1
|
Yuan Z, Ge Z, Fu Q, Wang F, Wang Q, Shi X, Wang B. Investigation of cold-resistance mechanisms in cryophylactic yeast Metschnikowia pulcherrima based on comparative transcriptome analysis. Front Microbiol 2024; 15:1476087. [PMID: 39386373 PMCID: PMC11462854 DOI: 10.3389/fmicb.2024.1476087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Low temperature inhibits the growth of most microorganisms. However, some microbes can grow well in a low temperature, even a freezing temperature. Methods In this study, the mechanisms conferring cold resistance in the cryophylactic yeast Metschnikowia (M.) pulcherrima MS612, an isolate of the epidermis of ice grapes, were investigated based on comparative transcriptome analysis. Results A total of 6018 genes and 374 differentially expressed genes (> 2-fold, p < 0.05) were identified using RNA-Seq. The differentially expressed genes were mainly involved in carbohydrate and energy metabolism, transport mechanisms, antifreeze protection, lipid synthesis, and signal transduction. M. pulcherrima MS612 maintained normal growth at low temperature (5°C) by enhancing energy metabolism, sterol synthesis, metal ion homeostasis, amino acid and MDR transport, while increased synthesis of glycerol and proline transport to improve its resistance to the freezing temperature (-5°C). Furthermore, cAMP-PKA and ERAD signaling pathways contribute to resist the low temperature and the freezing temperature, respectively. Conclusion This study provides new insights into cold resistance in cryophylactic microorganisms for maneuvering various metabolism to resist different cold environment.
Collapse
Affiliation(s)
- Zaizhu Yuan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
| | - Zhengkai Ge
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
| | - Qingquan Fu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
| | - Fangfang Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
| | - Qingling Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
| | - Xuewei Shi
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
| | - Bin Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Xinjiang, Shihezi, China
| |
Collapse
|
2
|
Bezold F, Scheffer J, Wendering P, Razaghi-Moghadam Z, Trauth J, Pook B, Nußhär H, Hasenjäger S, Nikoloski Z, Essen LO, Taxis C. Optogenetic control of Cdc48 for dynamic metabolic engineering in yeast. Metab Eng 2023; 79:97-107. [PMID: 37422133 DOI: 10.1016/j.ymben.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Dynamic metabolic engineering is a strategy to switch key metabolic pathways in microbial cell factories from biomass generation to accumulation of target products. Here, we demonstrate that optogenetic intervention in the cell cycle of budding yeast can be used to increase production of valuable chemicals, such as the terpenoid β-carotene or the nucleoside analog cordycepin. We achieved optogenetic cell-cycle arrest in the G2/M phase by controlling activity of the ubiquitin-proteasome system hub Cdc48. To analyze the metabolic capacities in the cell cycle arrested yeast strain, we studied their proteomes by timsTOF mass spectrometry. This revealed widespread, but highly distinct abundance changes of metabolic key enzymes. Integration of the proteomics data in protein-constrained metabolic models demonstrated modulation of fluxes directly associated with terpenoid production as well as metabolic subsystems involved in protein biosynthesis, cell wall synthesis, and cofactor biosynthesis. These results demonstrate that optogenetically triggered cell cycle intervention is an option to increase the yields of compounds synthesized in a cellular factory by reallocation of metabolic resources.
Collapse
Affiliation(s)
- Filipp Bezold
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Johannes Scheffer
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Philipp Wendering
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Zahra Razaghi-Moghadam
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Jonathan Trauth
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Bastian Pook
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Hagen Nußhär
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Sophia Hasenjäger
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany.
| | - Christof Taxis
- Department of Biology/Genetics, Philipps-University Marburg, 35032, Marburg, Germany; School of Science and Technology, University Siegen, 57076, Siegen, Germany.
