925 DOI: 10.3390/genes9070354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic clustering of functionally related genes is rare in yeasts and other eukaryotes with only few examples available. Here, we summarize our data on a nontelomeric MAL cluster of a non-conventional methylotrophic yeast Ogataea (Hansenula) polymorpha containing genes for α-glucosidase MAL1, α-glucoside permease MAL2 and two hypothetical transcriptional activators. Using genome mining, we detected MAL clusters of varied number, position and composition in many other maltose-assimilating non-conventional yeasts from different phylogenetic groups. The highest number of MAL clusters was detected in Lipomyces starkeyi while no MAL clusters were found in Schizosaccharomyces pombe and Blastobotrys adeninivorans. Phylograms of α-glucosidases and α-glucoside transporters of yeasts agreed with phylogenesis of the respective yeast species. Substrate specificity of unstudied α-glucosidases was predicted from protein sequence analysis. Specific activities of Scheffersomycesstipitis α-glucosidases MAL7, MAL8, and MAL9 heterologously expressed in Escherichia coli confirmed the correctness of the prediction-these proteins were verified promiscuous maltase-isomaltases. α-Glucosidases of earlier diverged yeasts L. starkeyi, B. adeninivorans and S. pombe showed sequence relatedness with α-glucosidases of filamentous fungi and bacilli.
Collapse
Affiliation(s)
- Katrin Viigand
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kristina Põšnograjeva
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Triinu Visnapuu
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
2
|
Alves-Jr SL, Herberts RA, Hollatz C, Miletti LC, Stambuk BU. Maltose and Maltotriose Active Transport and Fermentation bySaccharomyces Cerevisiaes. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2007-0411-01] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sergio L. Alves-Jr
- Programa de Pós-graduação Interunidades em Biotecnologia, USP-BUTANTAN-IPT, São Paulo, Brazil
| | - Ricardo A. Herberts
- Programa de Pós-graduação em Biotecnologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Claudia Hollatz
- Programa de Pós-graduação em Biotecnologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luiz C. Miletti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Boris U. Stambuk
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
3
|
Zhang CY, Lin X, Song HY, Xiao DG. Effects of MAL61 and MAL62 overexpression on maltose fermentation of baker's yeast in lean dough. World J Microbiol Biotechnol 2015; 31:1241-9. [PMID: 26003653 DOI: 10.1007/s11274-015-1874-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/16/2015] [Indexed: 11/26/2022]
Abstract
The predominant fermentable sugar in lean dough is maltose. To improve the leavening ability of baker's yeast in lean dough, maltose metabolism should be improved. Maltase (alpha-glucosidase, encoded by MAL62) and maltose permease (encoded by MAL61) are the major factors involved in maltose metabolism. The major rate-limiting factor in maltose metabolism and leavening ability of baker's yeast remains unclear. In this work, MAL61 and/or MAL62 overexpression strains were constructed to investigate the decisive factor for maltose metabolism of industrial baker's yeast in lean dough. Our results show that elevated maltose permease activity by MAL61 overexpression yielded less improvement in maltose fermentation compared to elevated maltase activity by MAL62 overexpression. Significant increase in maltase activity by MAL62 overexpression could result in a 44% increase in leavening ability of industrial baker's yeast in lean dough and a 39% increase in maltose metabolism in a medium containing glucose and maltose. Thus, maltase was the rate-limiting factor in maltose fermentation of industrial baker's yeast in lean dough. This study lays a foundation for breeding of industrial baker's yeast for quick dough leavening.
