1
|
Cao Y, Li J, Liu L, Du G, Liu Y. Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology. Synth Syst Biotechnol 2024; 10:281-293. [PMID: 39686977 PMCID: PMC11646789 DOI: 10.1016/j.synbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolic engineering-driven microbial cell factories have made great progress in the efficient bioproduction of biochemical and recombinant proteins. However, the low efficiency and robustness of microbial cell factories limit their industrial applications. Harnessing microbial heterogeneity contributes to solving this. In this review, the origins of microbial heterogeneity and its effects on biosynthesis are first summarized. Synthetic biology-driven tools and strategies that can be used to improve biosynthesis by increasing and reducing microbial heterogeneity are then systematically summarized. Next, novel single-cell technologies available for unraveling microbial heterogeneity and facilitating heterogeneity regulation are discussed. Furthermore, a combined workflow of increasing genetic heterogeneity in the strain-building step to help in screening highly productive strains - reducing heterogeneity in the production process to obtain highly robust strains (IHP-RHR) facilitated by single-cell technologies was proposed to obtain highly productive and robust strains by harnessing microbial heterogeneity. Finally, the prospects and future challenges are discussed.
Collapse
Affiliation(s)
- Yanting Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Jeyachandran S, Vibhute P, Kumar D, Ragavendran C. Random mutagenesis as a tool for industrial strain improvement for enhanced production of antibiotics: a review. Mol Biol Rep 2023; 51:19. [PMID: 38100064 DOI: 10.1007/s11033-023-08975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Secondary metabolites are produced by microbes in minimal quantities in the natural environment out of necessity. However, in the pharmaceutical industry, their overproduction becomes essential. To achieve higher yields, genetic modifications are employed to create strains that surpass the productivity of the initially isolated strains. While rational screening and genetic engineering have emerged as valuable practices in recent years, the cost-effective technique of mutagenesis and selection, known as "random screening," remains a preferred method for efficient short-term strain development. This review aims to comprehensively explore all aspects of strain improvement, focusing on why random mutagenesis continues to be widely adopted.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Bio-signal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India.
| | - Prachi Vibhute
- PG & Research Department of Biotechnology & Microbiology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620001, India
| | - Dinesh Kumar
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR-Central Salt & Marine Chemical Research Institute, Mandapam, Tamil Nadu, 623 519, India
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India
| |
Collapse
|
3
|
Huynh TQ, Tran VN, Thai VC, Nguyen HA, Nguyen NTG, Tran MK, Nguyen TPT, Le CA, Ho LTN, Surian NU, Chen S, Nguyen TTH. Genomic alterations involved in fluoroquinolone resistance development in Staphylococcus aureus. PLoS One 2023; 18:e0287973. [PMID: 37494330 PMCID: PMC10370734 DOI: 10.1371/journal.pone.0287973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
AIM Fluoroquinolone (FQ) is a potent antibiotic class. However, resistance to this class emerges quickly which hinders its application. In this study, mechanisms leading to the emergence of multidrug-resistant (MDR) Staphylococcus aureus (S. aureus) strains under FQ exposure were investigated. METHODOLOGY S. aureus ATCC 29213 was serially exposed to ciprofloxacin (CIP), ofloxacin (OFL), or levofloxacin (LEV) at sub-minimum inhibitory concentrations (sub-MICs) for 12 days to obtain S. aureus -1 strains and antibiotic-free cultured for another 10 days to obtain S. aureus-2 strains. The whole genome (WGS) and target sequencing were applied to analyze genomic alterations; and RT-qPCR was used to access the expressions of efflux-related genes, alternative sigma factors, and genes involved in FQ resistance. RESULTS A strong and irreversible increase of MICs was observed in all applied FQs (32 to 128 times) in all S. aureus-1 and remained 16 to 32 times in all S. aureus-2. WGS indicated 10 noticeable mutations occurring in all FQ-exposed S. aureus including 2 insdel mutations in SACOL0573 and rimI; a synonymous mutation in hslO; and 7 missense mutations located in an untranslated region. GrlA, was found mutated (R570H) in all S. aureus-1 and -2. Genes encoding for efflux pumps and their regulator (norA, norB, norC, and mgrA); alternative sigma factors (sigB and sigS); acetyltransferase (rimI); methicillin resistance (fmtB); and hypothetical protein BJI72_0645 were overexpressed in FQ-exposed strains. CONCLUSION The emergence of MDR S. aureus was associated with the mutations in the FQ-target sequences and the overexpression of efflux pump systems and their regulators.
