1
|
Schulz-Mirbach H, Wichmann P, Satanowski A, Meusel H, Wu T, Nattermann M, Burgener S, Paczia N, Bar-Even A, Erb TJ. New-to-nature CO 2-dependent acetyl-CoA assimilation enabled by an engineered B 12-dependent acyl-CoA mutase. Nat Commun 2024; 15:10235. [PMID: 39592584 PMCID: PMC11599936 DOI: 10.1038/s41467-024-53762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Acetyl-CoA is a key metabolic intermediate and the product of various natural and synthetic one-carbon (C1) assimilation pathways. While an efficient conversion of acetyl-CoA into other central metabolites, such as pyruvate, is imperative for high biomass yields, available aerobic pathways typically release previously fixed carbon in the form of CO2. To overcome this loss of carbon, we develop a new-to-nature pathway, the Lcm module, in this study. The Lcm module provides a direct link between acetyl-CoA and pyruvate, is shorter than any other oxygen-tolerant route and notably fixes CO2, instead of releasing it. The Lcm module relies on the new-to-nature activity of a coenzyme B12-dependent mutase for the conversion of 3-hydroxypropionyl-CoA into lactyl-CoA. We demonstrate Lcm activity of the scaffold enzyme 2-hydroxyisobutyryl-CoA mutase from Bacillus massiliosenegalensis, and further improve catalytic efficiency 10-fold by combining in vivo targeted hypermutation and adaptive evolution in an engineered Escherichia coli selection strain. Finally, in a proof-of-principle, we demonstrate the complete Lcm module in vitro. Overall, our work demonstrates a synthetic CO2-incorporating acetyl-CoA assimilation route that expands the metabolic solution space of central carbon metabolism, providing options for synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Helena Schulz-Mirbach
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Philipp Wichmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Ari Satanowski
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany.
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany.
| | - Helen Meusel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Tong Wu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Maren Nattermann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Simon Burgener
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, Marburg, Germany.
| |
Collapse
|
2
|
Vasileiadis S, Perruchon C, Scheer B, Adrian L, Steinbach N, Trevisan M, Plaza-Bolaños P, Agüera A, Chatzinotas A, Karpouzas DG. Nutritional inter-dependencies and a carbazole-dioxygenase are key elements of a bacterial consortium relying on a Sphingomonas for the degradation of the fungicide thiabendazole. Environ Microbiol 2022; 24:5105-5122. [PMID: 35799498 DOI: 10.1111/1462-2920.16116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Thiabendazole (TBZ), is a persistent fungicide/anthelminthic and a serious environmental threat. We previously enriched a TBZ-degrading bacterial consortium and provided first evidence for a Sphingomonas involvement in TBZ transformation. Here, using a multi-omic approach combined with DNA-stable isotope probing (SIP) we verified the key degrading role of Sphingomonas and identify potential microbial interactions governing consortium functioning. SIP and amplicon sequencing analysis of the heavy and light DNA fraction of cultures grown on 13 C-labelled versus 12 C-TBZ showed that 66% of the 13 C-labelled TBZ was assimilated by Sphingomonas. Metagenomic analysis retrieved 18 metagenome-assembled genomes with the dominant belonging to Sphingomonas, Sinobacteriaceae, Bradyrhizobium, Filimonas and Hydrogenophaga. Meta-transcriptomics/-proteomics and non-target mass spectrometry suggested TBZ transformation by Sphingomonas via initial cleavage by a carbazole dioxygenase (car) to thiazole-4-carboxamidine (terminal compound) and catechol or a cleaved benzyl ring derivative, further transformed through an ortho-cleavage (cat) pathway. Microbial co-occurrence and gene expression networks suggested strong interactions between Sphingomonas and a Hydrogenophaga. The latter activated its cobalamin biosynthetic pathway and Sphingomonas its cobalamin salvage pathway to satisfy its B12 auxotrophy. Our findings indicate microbial interactions aligning with the 'black queen hypothesis' where Sphingomonas (detoxifier, B12 recipient) and Hydrogenophaga (B12 producer, enjoying detoxification) act as both helpers and beneficiaries.