Collapse
Affiliation(s)
- Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China,
| | | | | | | |
Collapse
|
4
|
New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, Xavier JB, Verstrepen KJ. Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol 2014; 12:e1001764. [PMID: 24453942 PMCID: PMC3891604 DOI: 10.1371/journal.pbio.1001764] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022] Open
Abstract
This study uses experimentally evolved brewer's yeasts to explore the costs and benefits of different nutrient-switching strategies when energy sources vary or remain constant. Organisms respond to environmental changes by adapting the expression of key genes. However, such transcriptional reprogramming requires time and energy, and may also leave the organism ill-adapted when the original environment returns. Here, we study the dynamics of transcriptional reprogramming and fitness in the model eukaryote Saccharomyces cerevisiae in response to changing carbon environments. Population and single-cell analyses reveal that some wild yeast strains rapidly and uniformly adapt gene expression and growth to changing carbon sources, whereas other strains respond more slowly, resulting in long periods of slow growth (the so-called “lag phase”) and large differences between individual cells within the population. We exploit this natural heterogeneity to evolve a set of mutants that demonstrate how the frequency and duration of changes in carbon source can favor different carbon catabolite repression strategies. At one end of this spectrum are “specialist” strategies that display high rates of growth in stable environments, with more stringent catabolite repression and slower transcriptional reprogramming. The other mutants display less stringent catabolite repression, resulting in leaky expression of genes that are not required for growth in glucose. This “generalist” strategy reduces fitness in glucose, but allows faster transcriptional reprogramming and shorter lag phases when the cells need to shift to alternative carbon sources. Whole-genome sequencing of these mutants reveals that mutations in key regulatory genes such as HXK2 and STD1 adjust the regulation and transcriptional noise of metabolic genes, with some mutations leading to alternative gene regulatory strategies that allow “stochastic sensing” of the environment. Together, our study unmasks how variable and stable environments favor distinct strategies of transcriptional reprogramming and growth. When microbes grow in a mixture of different nutrients, they repress the metabolism of nonpreferred nutrients such as complex carbohydrates until preferred nutrients, like glucose, are depleted. While this “catabolite repression” allows cells to use the most efficient nutrients first, it also comes at a cost because the switch to nonpreferred nutrients requires the de-repression of specific genes, and during this transition cells must temporarily stop dividing. Naively, one might expect that cells would activate the genes needed to resume growth in the new environment as quickly as possible. However, we find that the length of the growth lag that occurs when yeast cells are switched from the preferred carbon source glucose to alternative nutrients like maltose, galactose, or ethanol differs between wild yeast strains. By repeatedly alternating a slow-switching strain between glucose and maltose, we obtained mutants that show shortened lag phases. Although these variants can switch rapidly between carbon sources, they show reduced growth rates in environments where glucose is available continuously. Further analysis revealed that mutations in genes like HXK2 cause variations in the degree of catabolite repression, with some mutants showing leaky or stochastic maltose gene expression. Together, these results reveal how different gene regulation strategies can affect fitness in variable or stable environments.
Collapse
Affiliation(s)
- Aaron M. New
- VIB Laboratory of Systems Biology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Bram Cerulus
- VIB Laboratory of Systems Biology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Sander K. Govers
- VIB Laboratory of Systems Biology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Gemma Perez-Samper
- VIB Laboratory of Systems Biology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Bo Zhu
- VIB Laboratory of Systems Biology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Sarah Boogmans
- VIB Laboratory of Systems Biology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - Joao B. Xavier
- Program in Computational Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Kevin J. Verstrepen
- VIB Laboratory of Systems Biology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
5
|
Regulations of sugar transporters: insights from yeast. Curr Genet 2013; 59:1-31. [PMID: 23455612 DOI: 10.1007/s00294-013-0388-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 12/24/2022]
Abstract
Transport across the plasma membrane is the first step at which nutrient supply is tightly regulated in response to intracellular needs and often also rapidly changing external environment. In this review, I describe primarily our current understanding of multiple interconnected glucose-sensing systems and signal-transduction pathways that ensure fast and optimum expression of genes encoding hexose transporters in three yeast species, Saccharomyces cerevisiae, Kluyveromyces lactis and Candida albicans. In addition, an overview of GAL- and MAL-specific regulatory networks, controlling galactose and maltose utilization, is provided. Finally, pathways generating signals inducing posttranslational degradation of sugar transporters will be highlighted.
