1
|
Moreland RB, Brubaker L, Tinawi L, Wolfe AJ. Rapid and accurate testing for urinary tract infection: new clothes for the emperor. Clin Microbiol Rev 2025; 38:e0012924. [PMID: 39641639 PMCID: PMC11905368 DOI: 10.1128/cmr.00129-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
SUMMARYUrinary tract infection (UTI) is among the most common infections in clinical practice. In some cases, if left untreated, it can lead to pyelonephritis and urosepsis. In other cases, UTI resolves without treatment. Clinical diagnosis is typically based on patient symptoms and/or urinalysis, including urine dipsticks. The standard urine culture method is sometimes employed to identify the suspected urinary pathogen (uropathogen) and/or guide antimicrobial choice, but results are rarely available before 24 h. The standard urine culture method also misses fastidious, anaerobic, and slow-growing uropathogens and rarely reports polymicrobial infections. The unexplained combination of negative urine cultures with persistent urinary tract symptoms is distressing to both patients and clinicians. Given the broad appreciation of the advantages provided by rapid testing (e.g., for COVID-19 or influenza A), a rapid, accurate diagnostic test is needed to deliver timely treatment to patients seeking care for UTI that optimizes antibiotic stewardship. Herein, we discuss progress being made toward an accessible, timely (i.e., within hours), accurate assay with results that are clinically useful for the treating clinician within the timeframe of the infection (i.e., the growth rate of the pathogen(s)). New and emerging uropathogens often overlooked by current diagnostic techniques are also reviewed.
Collapse
Affiliation(s)
- Robert B. Moreland
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Linda Brubaker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Lana Tinawi
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
2
|
Konieczna M, Koryszewska-Bagińska A, Bzikowska-Jura A, Chmielewska-Jeznach M, Jarzynka S, Olędzka G. Modifiable and Non-Modifiable Factors That Affect Human Milk Oligosaccharides Composition. Nutrients 2024; 16:2887. [PMID: 39275203 PMCID: PMC11397269 DOI: 10.3390/nu16172887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Human milk, the gold standard in infant nutrition, is a unique fluid that provides essential nutrients such as lactose, lipids, proteins, and free oligosaccharides. While its primary role is nutritional, it also protects against pathogens. This protection mainly comes from immunoglobulins, with human milk oligosaccharides (HMOs) providing additional support by inhibiting pathogen binding to host cell ligands. The prebiotic and immune-modulatory activity of HMOs strongly depends on their structure. Over 200 individual structures have been identified so far, with the composition varying significantly among women. The structure and composition of HMOs are influenced by factors such as the Lewis blood group, secretor status, and the duration of nursing. HMO profiles are heavily influenced by maternal phenotypes, which are defined based on the expression of two specific fucosyltransferases. However, recent data have shown that HMO content can be modified by various factors, both changeable and unchangeable, including diet, maternal age, gestational age, mode of delivery, breastfeeding frequency, and race. The first part of this overview presents the historical background of these sugars and the efforts by scientists to extract them using the latest chromatography methods. The second part is divided into subchapters that examine modifiable and non-modifiable factors, reviewing the most recent articles on HMO composition variations due to specific reasons and summarizing potential future challenges in conducting these types of studies.
Collapse
Affiliation(s)
- Małgorzata Konieczna
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | | | - Agnieszka Bzikowska-Jura
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
- Laboratory of Human Milk and Lactation Research, Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | | | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| |
Collapse
|
3
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
4
|
Abstract
Escherichia coli is likely the most studied organism and was instrumental in developing many fundamental concepts in biology. But why E. coli? In the 1940s, E. coli was well suited for the biochemical and genetic research that blended to become the seminal field of biochemical genetics and led to the realization that processes already known to occur in complex organisms were conserved in bacteria. This now-obvious concept, combined with the advantages offered by its easy cultivation, ultimately drove many researchers to shift from the complexity of eukaryotic models to the simpler bacterial system, which eventually led to the development of molecular biology. As knowledge and experimental tools amassed, a positive-feedback loop fixed the central role of E. coli in research. However, given the vast diversity among bacteria and even among E. coli strains, it was by many fortuitous events that E. coli rose to the top as an experimental model. Here, we share how serendipity and its own biology selected E. coli as the flagship bacterium of molecular biology.
Collapse
Affiliation(s)
- Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
5
|
Foster-Nyarko E, Pallen MJ. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol Rev 2022; 46:fuac008. [PMID: 35134909 PMCID: PMC9075585 DOI: 10.1093/femsre/fuac008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, United Kingdom
| |
Collapse
|
6
|
Abstract
The history of Shigella, the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of Shigella pathogenesis in the first 100 years. Over the past century, Shigella has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and "black holes" and antivirulence genes. While there is still much to learn from studying Shigella pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.
Collapse
|