Collapse
Affiliation(s)
- Sotirios Vasileiadis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, Greece
| | - Chiara Perruchon
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, Greece
| | - Benjamin Scheer
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Nicole Steinbach
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Marco Trevisan
- Department of Sustainable Food Process, Universitá Cattolica del Sacro Cuore, Piacenza, Italy
| | - Patricia Plaza-Bolaños
- Solar Energy Research Centre (CIESOL), Joint Center University of Almería-CIEMAT, Almeria, Spain
| | - Ana Agüera
- Solar Energy Research Centre (CIESOL), Joint Center University of Almería-CIEMAT, Almeria, Spain
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Dimitrios G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, Greece
| |
Collapse
|
3
|
Kuznetsov S, Milenkin A, Antonov I. Translational Frameshifting in the chlD Gene Gives a Clue to the Coevolution of the Chlorophyll and Cobalamin Biosyntheses. Microorganisms 2022; 10:microorganisms10061200. [PMID: 35744718 PMCID: PMC9227772 DOI: 10.3390/microorganisms10061200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Today, hundreds of prokaryotic species are able to synthesize chlorophyll and cobalamin (vitamin B12). An important step in the biosynthesis of these coenzymes is the insertion of a metal ion into a porphyrin ring. Namely, Mg-chelatase ChlIDH and aerobic Co-chelatase CobNST are utilized in the chlorophyll and vitamin B12 pathways, respectively. The corresponding subunits of these enzymes have common evolutionary origin. Recently, we have identified a highly conserved frameshifting signal in the chlD gene. This unusual regulatory mechanism allowed production of both the small and the medium chelatase subunits from the same gene. Moreover, the chlD gene appeared early in the evolution and could be at the starting point in the development of the chlorophyll and B12 pathways. Here, we studied the possible coevolution of these two pathways through the analysis of the chelatase genes. To do that, we developed a specialized Web database with comprehensive information about more than 1200 prokaryotic genomes. Further analysis allowed us to split the coevolution of the chlorophyll and B12 pathway into eight distinct stages.
Collapse
Affiliation(s)
- Stepan Kuznetsov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (S.K.); (A.M.)
| | - Alexander Milenkin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (S.K.); (A.M.)
| | - Ivan Antonov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, 117312 Moscow, Russia
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 101000 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Soualmia F, Guillot A, Sabat N, Brewee C, Kubiak X, Haumann M, Guinchard X, Benjdia A, Berteau O. Exploring the Biosynthetic Potential of TsrM, a B 12 -dependent Radical SAM Methyltransferase Catalyzing Non-radical Reactions. Chemistry 2022; 28:e202200627. [PMID: 35253932 DOI: 10.1002/chem.202200627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 12/20/2022]
Abstract
B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.
Collapse
Affiliation(s)
- Feryel Soualmia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Nazarii Sabat
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Clémence Brewee
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Xavier Guinchard
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
5
|
Jeter VL, Escalante-Semerena JC. Elevated Levels of an Enzyme Involved in Coenzyme B 12 Biosynthesis Kills Escherichia coli. mBio 2022; 13:e0269721. [PMID: 35012330 PMCID: PMC8749415 DOI: 10.1128/mbio.02697-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Cobamides are cobalt-containing cyclic tetrapyrroles involved in the metabolism of organisms from all domains of life but produced de novo only by some bacteria and archaea. The pathway is thought to involve up to 30 enzymes, five of which comprise the so-called "late" steps of cobamide biosynthesis. Two of these reactions activate the corrin ring, one activates the nucleobase, a fourth one condenses activated precursors, and a phosphatase yields the final product of the pathway. The penultimate step is catalyzed by a polytopic integral membrane protein, namely, the cobamide (5'-phosphate) synthase, also known as cobamide synthase. At present, the reason for the association of all putative and bona fide cobamide synthases to cell membranes is unclear and intriguing. Here, we show that, in Escherichia coli, elevated levels of cobamide synthase kill the cell by dissipating the proton motive force and compromising membrane stability. We also show that overproduction of the phosphatase that catalyzes the last step of the pathway or phage shock protein A prevents cell death when the gene encoding cobamide synthase is overexpressed. We propose that in E. coli, and probably all cobamide producers, cobamide synthase anchors a multienzyme complex responsible for the assembly of vitamin B12 and other cobamides. IMPORTANCE E. coli is the best-studied prokaryote, and some strains of this bacterium are human pathogens. We show that when the level of the enzyme that catalyzes the penultimate step of vitamin B12 biosynthesis is elevated, the viability of E. coli decreases. These findings are of broad significance because the enzyme alluded to is an integral membrane protein in all cobamide-producing bacteria, many of which are human pathogens. Our results may provide new avenues for the development of antimicrobials, because none of the enzymes involved in vitamin B12 biosynthesis are present in mammalian cells.