Collapse
|
6
|
Suppi S, Michelson T, Viigand K, Alamäe T. Repression vs. activation of MOX, FMD, MPP1 and MAL1 promoters by sugars in Hansenula polymorpha: the outcome depends on cell's ability to phosphorylate sugar. FEMS Yeast Res 2012; 13:219-32. [PMID: 23164245 DOI: 10.1111/1567-1364.12023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/08/2012] [Indexed: 12/01/2022] Open
Abstract
A high-throughput approach was used to assess the effect of mono- and disaccharides on MOX, FMD, MPP1 and MAL1 promoters in Hansenula polymorpha. Site-specifically designed strains deficient for (1) hexokinase, (2) hexokinase and glucokinase, (3) maltose permease or (4) maltase were used as hosts for reporter plasmids in which β-glucuronidase (Gus) expression was controlled by these promoters. The reporter strains were grown on agar plates containing varied carbon sources and Gus activity was measured in permeabilized cells on microtitre plates. We report that monosaccharides (glucose, fructose) repress studied promoters only if phosphorylated in the cell. Glucose-6-phosphate was proposed as a sugar repression signalling metabolite for H. polymorpha. Intriguingly, glucose and fructose strongly activated expression from these promoters in strains lacking both hexokinase and glucokinase, indicating that unphosphorylated monosaccharides have promoter-derepressing effect. We also show that maltose and sucrose must be internalized and split into monosaccharides to exert repression on MOX promoter. We demonstrate that at yeast growth on glucose-containing agar medium, glucose-limitation is rapidly created that promotes derepression of methanol-specific promoters and that derepression is specifically enhanced in hexokinase-negative strain. We recommend double kinase-negative and hexokinase-negative mutants as hosts for heterologous protein production from MOX and FMD promoters.
Collapse
Affiliation(s)
- Sandra Suppi
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
7
|
Enhanced leavening properties of baker's yeast overexpressing MAL62 with deletion of MIG1 in lean dough. J Ind Microbiol Biotechnol 2012; 39:1533-9. [PMID: 22669197 DOI: 10.1007/s10295-012-1144-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
This study aimed to increase maltose fermentation in industrial baker's yeast to increase its leavening properties. To this end, we overexpressed MAL62 encoding alpha-glucosidase (maltase) and deleted MIG1 encoding a transcriptional repressor that regulates MAL gene expression. Strain overexpressing MAL62 showed 46.3 % higher alpha-glucosidase activity and enhanced leaving activity than the parental strain when tested in glucose-maltose low sugar model liquid dough (LSMLD). Deleting MIG1 was much less effective, but it could further strengthen leavening properties in a strain overexpressing MAL62. The relationship between maltose permease and alpha-glucosidase was further dissected by transforming the two genes. The results indicated that without increasing the maltose permease activity, maltose metabolism could also be enhanced by the increased alpha-glucosidase activity. Previous strategies for strain improvement have targeted the enhancement of alpha-glucosidase and maltose permease activities in concert. Our results suggest that increasing alpha-glucosidase activity is sufficient to improve maltose fermentation in lean dough.
Collapse
|
8
|
Duval EH, Alves SL, Dunn B, Sherlock G, Stambuk BU. Microarray karyotyping of maltose-fermenting Saccharomyces yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization. J Appl Microbiol 2009; 109:248-59. [PMID: 20070441 DOI: 10.1111/j.1365-2672.2009.04656.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. METHODS AND RESULTS The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. CONCLUSIONS Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.
Collapse
Affiliation(s)
- E H Duval
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
9
|
Christensen TS, Oliveira AP, Nielsen J. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2009; 3:7. [PMID: 19144179 PMCID: PMC2661888 DOI: 10.1186/1752-0509-3-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 01/14/2009] [Indexed: 01/21/2023]
Abstract
Background In the yeast Saccharomyces cerevisiae, the presence of high levels of glucose leads to an array of down-regulatory effects known as glucose repression. This process is complex due to the presence of feedback loops and crosstalk between different pathways, complicating the use of intuitive approaches to analyze the system. Results We established a logical model of yeast glucose repression, formalized as a hypergraph. The model was constructed based on verified regulatory interactions and it includes 50 gene transcripts, 22 proteins, 5 metabolites and 118 hyperedges. We computed the logical steady states of all nodes in the network in order to simulate wildtype and deletion mutant responses to different sugar availabilities. Evaluation of the model predictive power was achieved by comparing changes in the logical state of gene nodes with transcriptome data. Overall, we observed 71% true predictions, and analyzed sources of errors and discrepancies for the remaining. Conclusion Though the binary nature of logical (Boolean) models entails inherent limitations, our model constitutes a primary tool for storing regulatory knowledge, searching for incoherencies in hypotheses and evaluating the effect of deleting regulatory elements involved in glucose repression.
