1
|
Scherrer S, Stephan R. Novel multiplex TaqMan assay for differentiation of the four major pathogenic Brachyspira species in swine. Microbiologyopen 2021; 10:e1169. [PMID: 33650802 PMCID: PMC7887428 DOI: 10.1002/mbo3.1169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
A novel TaqMan 5-plex real-time PCR using a combination of locked nucleic acid-modified (LNA)- and minor groove binding (MGB)-conjugated DNA probes was developed for identification and differentiation between the four main pathogenic Brachyspira species in swine. B. hyodysenteriae, B. pilosicoli, and B. suanatina are identified using three hydrolysis probes targeting cpn60, while B. hampsonii is recognized by another nox specific probe. The assay also includes an exogenous internal control simultaneously verifying the PCR competency of the DNA samples. Validation of the novel assay was performed using DNA samples from 18 Brachyspira reference strains and 477 clinical samples obtained from porcine rectal swabs by comparing them with different PCR-based methods targeting nox, 16S rDNA, and 23S rDNA. The specificity of the assay was 100% without cross-reactivity or detection of different pathogens. Depending on the Brachyspira species, the limit of detection was between 10 and 20 genome equivalents with a cut-off threshold cycle (Ct) value of 37. The developed highly sensitive and specific 5-plex real-time PCR assay is easy to implement in routine veterinary diagnostic laboratories and enables rapid differentiation between the main four pathogenic Brachyspira species recognized in pigs using a single-tube approach.
Collapse
Affiliation(s)
- Simone Scherrer
- Department of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Department of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Pandey A, Humbert MV, Jackson A, Passey JL, Hampson DJ, Cleary DW, La Ragione RM, Christodoulides M. Evidence of homologous recombination as a driver of diversity in Brachyspira pilosicoli. Microb Genom 2020; 6:mgen000470. [PMID: 33174833 PMCID: PMC8116685 DOI: 10.1099/mgen.0.000470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The enteric, pathogenic spirochaete Brachyspira pilosicoli colonizes and infects a variety of birds and mammals, including humans. However, there is a paucity of genomic data available for this organism. This study introduces 12 newly sequenced draft genome assemblies, boosting the cohort of examined isolates by fourfold and cataloguing the intraspecific genomic diversity of the organism more comprehensively. We used several in silico techniques to define a core genome of 1751 genes and qualitatively and quantitatively examined the intraspecific species boundary using phylogenetic analysis and average nucleotide identity, before contextualizing this diversity against other members of the genus Brachyspira. Our study revealed that an additional isolate that was unable to be species typed against any other Brachyspira lacked putative virulence factors present in all other isolates. Finally, we quantified that homologous recombination has as great an effect on the evolution of the core genome of the B. pilosicoli as random mutation (r/m=1.02). Comparative genomics has informed Brachyspira diversity, population structure, host specificity and virulence. The data presented here can be used to contribute to developing advanced screening methods, diagnostic assays and prophylactic vaccines against this zoonotic pathogen.
Collapse
Affiliation(s)
- Anish Pandey
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Trust, SO166YD, UK
| | - Maria Victoria Humbert
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Alexandra Jackson
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Jade L. Passey
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - David J. Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David W. Cleary
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Trust, SO166YD, UK
| | - Roberto M. La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Myron Christodoulides
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
The Spirochete Brachyspira pilosicoli, Enteric Pathogen of Animals and Humans. Clin Microbiol Rev 2017; 31:31/1/e00087-17. [PMID: 29187397 DOI: 10.1128/cmr.00087-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Brachyspira pilosicoli is a slow-growing anaerobic spirochete that colonizes the large intestine. Colonization occurs commonly in pigs and adult chickens, causing colitis/typhlitis, diarrhea, poor growth rates, and reduced production. Colonization of humans also is common in some populations (individuals living in village and peri-urban settings in developing countries, recent immigrants from developing countries, homosexual males, and HIV-positive patients), but the spirochete rarely is investigated as a potential human enteric pathogen. In part this is due to its slow growth and specialized growth requirements, meaning that it is not detectable in human fecal samples using routine diagnostic methods. Nevertheless, it has been identified histologically attached to the colon and rectum in patients with conditions such as chronic diarrhea, rectal bleeding, and/or nonspecific abdominal discomfort, and one survey of Australian Aboriginal children showed that colonization was significantly associated with failure to thrive. B. pilosicoli has been detected in the bloodstream of elderly patients or individuals with chronic conditions such as alcoholism and malignancies. This review describes the spirochete and associated diseases. It aims to encourage clinicians and clinical microbiologists to consider B. pilosicoli in their differential diagnoses and to develop and use appropriate diagnostic protocols to identify the spirochete in clinical specimens.