| |
Collapse
|
3
|
Jin Z, Vighi A, Dong Y, Bureau JA, Ignea C. Engineering membrane architecture for biotechnological applications. Biotechnol Adv 2023; 64:108118. [PMID: 36773706 DOI: 10.1016/j.biotechadv.2023.108118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cellular membranes, predominantly described as a dynamic bilayer, are composed of different lipids, transmembrane proteins, and carbohydrates. Most research on biological membranes focuses on the identification, characterization, and mechanistic aspects of their different components. These studies provide a fundamental understanding of membrane structure, function, and dynamics, establishing a basis for the development of membrane engineering strategies. To date, approaches in this field concentrate on membrane adaptation to harsh conditions during industrial fermentation, which can be caused by temperature, osmotic, or organic solvent stress. With advances in the field of metabolic engineering and synthetic biology, recent breakthroughs include proof of concept microbial production of essential medicines, such as cannabinoids and vinblastine. However, long pathways, low yields, and host adaptation continue to pose challenges to the efficient scale up production of many important compounds. The lipid bilayer is profoundly linked to the activity of heterologous membrane-bound enzymes and transport of metabolites. Therefore, strategies for improving enzyme performance, facilitating pathway reconstruction, and enabling storage of products to increase the yields directly involve cellular membranes. At the forefront of membrane engineering research are re-emerging approaches in lipid research and synthetic biology that manipulate membrane size and composition and target lipid profiles across species. This review summarizes engineering strategies applied to cellular membranes and discusses the challenges and future perspectives, particularly with regards to their applications in host engineering and bioproduction.
Collapse
Affiliation(s)
- Zimo Jin
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Asia Vighi
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| |
Collapse
|
4
|
Kahar P, Itomi A, Tsuboi H, Ishizaki M, Yasuda M, Kihira C, Otsuka H, Azmi NB, Matsumoto H, Ogino C, Kondo A. The flocculant Saccharomyces cerevisiae strain gains robustness via alteration of the cell wall hydrophobicity. Metab Eng 2022; 72:82-96. [DOI: 10.1016/j.ymben.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
5
|
Shakeri S, Khoshbasirat F, Maleki M. Rhodosporidium sp. DR37: a novel strain for production of squalene in optimized cultivation conditions. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:95. [PMID: 33858494 PMCID: PMC8048366 DOI: 10.1186/s13068-021-01947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rhodosporidium strain, a well-known oleaginous yeast, has been widely used as a platform for lipid and carotenoid production. However, the production of squalene for application in lipid-based biofuels is not reported in this strain. Here, a new strain of Rhodosporidium sp. was isolated and identified, and its potential was investigated for production of squalene under various cultivation conditions. RESULTS In the present study, Rhodosporidium sp. DR37 was isolated from mangrove ecosystem and its potential for squalene production was assessed. When Rhodosporidium sp. DR37 was cultivated on modified YEPD medium (20 g/L glucose, 5 g/L peptone, 5 g/L YE, seawater (50% v/v), pH 7, 30 °C), 64 mg/L of squalene was produced. Also, squalene content was obtained as 13.9% of total lipid. Significantly, use of optimized medium (20 g/L sucrose, 5 g/L peptone, seawater (20% v/v), pH 7, 25 °C) allowed highest squalene accumulation (619 mg/L) and content (21.6% of total lipid) in Rhodosporidium sp. DR37. Moreover, kinetic parameters including maximum specific cell growth rate (μmax, h-1), specific lipid accumulation rate (qp, h-1), specific squalene accumulation rate (qsq, h-1) and specific sucrose consumption rate (qs, h-1) were determined in optimized medium as 0.092, 0.226, 0.036 and 0.010, respectively. CONCLUSIONS This study is the first report to employ marine oleaginous Rhodosporidium sp. DR37 for accumulation of squalene in optimized medium. These findings provide the potential of Rhodosporidium sp. DR37 for production of squalene as well as lipid and carotenoids for biofuel applications in large scale.