Collapse
Affiliation(s)
- Thuc Quyen Huynh
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Research Center for Infectious Diseases, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Van Nhi Tran
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Van Chi Thai
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang An Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ngoc Thuy Giang Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh Khang Tran
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thi Phuong Truc Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Cat Anh Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Le Thanh Ngan Ho
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Swaine Chen
- Genome Institute of Singapore, Singapore, Singapore
| | - Thi Thu Hoai Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Research Center for Infectious Diseases, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Mutation Rate and Spectrum of the Silkworm in Normal and Temperature Stress Conditions. Genes (Basel) 2023; 14:genes14030649. [PMID: 36980921 PMCID: PMC10048334 DOI: 10.3390/genes14030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Mutation rate is a crucial parameter in evolutionary genetics. However, the mutation rate of most species as well as the extent to which the environment can alter the genome of multicellular organisms remain poorly understood. Here, we used parents–progeny sequencing to investigate the mutation rate and spectrum of the domestic silkworm (Bombyx mori) among normal and two temperature stress conditions (32 °C and 0 °C). The rate of single-nucleotide mutations in the normal temperature rearing condition was 0.41 × 10−8 (95% confidence interval, 0.33 × 10−8–0.49 × 10−8) per site per generation, which was up to 1.5-fold higher than in four previously studied insects. Moreover, the mutation rates of the silkworm under the stresses are significantly higher than in normal conditions. Furthermore, the mutation rate varies less in gene regions under normal and temperature stresses. Together, these findings expand the known diversity of the mutation rate among eukaryotes but also have implications for evolutionary analysis that assumes a constant mutation rate among species and environments.
Collapse
|
5
|
Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges. Nat Commun 2022; 13:4752. [PMID: 35963846 PMCID: PMC9376063 DOI: 10.1038/s41467-022-32353-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Ecological and demographic factors can significantly shape the evolution of microbial populations both directly and indirectly, as when changes in the effective population size affect the efficiency of natural selection on the mutation rate. However, it remains unclear how rapidly the mutation-rate responds evolutionarily to the entanglement of ecological and population-genetic factors over time. Here, we directly assess the mutation rate and spectrum of Escherichia coli clones isolated from populations evolving in response to 1000 days of different transfer volumes and resource-replenishment intervals. The evolution of mutation rates proceeded rapidly in response to demographic and/or environmental changes, with substantial bidirectional shifts observed as early as 59 generations. These results highlight the remarkable rapidity by which mutation rates are shaped in asexual lineages in response to environmental and population-genetic forces, and are broadly consistent with the drift-barrier hypothesis for the evolution of mutation rates, while also highlighting situations in which mutator genotypes may be promoted by positive selection. How rapidly the mutation rate responds evolutionarily to ecological and population-genetic factors over time is unclear. Here, the authors show that the evolution of mutation rates in E. coli proceeds rapidly in response to these factors with substantial bidirectional shifts.
Collapse
|
6
|
Abstract
Ecotypic diversification and its associated cooperative behaviors are frequently observed in natural microbial populations whose access to resources is often sporadic. However, the extent to which fluctuations in resource availability influence the emergence of cooperative ecotypes is not fully understood. To determine how exposure to repeated resource limitation affects the establishment and long-term maintenance of ecotypes in a structured environment, we followed 32 populations of Escherichia coli evolving to either 1-day or 10-day feast/famine cycles for 900 days. Population-level analysis revealed that compared to populations evolving to 1-day cycles, 10-day populations evolved increased biofilm density, higher parallelism in mutational targets, and increased mutation rates. As previous investigations of evolution in structured environments have identified biofilm formation as the earliest observable phenotype associated with diversification of ecotypes, we revived cultures midway through the evolutionary process and conducted additional genomic, transcriptional, and phenotypic analyses of clones isolated from these evolving populations. We found not only that 10-day feast/famine cycles support multiple ecotypes but also that these ecotypes exhibit cooperative behavior. Consistent with the black queen hypothesis, or evolution of cooperation by gene loss, transcriptomic evidence suggests the evolution of bidirectional cross-feeding behaviors based on essential resources. These results provide insight into how analogous cooperative relationships may emerge in natural microbial communities. IMPORTANCE Despite regular feast and famine conditions representing an environmental pressure that is commonly encountered by microbial communities, the evolutionary outcomes of repeated cycles of feast and famine have been less studied. By experimentally evolving initially isogenic Escherichia coli populations to 10-day feast/famine cycles, we observed rapid diversification into ecotypes with evidence of bidirectional cross-feeding on costly resources and frequency-dependent fitness. Although unidirectional cross-feeding has been repeatedly observed to evolve in laboratory culture, most investigations of bidirectional cooperative behaviors in microbial populations have been conducted in engineered communities. This work demonstrates the de novo evolution of black queen relationships in a microbial population originating from a single ancestor, providing a model for investigation of the eco-evolutionary processes leading to mutualistic cooperation.