Collapse
Affiliation(s)
- Tobias S Christensen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.
| | | | | |
Collapse
|
10
|
Jiang T, Xiao D, Gao Q. Characterisation of maltose metabolism in lean dough by lagging and non-lagging baker’s yeast strains. ANN MICROBIOL 2008. [DOI: 10.1007/bf03175571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease. Appl Environ Microbiol 2008; 74:1494-501. [PMID: 18203856 DOI: 10.1128/aem.02570-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known alpha-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transporters) allow efficient maltotriose utilization by yeast cells. We characterized the kinetics of yeast cell growth, sugar consumption, and ethanol production during maltose or maltotriose utilization by several S. cerevisiae yeast strains (both MAL constitutive and MAL inducible) and by their isogenic counterparts with specific deletions of the AGT1 gene. Our results clearly showed that yeast strains carrying functional permeases encoded by the MAL21, MAL31, and/or MAL41 gene in their plasma membranes were unable to utilize maltotriose. While both high- and low-affinity transport activities were responsible for maltose uptake from the medium, in the case of maltotriose, the only low-affinity (K(m), 36 +/- 2 mM) transport activity was mediated by the AGT1 permease. In conclusion, the AGT1 transporter is required for efficient maltotriose fermentation by S. cerevisiae yeasts, highlighting the importance of this permease for breeding and/or selection programs aimed at improving sluggish maltotriose fermentations.
Collapse
|
12
|
Viigand K, Alamäe T. Further study of theHansenula polymorpha MALlocus: characterization of the α-glucoside permease encoded by theHpMAL2gene. FEMS Yeast Res 2007; 7:1134-44. [PMID: 17559409 DOI: 10.1111/j.1567-1364.2007.00257.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The HpMAL2 gene of the MAL gene cluster of Hansenula polymorpha codes for a permease similar to yeast maltose and alpha-glucoside transporters. Genomic disruption of HpMAL2 resulted in an inability of cells to grow on maltose, sucrose, trehalose, maltotriose and turanose, as well as a lack of p-nitrophenyl-alpha-D-glucopyranoside (PNPG) transport. PNPG uptake was competitively inhibited by all these substrates, with Ki values between 0.23 and 1.47 mM. Transport by HpMal2p was sensitive to pH and a protonophore carbonyl cyanide-m-chlorophenylhydrazone (CCCP), revealing its energization by the proton gradient over the cell membrane. Although HpMAL2 was responsible for trehalose uptake, its expression was not induced during trehalose growth. A maltase disruption mutant did not grow on maltotriose and turanose, whereas it showed normal growth on trehalose, demonstrating the dispensability of maltase for intracellular hydrolysis of trehalose. In a Genolevures clone pBB0AA011B12, the promoter region and the N-terminal fragment of the putative transactivator of MAL genes is located adjacent to HpMAL2. A reporter gene assay showed that expression from that promoter was induced by maltose and sucrose, repressed by glucose, and derepressed during glycerol and trehalose growth. Therefore, we presume that the gene encodes a functional regulator.