Collapse
Affiliation(s)
- Shahryar Shakeri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Farshad Khoshbasirat
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
6
|
Fedoseeva EV, Danilova OA, Ianutsevich EA, Terekhova VA, Tereshina VM. Micromycete Lipids and Stress. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Park JH, Kang CH, Nawkar GM, Lee ES, Paeng SK, Chae HB, Chi YH, Kim WY, Yun DJ, Lee SY. EMR, a cytosolic-abundant ring finger E3 ligase, mediates ER-associated protein degradation in Arabidopsis. THE NEW PHYTOLOGIST 2018; 220:163-177. [PMID: 29932218 DOI: 10.1111/nph.15279] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/18/2018] [Indexed: 05/16/2023]
Abstract
Investigation of the endoplasmic reticulum-associated degradation (ERAD) system in plants led to the identification of ERAD-mediating RING finger protein (EMR) as a plant-specific ERAD E3 ligase from Arabidopsis. EMR was significantly up-regulated under endoplasmic reticulum (ER) stress conditions. The EMR protein purified from bacteria displayed high E3 ligase activity, and tobacco leaf-produced EMR mediated mildew resistance locus O-12 (MLO12) degradation in a proteasome-dependent manner. Subcellular localization and coimmunoprecipitation analyses showed that EMR forms a complex with ubiquitin-conjugating enzyme 32 (UBC32) as a cytosolic interaction partner. Mutation of EMR and RNA interference (RNAi) increased the tolerance of plants to ER stress. EMR RNAi in the bri1-5 background led to partial recovery of the brassinosteroid (BR)-insensitive phenotypes as compared with the original mutant plants and increased ER stress tolerance. The presented results suggest that EMR is involved in the plant ERAD system that affects BR signaling under ER stress conditions as a novel Arabidopsis ring finger E3 ligase mainly present in cytosol while the previously identified ERAD E3 components are typically membrane-bound proteins.
Collapse
Affiliation(s)
- Joung Hun Park
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Ganesh M Nawkar
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Ho Byoung Chae
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Yong Hun Chi
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Woe Yeon Kim
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21+) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
8
|
High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains. ACTA ACUST UNITED AC 2018; 45:239-251. [DOI: 10.1007/s10295-018-2018-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Abstract
For recombinant production of squalene, which is a triterpenoid compound with increasing industrial applications, in microorganisms generally recognized as safe, we screened Saccharomyces cerevisiae strains to determine their suitability. A strong strain dependence was observed in squalene productivity among Saccharomyces cerevisiae strains upon overexpression of genes important for isoprenoid biosynthesis. In particular, a high level of squalene production (400 ± 45 mg/L) was obtained in shake flasks with the Y2805 strain overexpressing genes encoding a bacterial farnesyl diphosphate synthase (ispA) and a truncated form of hydroxyl-3-methylglutaryl-CoA reductase (tHMG1). Partial inhibition of squalene epoxidase by terbinafine further increased squalene production by up to 1.9-fold (756 ± 36 mg/L). Furthermore, squalene production of 2011 ± 75 or 1026 ± 37 mg/L was obtained from 5-L fed-batch fermentations in the presence or absence of terbinafine supplementation, respectively. These results suggest that the Y2805 strain has potential as a new alternative source of squalene production.
Collapse
|
9
|
Vicent I, Navarro A, Mulet JM, Sharma S, Serrano R. Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures. FEMS Yeast Res 2015; 15:fov008. [DOI: 10.1093/femsyr/fov008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 11/14/2022] Open
|
10
|
Garaiová M, Zambojová V, Šimová Z, Griač P, Hapala I. Squalene epoxidase as a target for manipulation of squalene levels in the yeastSaccharomyces cerevisiae. FEMS Yeast Res 2013; 14:310-23. [DOI: 10.1111/1567-1364.12107] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 01/11/2023] Open
Affiliation(s)
- Martina Garaiová
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| | - Veronika Zambojová
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| | - Zuzana Šimová
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| | - Peter Griač
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| | - Ivan Hapala
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| |
Collapse
|
11
|
Foresti O, Ruggiano A, Hannibal-Bach HK, Ejsing CS, Carvalho P. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. eLife 2013; 2:e00953. [PMID: 23898401 PMCID: PMC3721249 DOI: 10.7554/elife.00953] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 01/10/2023] Open
Abstract
Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI:http://dx.doi.org/10.7554/eLife.00953.001.