Collapse
|
7
|
Ho WC, Behringer MG, Miller SF, Gonzales J, Nguyen A, Allahwerdy M, Boyer GF, Lynch M. Evolutionary Dynamics of Asexual Hypermutators Adapting to a Novel Environment. Genome Biol Evol 2021; 13:evab257. [PMID: 34864972 PMCID: PMC8643662 DOI: 10.1093/gbe/evab257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 12/24/2022] Open
Abstract
How microbes adapt to a novel environment is a central question in evolutionary biology. Although adaptive evolution must be fueled by beneficial mutations, whether higher mutation rates facilitate the rate of adaptive evolution remains unclear. To address this question, we cultured Escherichia coli hypermutating populations, in which a defective methyl-directed mismatch repair pathway causes a 140-fold increase in single-nucleotide mutation rates. In parallel with wild-type E. coli, populations were cultured in tubes containing Luria-Bertani broth, a complex medium known to promote the evolution of subpopulation structure. After 900 days of evolution, in three transfer schemes with different population-size bottlenecks, hypermutators always exhibited similar levels of improved fitness as controls. Fluctuation tests revealed that the mutation rates of hypermutator lines converged evolutionarily on those of wild-type populations, which may have contributed to the absence of fitness differences. Further genome-sequence analysis revealed that, although hypermutator populations have higher rates of genomic evolution, this largely reflects strong genetic linkage. Despite these linkage effects, the evolved population exhibits parallelism in fixed mutations, including those potentially related to biofilm formation, transcription regulation, and mutation-rate evolution. Together, these results are generally inconsistent with a hypothesized positive relationship between the mutation rate and the adaptive speed of evolution, and provide insight into how clonal adaptation occurs in novel environments.
Collapse
Affiliation(s)
- Wei-Chin Ho
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Megan G Behringer
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Samuel F Miller
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jadon Gonzales
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Amber Nguyen
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Meriem Allahwerdy
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Gwyneth F Boyer
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
8
|
Abstract
Pseudomonas putidais a fast-growing bacterium found mostly in temperate soil and water habitats. The metabolic versatility ofP. putidamakes this organism attractive for biotechnological applications such as biodegradation of environmental pollutants and synthesis of added-value chemicals (biocatalysis). This organism has been extensively studied in respect to various stress responses, mechanisms of genetic plasticity and transcriptional regulation of catabolic genes.P. putidais able to colonize the surface of living organisms, but is generally considered to be of low virulence. A number ofP. putidastrains are able to promote plant growth. The aim of this review is to give historical overview of the discovery of the speciesP. putidaand isolation and characterization ofP. putidastrains displaying potential for biotechnological applications. This review also discusses some major findings inP. putidaresearch encompassing regulation of catabolic operons, stress-tolerance mechanisms and mechanisms affecting evolvability of bacteria under conditions of environmental stress.
Collapse
|
9
|
Integration Host Factor IHF facilitates homologous recombination and mutagenic processes in Pseudomonas putida. DNA Repair (Amst) 2019; 85:102745. [PMID: 31715424 DOI: 10.1016/j.dnarep.2019.102745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
Nucleoid-associated proteins (NAPs) such as IHF, HU, Fis, and H-NS alter the topology of bound DNA and may thereby affect accessibility of DNA to repair and recombination processes. To examine this possibility, we investigated the effect of IHF on the frequency of homologous recombination (HR) and point mutations in soil bacterium Pseudomonas putida by using plasmidial and chromosomal assays. We observed positive effect of IHF on the frequency of HR, whereas this effect varied depending both on the chromosomal location of the HR target and the type of plasmid used in the assay. The occurrence of point mutations in plasmid was also facilitated by IHF, whereas in the chromosome the positive effect of IHF appeared only at certain DNA sequences and/or chromosomal positions. We did not observe any significant effects of IHF on the spectrum of mutations. However, despite of the presence or absence of IHF, different mutational hot spots appeared both in plasmid and in chromosome. Additionally, the frequency of frameshift mutations in the chromosome was also strongly affected by the location of the mutational target sequence. Taking together, our results indicate that IHF facilitates the occurrence of genetic changes in P. putida, whereas the location of the target sequence affects both the IHF-dependent and IHF-independent mechanisms.