Collapse
Affiliation(s)
- Katrin Viigand
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
13
|
Stambuk BU, Alves SL, Hollatz C, Zastrow CR. Improvement of maltotriose fermentation by Saccharomyces cerevisiae. Lett Appl Microbiol 2006; 43:370-6. [PMID: 16965366 DOI: 10.1111/j.1472-765x.2006.01982.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To enhance the fermentation of maltotriose by industrial Saccharomyces cerevisiae strains. METHODS AND RESULTS The capability to ferment maltotriose by an industrial yeast strain that uses this sugar aerobically was tested in shake flasks containing rich medium. While the presence of maltose in the medium did not improve maltotriose fermentation, enhanced and constitutive expression of the AGT1 permease not only increased the uptake of maltotriose, but allowed efficient maltotriose fermentation by this strain. Supplementation of the growth medium with 20 mmol magnesium l(-1) also increased maltotriose fermentation. CONCLUSIONS Over expression of the AGT1 permease and magnesium supplementation improved maltotriose fermentation by an industrial yeast strain that respired but did not ferment this sugar. SIGNIFICANCE AND IMPACT OF THE STUDY This work contributes to the elucidation of the roles of the AGT1 permease and nutrients in the fermentation of all sugars present in starch hydrolysates, a highly desirable trait for several industrial yeasts.
Collapse
Affiliation(s)
- B U Stambuk
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| | | | | | | |
Collapse
|
14
|
Gadura N, Michels CA. Sequences in the N-terminal cytoplasmic domain of Saccharomyces cerevisiae maltose permease are required for vacuolar degradation but not glucose-induced internalization. Curr Genet 2006; 50:101-14. [PMID: 16741702 DOI: 10.1007/s00294-006-0080-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 04/21/2006] [Accepted: 04/23/2006] [Indexed: 12/31/2022]
Abstract
In Saccharomyces cerevisiae, glucose addition to maltose fermenting cells causes a rapid loss of maltose transport activity and ubiquitin-mediated vacuolar proteolysis of maltose permease. GFP-tagged Mal61 maltose permease was used to explore the role of the N-terminal cytoplasmic domain in glucose-induced inactivation. In maltose-grown cells, Mal61/HA-GFP localizes to the cell surface and, surprisingly, to the vacuole. Studies of end3Delta and doa4Delta mutants indicate that a slow constitutive internalization of Mal61/HA-GFP is required for its vacuolar localization. Site-specific mutagenesis of multiple serine/threonine residues in a putative PEST sequence of the N-terminal cytoplasmic domain of maltose permease blocks glucose-induced Mal61p degradation but does not affect the rapid loss of maltose transport activity associated with glucose-induced internalization. The internalized multiple Ser/Thr mutant protein co-localizes with Snf7p in a putative late endosome or E-compartment. Further, alteration of a putative dileucine [D/EExxxLL/I] motif at residues 64-70 causes a significant defect in maltose transport activity and mislocalization to an E-compartment but appears to have little impact on glucose-induced internalization. We conclude that the N-terminal cytoplasmic domain of maltose permease is not the target of the signaling pathways leading to glucose-induced internalization of Mal61 permease but is required for its subsequent delivery to the vacuole for degradation.
Collapse
Affiliation(s)
- Nidhi Gadura
- Biology Department, Queens College and the Graduate School of the City University of New York, Flushing, 11367, USA
| | | |
Collapse
|
15
|
Viigand K, Tammus K, Alamäe T. Clustering of MAL genes in Hansenula polymorpha: cloning of the maltose permease gene and expression from the divergent intergenic region between the maltose permease and maltase genes. FEMS Yeast Res 2005; 5:1019-28. [PMID: 16103021 DOI: 10.1016/j.femsyr.2005.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/19/2005] [Accepted: 06/17/2005] [Indexed: 11/20/2022] Open
Abstract
Hansenula polymorpha uses maltase to grow on maltose and sucrose. Inspection of genomic clones of H. polymorpha showed that the maltase gene HPMAL1 is clustered with genes corresponding to Saccharomyces cerevisiae maltose permeases and MAL activator genes orthologues. We sequenced the H. polymorpha maltose permease gene HPMAL2 of the cluster. The protein (582 amino acids) deduced from the HPMAL2 gene is predicted to have eleven transmembrane domains and shows 39-57% identity with yeast maltose permeases. The identity of the protein is highest with maltose permeases of Debaryomyces hansenii and Candida albicans. Expression of the HPMAL2 in a S. cerevisiae maltose permease-negative mutant CMY1050 proved functionality of the permease protein encoded by the gene. HPMAL1 and HPMAL2 genes are divergently positioned similarly to maltase and maltose permease genes in many yeasts. A two-reporter assay of the expression from the HPMAL1-HPMAL2 intergenic region showed that expression of both genes is coordinately regulated, repressed by glucose, induced by maltose, and that basal expression is higher in the direction of the permease gene.