Collapse
Affiliation(s)
- Ombretta Foresti
- Cell and Developmental Biology Programme, Center for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Annamaria Ruggiano
- Cell and Developmental Biology Programme, Center for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Hans K Hannibal-Bach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pedro Carvalho
- Cell and Developmental Biology Programme, Center for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
12
|
Spanova M, Daum G. Squalene - biochemistry, molecular biology, process biotechnology, and applications. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100203] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Khuu N, Gidda S, Shockey JM, Dyer JM, Mullen RT. The N termini of Brassica and tung omega-3 fatty acid desaturases mediate proteasome-dependent protein degradation in plant cells. PLANT SIGNALING & BEHAVIOR 2011; 6:422-5. [PMID: 21350343 PMCID: PMC3142428 DOI: 10.4161/psb.6.3.14522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 05/19/2023]
Abstract
The regulation of fatty acid desaturase activity in plants is important for determining the polyunsaturated fatty acid content of cellular membranes, which is often rapidly adjusted in plant cells in response to temperature change. Recent studies have demonstrated that the endoplasmic reticulum (ER)-localized omega-3 desaturases (Fad3s) are regulated extensively at the post-transcriptional level by both temperature-dependent changes in translational efficiency, as well as modulation of protein half-life. While the N-terminal sequences of Fad3 proteins were shown to contain information that mediates their rapid, proteasome-dependent protein turnover in both plant and yeast cells, it is currently unknown whether these sequences alone are sufficient to direct protein degradation. In this report, we fused the N-terminal sequences of two different Fad3 proteins to an ER-localized fluorescent protein reporter, consisting of the green fluorescent protein and the ER integral membrane protein cytochrome b5, and then measured (via microscopy) the degradation of the resulting fusion proteins in plant suspension-cultured cells relative to a second, co-expressed fluorescent reporter protein. Overall, the results demonstrate that the N-termini of both Fad3 proteins are sufficient for conferring rapid, proteasome-dependent degradation to an ER-bound marker protein.
Collapse
Affiliation(s)
- Nicholas Khuu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res 2010; 21:957-69. [PMID: 21187857 DOI: 10.1038/cr.2010.181] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic organisms have quality-control mechanisms that allow misfolded or unassembled proteins to be retained in the endoplasmic reticulum (ER) and subsequently degraded by ER-associated degradation (ERAD). The ERAD pathway is well studied in yeast and mammals; however, the biological functions of plant ERAD have not been reported. Through molecular and cellular biological approaches, we found that ERAD is necessary for plants to overcome salt stress. Upon salt treatment ubiquitinated proteins increased in plant cells, especially unfolded proteins that quickly accumulated in the ER and subsequently induced ER stress responses. Defect in HRD3A of the HRD1/HRD3 complex of the ERAD pathway resulted in alteration of the unfolded protein response (UPR), increased plant sensitivity to salt, and retention of ERAD substrates in plant cells. Furthermore, we demonstrated that Ca(2+) release from the ER is involved in the elevation of UPR and reactive oxygen species (ROS) participates the ERAD-related plant salt response pathway.
Collapse
|
15
|
Alvarez ML, Topal E, Martin F, Cardineau GA. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation. PLANT MOLECULAR BIOLOGY 2010; 72:75-89. [PMID: 19789982 DOI: 10.1007/s11103-009-9552-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 09/19/2009] [Indexed: 05/20/2023]
Abstract
Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, gamma-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera (gamma-Zein ER-accumulating domain) is the N-terminal proline-rich domain of gamma-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera domain. We demonstrated that Zera-F1-V protein accumulation was at least 3x higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera technology to induce protein body formation in non-seed tissues. Zera expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera technology to substantially increase the accumulation of value-added proteins in plants.
Collapse
Affiliation(s)
- M Lucrecia Alvarez
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5401, USA.
| | | | | | | |
Collapse
|
16
|
Federovitch CM, Jones YZ, Tong AH, Boone C, Prinz WA, Hampton RY. Genetic and structural analysis of Hmg2p-induced endoplasmic reticulum remodeling in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:4506-20. [PMID: 18667535 DOI: 10.1091/mbc.e07-11-1188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is highly plastic, and increased expression of distinct single ER-resident membrane proteins, such as HMG-CoA reductase (HMGR), can induce a dramatic restructuring of ER membranes into highly organized arrays. Studies on the ER-remodeling behavior of the two yeast HMGR isozymes, Hmg1p and Hmg2p, suggest that they could be mechanistically distinct. We examined the features of Hmg2p required to generate its characteristic structures, and we found that the molecular requirements are similar to those of Hmg1p. However, the structures generated by Hmg1p and Hmg2p have distinct cell biological features determined by the transmembrane regions of the proteins. In parallel, we conducted a genetic screen to identify HER genes (required for Hmg2p-induced ER Remodeling), further confirming that the mechanisms of membrane reorganization by these two proteins are distinct because most of the HER genes were required for Hmg2p but not Hmg1p-induced ER remodeling. One of the HER genes identified was PSD1, which encodes the phospholipid biosynthetic enzyme phosphatidylserine decarboxylase. This direct connection to phospholipid biosynthesis prompted a more detailed examination of the effects of Hmg2p on phospholipid mutants and composition. Our analysis revealed that overexpression of Hmg2p caused significant and specific growth defects in nulls of the methylation pathway for phosphatidylcholine biosynthesis that includes the Psd1p enzyme. Furthermore, increased expression of Hmg2p altered the composition of cellular phospholipids in a manner that implied a role for PSD1. These phospholipid effects, unlike Hmg2p-induced ER remodeling, required the enzymatic activity of Hmg2p. Together, our results indicate that, although related, Hmg2p- and Hmg1p-induced ER remodeling are mechanistically distinct.