Collapse
|
10
|
Liu H, Zhang J. Yeast Spontaneous Mutation Rate and Spectrum Vary with Environment. Curr Biol 2019; 29:1584-1591.e3. [PMID: 31056389 DOI: 10.1016/j.cub.2019.03.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
Mutation is the ultimate genetic source of evolution and biodiversity, but to what extent the environment impacts mutation rate and spectrum is poorly understood. Past studies discovered mutagenesis induced by antibiotic treatment or starvation, but its relevance and importance to long-term evolution is unclear because these severe stressors typically halt cell growth and/or cause substantial cell deaths. Here, we quantify the mutation rate and spectrum in Saccharomyces cerevisiae by whole-genome sequencing following mutation accumulation in each of seven environments with relatively rapid cell growths and minimal cell deaths. We find the point mutation rate per generation to differ by 3.6-fold among the seven environments, generally increasing in environments with slower cell growths. This trend renders the mutation rate per year more constant than that per generation across environments, which has implications for neutral evolution and the molecular clock. Additionally, we find substantial among-environment variations in mutation spectrum, such as the transition to transversion ratio and AT mutational bias. Other main mutation types, including small insertion or deletion, segmental duplication or deletion, and chromosome gain or loss also tend to occur more frequently in environments where yeast grows more slowly. In contrast to these findings from the nuclear genome, the yeast mitochondrial mutation rate rises with the growth rate, consistent with the metabolic rate hypothesis. Together, these observations indicate that environmental changes, which are ubiquitous in nature, influence not only natural selection, but also the amount and type of mutations available to selection, and suggest that ignoring the latter impact, as is currently practiced, may mislead evolutionary inferences.
Collapse
Affiliation(s)
- Haoxuan Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Windels EM, Michiels JE, Fauvart M, Wenseleers T, Van den Bergh B, Michiels J. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME JOURNAL 2019; 13:1239-1251. [PMID: 30647458 DOI: 10.1038/s41396-019-0344-9] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/09/2018] [Accepted: 12/23/2018] [Indexed: 02/08/2023]
Abstract
Persisters are transiently antibiotic-tolerant cells that complicate the treatment of bacterial infections. Both theory and experiments have suggested that persisters facilitate genetic resistance by constituting an evolutionary reservoir of viable cells. Here, we provide evidence for a strong positive correlation between persistence and the likelihood to become genetically resistant in natural and lab strains of E. coli. This correlation can be partly attributed to the increased availability of viable cells associated with persistence. However, our data additionally show that persistence is pleiotropically linked with mutation rates. Our theoretical model further demonstrates that increased survival and mutation rates jointly affect the likelihood of evolving clinical resistance. Overall, these results suggest that the battle against antibiotic resistance will benefit from incorporating anti-persister therapies.
Collapse
Affiliation(s)
- Etthel Martha Windels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Joran Elie Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,imec, Leuven, Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.,Douglas lab, Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
12
|
Abstract
In bacteria, replication forks assembled at a replication origin travel to the terminus, often a few megabases away. They may encounter obstacles that trigger replisome disassembly, rendering replication restart from abandoned forks crucial for cell viability. During the past 25 years, the genes that encode replication restart proteins have been identified and genetically characterized. In parallel, the enzymes were purified and analyzed in vitro, where they can catalyze replication initiation in a sequence-independent manner from fork-like DNA structures. This work also revealed a close link between replication and homologous recombination, as replication restart from recombination intermediates is an essential step of DNA double-strand break repair in bacteria and, conversely, arrested replication forks can be acted upon by recombination proteins and converted into various recombination substrates. In this review, we summarize this intense period of research that led to the characterization of the ubiquitous replication restart protein PriA and its partners, to the definition of several replication restart pathways in vivo, and to the description of tight links between replication and homologous recombination, responsible for the importance of replication restart in the maintenance of genome stability.