Collapse
Affiliation(s)
- Katrin Viigand
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | | | | |
Collapse
|
16
|
Wang X, Michels CA. Mutations in SIN4 and RGR1 cause constitutive expression of MAL structural genes in Saccharomyces cerevisiae. Genetics 2005; 168:747-57. [PMID: 15514050 PMCID: PMC1448850 DOI: 10.1534/genetics.104.029611] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription of the Saccharomyces MAL structural genes is induced 40-fold by maltose and requires the MAL-activator and maltose permease. To identify additional players involved in regulating MAL gene expression, we carried out a genetic selection for MAL constitutive mutants. Strain CMY4000 containing MAL1 and integrated copies of MAL61promoter-HIS3 and MAL61promoter-lacZ reporter genes was used to select constitutive mutants. The 29 recessive mutants fall into at least three complementation groups. Group 1 and group 2 mutants exhibit pleiotropic phenotypes and represent alleles of Mediator component genes RGR1 and SIN4, respectively. The rgr1 and sin4 constitutive phenotype does not require either the MAL-activator or maltose permease, indicating that Mediator represses MAL basal expression. Further genetic analysis demonstrates that RGR1 and SIN4 work in a common pathway and each component of the Mediator Sin4 module plays a distinct role in regulating MAL gene expression. Additionally, the Swi/Snf chromatin-remodeling complex is required for full induction, suggesting a role for chromatin remodeling in the regulation of MAL gene expression. A sin4Delta mutation is unable to suppress the defects in MAL gene expression resulting from loss of the Swi/Snf complex component Snf2p. The role of the Mediator in MAL gene regulation is discussed.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biology, Queens College and the Graduate School of City University of New York, Flushing, New York 11367, USA
| | | |
Collapse
|
17
|
Jules M, Guillou V, François J, Parrou JL. Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2004; 70:2771-8. [PMID: 15128531 PMCID: PMC404389 DOI: 10.1128/aem.70.5.2771-2778.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Saccharomyces cerevisiae can synthesize trehalose and also use this disaccharide as a carbon source for growth. However, the molecular mechanism by which extracellular trehalose can be transported to the vacuole and degraded by the acid trehalase Ath1p is not clear. By using an adaptation of the assay of invertase on whole cells with NaF, we showed that more than 90% of the activity of Ath1p is extracellular, splitting of the disaccharide into glucose. We also found that Agt1p-mediated trehalose transport and the hydrolysis of the disaccharide by the cytosolic neutral trehalase Nth1p are coupled and represent a second, independent pathway, although there are several constraints on this alternative route. First, the AGT1/MAL11 gene is controlled by the MAL system, and Agt1p was active in neither non-maltose-fermenting nor maltose-inducible strains. Second, Agt1p rapidly lost activity during growth on trehalose, by a mechanism similar to the sugar-induced inactivation of the maltose permease. Finally, both pathways are highly pH sensitive and effective growth on trehalose occurred only when the medium was buffered at around pH 5.0. The catabolism of trehalose was purely oxidative, and since levels of Ath1p limit the glucose flux in the cells, batch cultures on trehalose may provide a useful alternative to glucose-limited chemostat cultures for investigation of metabolic responses in yeast.
