1
|
Aytenov IS, Bozorov TA, Zhang D, Samadiy SA, Muhammadova DA, Isokulov MZ, Murodova SM, Zakirova OR, Chinikulov BK, Sherimbetov AG. Uncovering the Antifungal Potential of Plant-Associated Cultivable Bacteria from the Aral Sea Region against Phytopathogenic Fungi. Pathogens 2024; 13:585. [PMID: 39057812 PMCID: PMC11279601 DOI: 10.3390/pathogens13070585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Two freshwater rivers, the Amu Darya and Syr Darya, flow into the Aral Sea, but they began to diminish in the early 1960s, and by the 1980s, the lake had nearly ceased to exist due to excessive water consumption for agriculture and the unsustainable management of water resources from rivers, which transformed the Aral Sea into a hypersaline lake. Despite this, the flora and fauna of the region began to evolve in the high-salinity seabed soil, which has received little attention in studies. In this study, we isolated approximately 1400 bacterial strains from the rhizosphere and phyllosphere of plant species of distinct families. Bacterial isolates were examined for antifungal activities against a range of pathogenic fungi such as Rhizoctonia gossypii, Trichothecium ovalisporum, Fusarium annulatum, F. oxysporum, F. culmorum, F. brachygibbosum, F. tricinctum, F. verticillioides, Alternaria alternata, A. terreus, Aspergillus niger, and As. flavus. Eighty-eight bacterial isolates exhibited varying antagonistic ability against pathogenic fungi. Furthermore, DNA barcoding of isolates using the 16S rRNA gene indicated that most antagonistic bacteria belonged to the Bacillus and Pseudomonas genera. The study also explored the activity of hydrolytic and cell-wall-degrading enzymes produced by antagonistic bacteria. The findings revealed that antagonistic bacteria can be utilized to widely protect seabed plants and plants growing in saline areas against pathogenic fungi, as well as agricultural crops.
Collapse
Affiliation(s)
- Ilkham S. Aytenov
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (I.S.A.); (D.Z.)
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Tohir A. Bozorov
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (I.S.A.); (D.Z.)
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Daoyuan Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (I.S.A.); (D.Z.)
| | - Sitora A. Samadiy
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
- Department of Microbiology and Biotechnology, National University of Uzbekistan, University Street, 4, Tashkent 100174, Uzbekistan
| | - Dono A. Muhammadova
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Marufbek Z. Isokulov
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Sojida M. Murodova
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Ozoda R. Zakirova
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Bakhodir Kh. Chinikulov
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan; (S.A.S.); (D.A.M.); (S.M.M.)
| | - Anvar G. Sherimbetov
- Laboratory of Plant Immunity, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Kibray 111226, Uzbekistan
| |
Collapse
|
2
|
Bozorov TA, Toshmatov ZO, Kahar G, Muhammad SM, Liu X, Zhang D, Aytenov IS, Turakulov KS. Uncovering the antifungal activities of wild apple-associated bacteria against two canker-causing fungi, Cytospora mali and C. parasitica. Sci Rep 2024; 14:6307. [PMID: 38491079 PMCID: PMC10943224 DOI: 10.1038/s41598-024-56969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Cytospora canker has become a devastating disease of apple species worldwide, and in severe cases, it may cause dieback of entire trees. The aim of this study was to characterize the diversity of cultivable bacteria from the wild apple microbiota and to determine their antifungal ability against the canker-causing pathogenic fungi Cytospora mali and C. parasitica. Five bacterial strains belonging to the species Bacillus amyloliquefaciens, B. atrophaeus, B. methylotrophicus, B. mojavensis, and Pseudomonas synxantha showed strong antagonistic effects against pathogenic fungi. Therefore, since the abovementioned Bacillus species produce known antifungal compounds, we characterized the antifungal compounds produced by Ps. synxantha. Bacteria grown on nutritional liquid medium were dehydrated, and the active compound from the crude extract was isolated and analysed via a range of chromatographic processes. High-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance analyses revealed a bioactive antifungal compound, phenazine-1-carboxylic acid (PCA). The minimum inhibitory concentration (MIC) demonstrated that PCA inhibited mycelial growth, with a MIC of 10 mg mL-1. The results suggested that PCA could be used as a potential compound to control C. mali and C. malicola, and it is a potential alternative for postharvest control of canker disease.