Collapse
Affiliation(s)
- Christine M Federovitch
- UCSD Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | | | | | | | |
Collapse
|
17
|
Aguilera J, Randez-Gil F, Prieto JA. Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 2007; 31:327-41. [PMID: 17298585 DOI: 10.1111/j.1574-6976.2007.00066.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The response of yeast cells to sudden temperature downshifts has received little attention compared with other stress conditions. Like other organisms, both prokaryotes and eukaryotes, in Saccharomyces cerevisiae a decrease in temperature induces the expression of many genes involved in transcription and translation, some of which display a cold-sensitivity phenotype. However, little is known about the role played by many cold-responsive genes, the sensing and regulatory mechanisms that control this response or the biochemical adaptations at or near 0 degrees C. This review focuses on the physiological significance of cold-shock responses, emphasizing the molecular mechanisms that generate and transmit cold signals. There is now enough experimental evidence to conclude that exposure to low temperature protects yeast cells against freeze injury through the cold-induced accumulation of trehalose, glycerol and heat-shock proteins. Recent results also show that changes in membrane fluidity are the primary signal triggering the cold-shock response. Notably, this signal is transduced and regulated through classical stress pathways and transcriptional factors, the high-osmolarity glycerol mitogen-activated protein kinase pathway and Msn2/4p. Alternative cold-stress generators and transducers will also be presented and discussed.
Collapse
Affiliation(s)
- Jaime Aguilera
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Burjassot, Valencia, Spain
| | | | | |
Collapse
|
18
|
Cernicka J, Kozovska Z, Hnatova M, Valachovic M, Hapala I, Riedl Z, Hajós G, Subik J. Chemosensitisation of drug-resistant and drug-sensitive yeast cells to antifungals. Int J Antimicrob Agents 2007; 29:170-8. [PMID: 17204400 DOI: 10.1016/j.ijantimicag.2006.08.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/28/2006] [Accepted: 08/29/2006] [Indexed: 11/23/2022]
Abstract
Multidrug resistance in yeast results from overexpression of genes encoding drug efflux transporters owing to gain-of-function mutations in transcription factors regulating their expression. We have screened a library of synthetic compounds for modulators of drug resistance using the multidrug-resistant Saccharomyces cerevisiae pdr3-9 mutant strain. One of the compounds, 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine (CTBT), displayed weak antifungal activity and strongly inhibited the growth of yeast cells in combination with subinhibitory concentrations of other antifungals with a different mode of action. Biological activity of CTBT was demonstrated in Saccharomyces, Kluyveromyces and Candida yeast species grown on solid and in liquid media. The chemosensitising effect of CTBT, manifested as increased antifungal activity of fluconazole, was demonstrated in yeast mutant strains with deleted genes encoding the major multidrug resistance transcription factors Yap1p, Pdr1p and Pdr3p as well as the drug efflux pumps Pdr5p and Snq2p in S. cerevisiae or their counterparts in Candida albicans and Candida glabrata, named Cdr1p and Mdr1p, respectively. Importantly, CTBT also increased the sensitivity to fluconazole in multidrug-resistant cells overexpressing the efflux pumps. Yeast cells grown in the presence of subinhibitory concentrations of CTBT exhibited an altered sterol composition and a slightly enhanced accumulation of Rhodamine 6G, which suggests that the plasma membrane plays a role in sensitisation. This novel chemosensitisation by CTBT that can overcome multidrug resistance in yeast may prove useful in combined treatment of infections caused by drug-resistant fungal pathogens.
Collapse
Affiliation(s)
- Jana Cernicka
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-2, SK-842 15 Bratislava 4, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|