1
|
Tran TA, Sridhar S, Reece ST, Lunguya O, Jacobs J, Van Puyvelde S, Marks F, Dougan G, Thomson NR, Nguyen BT, Bao PT, Baker S. Combining machine learning with high-content imaging to infer ciprofloxacin susceptibility in isolates of Salmonella Typhimurium. Nat Commun 2024; 15:5074. [PMID: 38871710 PMCID: PMC11176356 DOI: 10.1038/s41467-024-49433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing public health crisis that requires innovative solutions. Current susceptibility testing approaches limit our ability to rapidly distinguish between antimicrobial-susceptible and -resistant organisms. Salmonella Typhimurium (S. Typhimurium) is an enteric pathogen responsible for severe gastrointestinal illness and invasive disease. Despite widespread resistance, ciprofloxacin remains a common treatment for Salmonella infections, particularly in lower-resource settings, where the drug is given empirically. Here, we exploit high-content imaging to generate deep phenotyping of S. Typhimurium isolates longitudinally exposed to increasing concentrations of ciprofloxacin. We apply machine learning algorithms to the imaging data and demonstrate that individual isolates display distinct growth and morphological characteristics that cluster by time point and susceptibility to ciprofloxacin, which occur independently of ciprofloxacin exposure. Using a further set of S. Typhimurium clinical isolates, we find that machine learning classifiers can accurately predict ciprofloxacin susceptibility without exposure to it or any prior knowledge of resistance phenotype. These results demonstrate the principle of using high-content imaging with machine learning algorithms to predict drug susceptibility of clinical bacterial isolates. This technique may be an important tool in understanding the morphological impact of antimicrobials on the bacterial cell to identify drugs with new modes of action.
Collapse
Affiliation(s)
- Tuan-Anh Tran
- The Department of Medicine, University of Cambridge, Cambridge, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sushmita Sridhar
- The Department of Medicine, University of Cambridge, Cambridge, UK
- The Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen T Reece
- The Department of Medicine, University of Cambridge, Cambridge, UK
- Sanofi, Kymab, Babraham Research Campus, Cambridge, UK
| | - Octavie Lunguya
- Department of Microbiology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jan Jacobs
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sandra Van Puyvelde
- The Department of Medicine, University of Cambridge, Cambridge, UK
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Florian Marks
- The Department of Medicine, University of Cambridge, Cambridge, UK
- International Vaccine Institute, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Madagascar Institute for Vaccine Research, University of Antananarivo, Antananarivo, Madagascar
| | - Gordon Dougan
- The Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nicholas R Thomson
- The Wellcome Sanger Institute, Hinxton, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Binh T Nguyen
- Faculty of Mathematics and Computer Science, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Pham The Bao
- Information Science Faculty, Saigon University, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- The Department of Medicine, University of Cambridge, Cambridge, UK.
- IAVI, Chelsea and Westminster Hospital, London, UK.
| |
Collapse
|
2
|
Tagle-Olmedo T, Andrade-Pavón D, Martínez-Gamboa A, Gómez-García O, García-Sierra F, Hernández-Rodríguez C, Villa-Tanaca L. Inhibitors of DNA topoisomerases I and II applied to Candida dubliniensis reduce growth, viability, the generation of petite mutants and toxicity, while acting synergistically with fluconazole. FEMS Yeast Res 2021; 21:6219866. [PMID: 33837766 DOI: 10.1093/femsyr/foab023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 11/14/2022] Open
Abstract
The increasing resistance of Candida species to azoles emphasizes the urgent need for new antifungal agents with novel mechanisms of action. The aim of this study was to examine the effect of three DNA topoisomerase inhibitors of plant origin (camptothecin, etoposide and curcumin) on the growth of Candida dubliniensis. The phylogenetic analysis showed a close relationship between the topoisomerase enzymes of C. dubliniensis and Candida albicans. The alignment of the amino acid sequences of topoisomerase I and II of yeasts and humans evidenced conserved domains. The docking study revealed affinity of the test compounds for the active site of topoisomerase I and II in C. dubliniensis. Curcumin and camptothecin demonstrated a stronger in vitro antifungal effect than the reference drugs (fluconazole and itraconazole). Significant synergistic activity between the topoisomerase inhibitors and fluconazole at the highest concentration (750 µM) was observed. Fluconazole induced the petite phenotype to a greater degree than the topoisomerase inhibitors, indicating a tendency to generate resistance. Lower toxicity was found for such inhibitors versus reference drugs on Galleria mellonella larva. The topoisomerase inhibitors exhibited promising antifungal activity, and the DNA topoisomerase enzymes of C. dubliniensis proved to be an excellent model for evaluating new antifungal compounds.
Collapse
Affiliation(s)
- Tania Tagle-Olmedo
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, 11340 México City, México
| | - Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, 11340 México City, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N Unidad Profesional "Adolfo López Mateos", Zacatenco. Col. Lindavista, Venustiano Carranza, Del, CP 07700, D.F., México
| | - Areli Martínez-Gamboa
- Laboratorio de Microbiología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 15 Vasco de Quiroga Ave, Belisario Domínguez Sección XVI, Tlalpan, México City, Mexico
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, 11340 México City, México
| | - Francisco García-Sierra
- Departamento de Biología Celular, Centro de investigación y estudios avanzados del Instituto Politécnico Nacional (CINVESTAV), México City, México
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, 11340 México City, México
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, 11340 México City, México
| |
Collapse
|
3
|
Trapped topoisomerase II initiates formation of de novo duplications via the nonhomologous end-joining pathway in yeast. Proc Natl Acad Sci U S A 2020; 117:26876-26884. [PMID: 33046655 DOI: 10.1073/pnas.2008721117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Topoisomerase II (Top2) is an essential enzyme that resolves catenanes between sister chromatids as well as supercoils associated with the over- or under-winding of duplex DNA. Top2 alters DNA topology by making a double-strand break (DSB) in DNA and passing an intact duplex through the break. Each component monomer of the Top2 homodimer nicks one of the DNA strands and forms a covalent phosphotyrosyl bond with the 5' end. Stabilization of this intermediate by chemotherapeutic drugs such as etoposide leads to persistent and potentially toxic DSBs. We describe the isolation of a yeast top2 mutant (top2-F1025Y,R1128G) the product of which generates a stabilized cleavage intermediate in vitro. In yeast cells, overexpression of the top2-F1025Y,R1128G allele is associated with a mutation signature that is characterized by de novo duplications of DNA sequence that depend on the nonhomologous end-joining pathway of DSB repair. Top2-associated duplications are promoted by the clean removal of the enzyme from DNA ends and are suppressed when the protein is removed as part of an oligonucleotide. TOP2 cells treated with etoposide exhibit the same mutation signature, as do cells that overexpress the wild-type protein. These results have implications for genome evolution and are relevant to the clinical use of chemotherapeutic drugs that target Top2.
Collapse
|