Collapse
Affiliation(s)
- Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan.
| | - Zokir O Toshmatov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Surayya M Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| | - Ilkham S Aytenov
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Khurshid S Turakulov
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
3
|
Wang C, Kuzyakov Y. Energy use efficiency of soil microorganisms: Driven by carbon recycling and reduction. GLOBAL CHANGE BIOLOGY 2023; 29:6170-6187. [PMID: 37646316 DOI: 10.1111/gcb.16925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Carbon use efficiency (CUE) is being intensively applied to quantify carbon (C) cycling processes from microbial cell to global scales. Energy use efficiency (EUE) is at least as important as the CUE because (i) microorganisms use organic C mainly as an energy source and not as elemental C per se, and (ii) microbial growth and maintenance are limited by energy, but not by C as a structural element. We conceptualize and review the importance of EUE by soil microorganisms and focus on (i) the energy content in organic compounds depending on the nominal oxidation state of carbon (NOSC), (ii) approaches to assess EUE, (iii) similarities and differences between CUE and EUE, and (iv) discuss mechanisms responsible for lower EUE compared to CUE. The energy content per C atom (enthalpy of combustion, the total energy stored in a compound) in organic compounds is very closely (R2 = 0.98) positively related to NOSC and increases by 108 kJ mol-1 C per one NOSC unit. For the first time we assessed the NOSC of microbial biomass in soil (-0.52) and calculated the corresponding energy content of -510 kJ mol-1 C. We linked CUE and EUE considering the NOSC of microbial biomass and element compositions of substrates utilized by microorganisms. The mean microbial EUE (0.32-0.35) is 18% lower than CUE (0.41) using glucose as a substrate. This definitely indicates that microbial growth is limited by energy relative to C. Based on the comparison of a broad range of processes of C and energy utilization for cell growth and maintenance, as well as database of experimental CUE from various compounds, we clearly explained five mechanisms and main factors why EUE is lower than CUE. The two main mechanisms behind lower EUE versus CUE are: (i) microbial recycling: C can be microbially recycled, whereas energy is always utilized only once, and (ii) chemical reduction of organic and inorganic compounds: Energy is used for reduction, which is ongoing without C utilization.
Collapse
Affiliation(s)
- Chaoqun Wang
- Biogeochemistry of Agroecosystems, University of Goettingen, Goettingen, Germany
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen, Germany
| |
Collapse
|
4
|
Kandel PP, Baltrus DA, Hockett KL. Pseudomonas Can Survive Tailocin Killing via Persistence-Like and Heterogenous Resistance Mechanisms. J Bacteriol 2020; 202:e00142-20. [PMID: 32312747 PMCID: PMC7283598 DOI: 10.1128/jb.00142-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phage tail-like bacteriocins (tailocins) are bacterially produced protein toxins that mediate competitive interactions between cocolonizing bacteria. Both theoretical and experimental research has shown there are intransitive interactions between bacteriocin-producing, bacteriocin-sensitive, and bacteriocin-resistant populations, whereby producers outcompete sensitive cells, sensitive cells outcompete resistant cells, and resistant cells outcompete producers. These so-called rock-paper-scissors dynamics explain how all three populations occupy the same environment, without one driving the others extinct. Using Pseudomonas syringae as a model, we demonstrate that otherwise sensitive cells survive bacteriocin exposure through a physiological mechanism. This mechanism allows cells to survive bacteriocin killing without acquiring resistance. We show that a significant fraction of the target cells that survive a lethal dose of tailocin did not exhibit any detectable increase in survival during a subsequent exposure. Tailocin persister cells were more prevalent in stationary- rather than log-phase cultures. Of the fraction of cells that gained detectable resistance, there was a range from complete (insensitive) to incomplete (partially sensitive) resistance. By using genomic sequencing and genetic engineering, we showed that a mutation in a hypothetical gene containing 8 to 10 transmembrane domains causes tailocin high persistence and that genes of various glycosyltransferases cause incomplete and complete tailocin resistance. Importantly, of the several classes of mutations, only those causing complete tailocin resistance compromised host fitness. This result indicates that bacteria likely utilize persistence to survive bacteriocin-mediated killing without suffering the costs associated with resistance. This research provides important insight into how bacteria can escape the trap of fitness trade-offs associated with gaining de novo tailocin resistance.IMPORTANCE Bacteriocins are bacterially produced protein toxins that are proposed as antibiotic alternatives. However, a deeper understanding of the responses of target bacteria to bacteriocin exposure is lacking. Here, we show that target cells of Pseudomonas syringae survive lethal bacteriocin exposure through both physiological persistence and genetic resistance mechanisms. Cells that are not growing rapidly rely primarily on persistence, whereas those growing rapidly are more likely to survive via resistance. We identified various mutations in lipopolysaccharide biogenesis-related regions involved in tailocin persistence and resistance. By assessing host fitness of various classes of mutants, we showed that persistence and subtle resistance are mechanisms P. syringae uses to survive competition and preserve host fitness. These results have important implications for developing bacteriocins as alternative therapeutic agents.
Collapse
Affiliation(s)
- Prem P Kandel
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|