Collapse
|
13
|
Abstract
Organisms often encounter stressful conditions, some of which damage their DNA. In response, some organisms show a high expression of error-prone DNA repair machinery, causing a temporary increase in the genome-wide mutation rate. Although we now have a detailed map of the molecular mechanisms underlying such stress-induced mutagenesis (SIM), it has been hotly debated whether SIM alters evolutionary dynamics. Key to this controversy is our poor understanding about which stresses increase mutagenesis and their long-term consequences for adaptation. In a new study with Escherichia coli, Maharjan and Ferenci show that while only some nutritional stresses (phosphorous and carbon limitation) increase total mutation rates, each stress generates a unique spectrum of mutations. Their results suggest the potential for specific stresses to shape evolutionary dynamics and highlight the necessity for explicit tests of the long-term evolutionary impacts of SIM.
Collapse
|
14
|
Zhang Z, Saier MH. Transposon-mediated activation of the Escherichia coli glpFK operon is inhibited by specific DNA-binding proteins: Implications for stress-induced transposition events. Mutat Res 2016; 793-794:22-31. [PMID: 27810619 DOI: 10.1016/j.mrfmmm.2016.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/18/2016] [Accepted: 10/22/2016] [Indexed: 11/16/2022]
Abstract
Escherichia coli cells deleted for the cyclic AMP (cAMP) receptor protein (Crp) gene (Δcrp) cannot utilize glycerol because cAMP-Crp is a required activator of the glycerol utilization operon, glpFK. We have previously shown that a transposon, Insertion Sequence 5 (IS5), can insert into the upstream regulatory region of the operon to activate the glpFK promoter and enable glycerol utilization. GlpR, which represses glpFK transcription, binds to the glpFK upstream region near the site of IS5 insertion and inhibits insertion. By adding cAMP to the culture medium in ΔcyaA cells, we here show that the cAMP-Crp complex, which also binds to the glpFK upstream regulatory region, inhibits IS5 hopping into the activating site. Control experiments showed that the frequencies of mutations in response to cAMP were independent of parental cell growth rate and the selection procedure. These findings led to the prediction that glpFK-activating IS5 insertions can also occur in wild-type (Crp+) cells under conditions that limit cAMP production. Accordingly, we found that IS5 insertion into the activating site in wild-type cells is elevated in the presence of glycerol and a non-metabolizable sugar analogue that lowers cytoplasmic cAMP concentrations. The resultant IS5 insertion mutants arising in this minimal medium become dominant constituents of the population after prolonged periods of growth. The results show that DNA binding transcription factors can reversibly mask a favored transposon target site, rendering a hot spot for insertion less favored. Such mechanisms could have evolved by natural selection to overcome environmental adversity.
Collapse
Affiliation(s)
- Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States.
| |
Collapse
|
15
|
Ambriz-Aviña V, Yasbin RE, Robleto EA, Pedraza-Reyes M. Role of Base Excision Repair (BER) in Transcription-associated Mutagenesis of Nutritionally Stressed Nongrowing Bacillus subtilis Cell Subpopulations. Curr Microbiol 2016; 73:721-726. [PMID: 27530626 DOI: 10.1007/s00284-016-1122-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
Compelling evidence points to transcriptional processes as important factors contributing to stationary-phase associated mutagenesis. However, it has not been documented whether or not base excision repair mechanisms play a role in modulating mutagenesis under conditions of transcriptional derepression. Here, we report on a flow cytometry-based methodology that employs a fluorescent reporter system to measure at single-cell level, the occurrence of transcription-associated mutations in nutritionally stressed B. subtilis cultures. Using this approach, we demonstrate that (i) high levels of transcription correlates with augmented mutation frequency, and (ii) mutation frequency is enhanced in nongrowing population cells deficient for deaminated (Ung, YwqL) and oxidized guanine (GO) excision repair, strongly suggesting that accumulation of spontaneous DNA lesions enhance transcription-associated mutagenesis.
Collapse
Affiliation(s)
- Verónica Ambriz-Aviña
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Ronald E Yasbin
- College of Arts and Sciences, University of Missouri-St Louis, St Louis, MO, USA
| | | | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico.
| |
Collapse
|