Collapse
Affiliation(s)
- Matthieu Jules
- Centre de Bioingénierie Gilbert Durand, UMR-CNRS 5504, UMR-INRA 792, Complexe Scientifique de Rangueil, 31077 Toulouse Cedex 04, France
| | | | | | | |
Collapse
|
18
|
Danzi SE, Bali M, Michels CA. Clustered-charge to alanine scanning mutagenesis of the Mal63 MAL-activator C-terminal regulatory domain. Curr Genet 2003; 44:173-83. [PMID: 14508602 DOI: 10.1007/s00294-003-0429-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 07/03/2003] [Accepted: 07/05/2003] [Indexed: 10/26/2022]
Abstract
The MAL-activator genes of Saccharomyces cerevisiae encode regulatory proteins required for the expression of the structural genes encoding maltose permease and maltase. Residues within the C-terminal region of the Mal63 protein required for negative regulation were previously identified. Evidence suggested that the C-terminal domain is also involved in positive regulatory functions, such as inducer responsiveness and transactivation in the context of a full-length protein. Charged-cluster to alanine scanning mutagenesis of the regulatory domain of MAL63 and the constitutive MAL43-C were undertaken to identify distinct regions within Mal63p involved in positive functions and to define their roles in induction. Mutations that affect the ability to activate transcription in the inducible MAL63 but have no effect in the constitutive MAL43-C define regions that function in induction. Those that affect both the inducible and constitutive alleles define regions involved in activation more generally. Mutations in MAL63 fell into three classes, those that have little or no impact on activity, those that decrease activity, and those that enhance function. Mutations from these classes mapped to distinct regions of the protein, identifying a region of approximately 90 residues (residues 331-423) involved in maltose sensing and an approximately 50-residue region at the extreme C-terminus (residues 420-470) required for activation, such as the formation and/or maintenance of an active state. These studies support a model for MAL-activator function which involves complex protein-protein interactions and overlapping negative and positive regulatory regions.
Collapse
Affiliation(s)
- Sara E Danzi
- Biology Department, Queens College and the Graduate School of CUNY, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | | | | |
Collapse
|
19
|
Bali M, Zhang B, Morano KA, Michels CA. The Hsp90 molecular chaperone complex regulates maltose induction and stability of the Saccharomyces MAL gene transcription activator Mal63p. J Biol Chem 2003; 278:47441-8. [PMID: 14500708 DOI: 10.1074/jbc.m309536200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of the Saccharomyces MAL structural genes encoding maltose permease and maltase requires the MAL activator, a DNA-binding transcription activator. Genetic analysis of MAL activator mutations suggested that protein folding and stability play an important role in MAL activator regulation and led us to explore the role of the Hsp90 molecular chaperone complex in the regulation of the MAL activator. Strains carrying mutations in genes encoding components of the Hsp90 chaperone complex, hsc82 Delta hsp82-T101I and hsc82 Delta cpr7 Delta, are defective for maltase induction and exhibit significantly reduced growth rates on media containing a limiting concentration of maltose (0.05%). This growth defect is suppressed by providing maltose in excess. Using epitope-tagged alleles of the MAL63 MAL activator, we showed that Mal63p levels are drastically reduced following depletion of cellular Hsp90. Overexpression ( approximately 3-fold) of Mal63p in the hsc82 Delta hsp82-T101I and hsc82 Delta cpr7 Delta strains suppresses their Mal- growth phenotype, suggesting that Mal63p levels are limiting for maltose utilization in strains with abrogated Hsp90 activity. Consistent with this, the half-life of Mal63p is significantly shorter in the hsc82 Delta cpr7 Delta strain (reduced about 6-fold) and modestly affected in the Hsp90-ts strain (reduced about 2-fold). Most importantly, triple hemagglutinin-tagged Mal63p protein is found in association with Hsp90 as demonstrated by co-immunoprecipitation. Taken together, these results identify the inducible MAL activator as a client protein of the Hsp90 molecular chaperone complex and point to a critical role for chaperone function in alternate carbon source utilization in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Mehtap Bali
- Biology Department, Queens College and the Graduate School of the City University of New York, Flushing, New York 11367, USA
| | | | | | | |
Collapse
|
20
|
Current awareness on yeast. Yeast 2003; 20:455-62. [PMID: 12728936 DOI: 10.1002/yea.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|