Collapse
Affiliation(s)
- Victoria L. Jeter
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
6
|
Abstract
Cobalamin (vitamin B12; VB12) is an indispensable nutrient for all living entities in the Earth’s biosphere and plays a vital role in both natural and host environments. Currently in the metagenomic era, gene families of interest are extracted and analyzed based on functional profiles by searching shotgun metagenomes against public databases. However, critical issues exist in applying public databases for specific processes such as VB12 biosynthesis pathways. We developed a curated functional gene database termed VB12Path for accurate metagenomic profiling of VB12 biosynthesis gene families of microbial communities in complex environments. VB12Path contains a total of 60 VB12 synthesis gene families, 287,731 sequences, and 21,154 homology groups, and it aims to provide accurate functional and taxonomic profiles of VB12 synthesis pathways for shotgun metagenomes and minimize false-positive assignments. VB12Path was applied to characterize cobalamin biosynthesis gene families in human intestines and marine environments. The results demonstrated that ocean and human intestine had dramatically different VB12 synthesis processes and that gene families belonging to salvage and remodeling pathway dominated human intestine but were lowest in the ocean ecosystem. VB12Path is expected to be a useful tool to study cobalamin biosynthesis processes via shotgun metagenome sequencing in both environmental and human microbiome research. IMPORTANCE Vitamin B12 (VB12) is an indispensable nutrient for all living entities in the world but can only be synthesized by a small subset of prokaryotes. Therefore, this small subset of prokaryotes controls ecosystem stability and host health to some extent. However, critical accuracy and comprehensiveness issues exist in applying public databases to profile VB12 synthetic gene families and taxonomic groups in complex metagenomes. In this study, we developed a curated functional gene database termed VB12Path for accurate metagenomic profiling of VB12 communities in complex environments. VB12Path is expected to serve as a valuable tool to uncover the hidden microbial communities producing this precious nutrient on Earth.
Collapse
|
7
|
Abstract
Salmonella is a human pathogen of worldwide importance, and coenzyme B12 is critical for the pathogenic lifestyle of this bacterium. The importance of the work reported here lies on the improvements to the methodology used to isolate cobamide synthase, a polytopic integral membrane protein that catalyzes the penultimate step of coenzyme B12 biosynthesis. Cobamides are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life but only produced de novo by some bacteria and archaea. The “late steps” of the adenosylcobamide biosynthetic pathway are responsible for the assembly of the nucleotide loop and are required during de novo synthesis and precursor salvaging. These steps are characterized by activation of the corrin ring and lower ligand base, condensation of the activated precursors to adenosylcobamide phosphate, and removal of the phosphate, yielding a complete adenosylcobamide molecule. The condensation of the activated corrin ring and lower ligand base is performed by an integral membrane protein, cobamide (5′ phosphate) synthase (CobS), and represents an important convergence of two pathways necessary for nucleotide loop assembly. Interestingly, membrane association of this penultimate step is conserved among all cobamide producers, yet the physiological relevance of this association is not known. Here, we present the purification and biochemical characterization of the CobS enzyme of the enterobacterium Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, investigate its association with liposomes, and quantify the effect of the lipid bilayer on its enzymatic activity and substrate affinity. We report a purification scheme that yields pure CobS protein, allowing in vitro functional analysis. Additionally, we report a method for liposome reconstitution of CobS, allowing for physiologically relevant studies of this inner membrane protein in a phospholipid bilayer. In vitro and in vivo data reported here expand our understanding of CobS and the implications of membrane-associated adenosylcobamide biosynthesis.
Collapse
|
8
|
Menikpurage IP, Barraza D, Meléndez AB, Strebe S, Mera PE. The B12 receptor BtuB alters the membrane integrity of Caulobacter crescentus. MICROBIOLOGY-SGM 2019; 165:311-323. [PMID: 30628887 DOI: 10.1099/mic.0.000753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vitamin B12 is one of the most complex biomolecules in nature. Since few organisms can synthesize B12de novo, most bacteria utilize highly sensitive and specialized transporters to scavenge B12 and its precursors. In Gram-negative bacteria, BtuB is the outer membrane TonB-dependent receptor for B12. In the fresh water bacterium Caulobacter crescentus, btuB is among the most highly expressed genes. In this study, we characterized the function of BtuB in C. crescentus and unveiled a potential new function of this receptor involved in cellular fitness. Under standard minimal or rich growth conditions, we found that supplements of vitamin B12 to cultures of C. crescentus provided no significant advantage in growth rate. Using a B12 methionine auxotroph, we showed that BtuB in C. crescentus is capable of transporting B12 at low pico-molar range. A btuB knockout strain displayed higher sensitivity to detergents and to changes in osmotic pressure compared to the wild-type. Electron micrographs of this knockout strain revealed a morphology defect. The sensitivity observed in the btuB knockout strain was not due to changes in membrane permeability or altered S-layer levels. Our results demonstrate that btuB deletion mutants exhibit increased susceptibility to membrane stressors, suggesting a potential role of this receptor in membrane homeostasis. Because we only tested BtuB's function under laboratory conditions, we cannot eliminate the possibility that BtuB also plays a key role as a B12 scavenger in C. crescentus when growing in its highly variable and nutrient-limited natural environment.
Collapse
Affiliation(s)
- Inoka P Menikpurage
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Daniela Barraza
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ady B Meléndez
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Sierra Strebe
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Paola E Mera
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
9
|
Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B 12. Nat Commun 2018; 9:4917. [PMID: 30464241 PMCID: PMC6249242 DOI: 10.1038/s41467-018-07412-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/01/2018] [Indexed: 11/30/2022] Open
Abstract
The only known source of vitamin B12 (adenosylcobalamin) is from bacteria and archaea. Here, using genetic and metabolic engineering, we generate an Escherichia coli strain that produces vitamin B12 via an engineered de novo aerobic biosynthetic pathway. In vitro and/or in vivo analysis of genes involved in adenosylcobinamide phosphate biosynthesis from Rhodobacter capsulatus suggest that the biosynthetic steps from co(II)byrinic acid a,c-diamide to adocobalamin are the same in both the aerobic and anaerobic pathways. Finally, we increase the vitamin B12 yield of a recombinant E. coli strain by more than ∼250-fold to 307.00 µg g−1 DCW via metabolic engineering and optimization of fermentation conditions. Beyond our demonstration of E. coli as a microbial biosynthetic platform for vitamin B12 production, our study offers an encouraging example of how the several dozen proteins of a complex biosynthetic pathway can be transferred between organisms to facilitate industrial production. Vitamin B12 is an essential nutrient with limited natural sources. Here the authors transfer 28 pathway synthesis genes from several bacteria including R. capsulatus to E. coli and, using metabolic engineering and optimised fermentation conditions, achieve high yields.
Collapse
|
10
|
Fang H, Kang J, Zhang D. Microbial production of vitamin B 12: a review and future perspectives. Microb Cell Fact 2017; 16:15. [PMID: 28137297 PMCID: PMC5282855 DOI: 10.1186/s12934-017-0631-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Vitamin B12 is an essential vitamin that is widely used in medical and food industries. Vitamin B12 biosynthesis is confined to few bacteria and archaea, and as such its production relies on microbial fermentation. Rational strain engineering is dependent on efficient genetic tools and a detailed knowledge of metabolic pathways, regulation of which can be applied to improve product yield. Recent advances in synthetic biology and metabolic engineering have been used to efficiently construct many microbial chemical factories. Many published reviews have probed the vitamin B12 biosynthetic pathway. To maximize the potential of microbes for vitamin B12 production, new strategies and tools are required. In this review, we provide a comprehensive understanding of advances in the microbial production of vitamin B12, with a particular focus on establishing a heterologous host for the vitamin B12 production, as well as on strategies and tools that have been applied to increase microbial cobalamin production. Several worthy strategies employed for other products are also included.
Collapse
Affiliation(s)
- Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jie Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134 China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
11
|
Parent A, Guillot A, Benjdia A, Chartier G, Leprince J, Berteau O. The B 12-Radical SAM Enzyme PoyC Catalyzes Valine C β-Methylation during Polytheonamide Biosynthesis. J Am Chem Soc 2016; 138:15515-15518. [PMID: 27934015 PMCID: PMC5410653 DOI: 10.1021/jacs.6b06697] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Genomic and metagenomic
investigations have recently led to the
delineation of a novel class of natural products called ribosomally
synthesized and post-translationally modified peptides (RiPPs). RiPPs
are ubiquitous among living organisms and include pharmaceutically
relevant compounds such as antibiotics and toxins. A prominent example
is polytheonamide A, which exhibits numerous post-translational modifications,
some of which were unknown in ribosomal peptides until recently. Among
these post-translational modifications, C-methylations have been proposed
to be catalyzed by two putative radical S-adenosylmethionine
(rSAM) enzymes, PoyB and PoyC. Here we report the in vitro activity of PoyC, the first B12-dependent rSAM enzyme
catalyzing peptide Cβ-methylation. We show that PoyC
catalyzes the formation of S-adenosylhomocysteine
and 5′-deoxyadenosine and the transfer of a methyl group to l-valine residue. In addition, we demonstrate for the first
time that B12-rSAM enzymes have a tightly bound MeCbl cofactor
that during catalysis transfers a methyl group originating from S-adenosyl-l-methionine. Collectively, our results
shed new light on polytheonamide biosynthesis and the large and emerging
family of B12-rSAM enzymes.
Collapse
Affiliation(s)
- Aubérie Parent
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , F-78350 Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , F-78350 Jouy-en-Josas, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , F-78350 Jouy-en-Josas, France
| | - Gwladys Chartier
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , F-78350 Jouy-en-Josas, France
| | - Jérôme Leprince
- INSERM U982, Université Rouen-Normandie , F-76821 Mont-Saint-Aignan, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , F-78350 Jouy-en-Josas, France
| |
Collapse
|
12
|
Tavares NK, Escalante-Semerena JC. A snapshot of evolution in action: emergence of new heme transport function derived from a coenzyme B 12 biosynthetic enzyme. Environ Microbiol 2016; 19:8-10. [PMID: 27588714 DOI: 10.1111/1462-2920.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Norbert K Tavares
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|