Collapse
|
4
|
Casas V, Rodríguez-Asiain A, Pinto-Llorente R, Vadillo S, Carrascal M, Abian J. Brachyspira hyodysenteriae and B. pilosicoli Proteins Recognized by Sera of Challenged Pigs. Front Microbiol 2017; 8:723. [PMID: 28522991 PMCID: PMC5415613 DOI: 10.3389/fmicb.2017.00723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 11/13/2022] Open
Abstract
The spirochetes Brachyspira hyodysenteriae and B. pilosicoli are pig intestinal pathogens that are the causative agents of swine dysentery (SD) and porcine intestinal spirochaetosis (PIS), respectively. Although some inactivated bacterin and recombinant vaccines have been explored as prophylactic treatments against these species, no effective vaccine is yet available. Immunoproteomics approaches hold the potential for the identification of new, suitable candidates for subunit vaccines against SD and PIS. These strategies take into account the gene products actually expressed and present in the cells, and thus susceptible of being targets of immune recognition. In this context, we have analyzed the immunogenic pattern of two B. pilosicoli porcine isolates (the Spanish farm isolate OLA9 and the commercial P43/6/78 strain) and one B. hyodysenteriae isolate (the Spanish farm V1). The proteins from the Brachyspira lysates were fractionated by preparative isoelectric focusing, and the fractions were analyzed by Western blot with hyperimmune sera from challenged pigs. Of the 28 challenge-specific immunoreactive bands detected, 21 were identified as single proteins by MS, while the other 7 were shown to contain several major proteins. None of these proteins were detected in the control immunoreactive bands. The proteins identified included 11 from B. hyodysenteriae and 28 from the two B. pilosicoli strains. Eight proteins were common to the B. pilosicoli strains (i.e., elongation factor G, aspartyl-tRNA synthase, biotin lipoyl, TmpB outer membrane protein, flagellar protein FlaA, enolase, PEPCK, and VspD), and enolase and PEPCK were common to both species. Many of the identified proteins were flagellar proteins or predicted to be located on the cell surface and some of them had been previously described as antigenic or as bacterial virulence factors. Here we report on the identification and semiquantitative data of these immunoreactive proteins which constitute a unique antigen collection from these bacteria.
Collapse
Affiliation(s)
- Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPSBarcelona, Spain.,Faculty of Medicine, Autonomous University of BarcelonaBarcelona, Spain
| | | | | | - Santiago Vadillo
- Departamento Sanidad Animal, Facultad de Veterinaria, Universidad de ExtremaduraCáceres, Spain
| | | | - Joaquin Abian
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPSBarcelona, Spain.,Faculty of Medicine, Autonomous University of BarcelonaBarcelona, Spain
| |
Collapse
|
5
|
Abstract
The 'colonic' spirochetes assigned to the genus Brachyspira are slow-growing anaerobic bacteria. The genus includes both pathogenic and non-pathogenic species, and these variously colonise the large intestines of different species of birds and animals, including humans. Scientific understanding of the physiology and molecular biology of Brachyspira spp. remains very limited compared with that of other pathogenic spirochetes, and there are few descriptions of successful genetic manipulations undertaken to investigate gene function. An important boost to knowledge occurred in 2009 when, for the first time, the whole genome sequence of a Brachyspira strain (Brachyspira hyodysenteriae strain WA1) was obtained. The genomics analysis provided a significant increase in knowledge: for example, a previously unknown ~36 Kb plasmid was discovered and metabolic pathways were constructed. The study also revealed likely acquisition of genes involved in transport and central metabolic functions from other enteric bacterial species. Four subsequent publications have provided a similarly detailed analysis of other Brachyspira genomes, but of these only two included more than one strain of a species (20 strains of B. hyodysenteriae in one and three strains of B. pilosicoli in the other). Since then, more Brachyspira genomes have been made publicly available, with the sequences of at least one representative of each of the nine officially recognised species deposited at public genome repositories. All species have a single circular chromosome varying in size from ~2.5 to 3.3 Mb, with a C + G content of around 27%. In this chapter, we summarise the current knowledge and present a preliminary comparative genomic analysis conducted on 56 strains covering the official Brachyspira species. Besides providing detailed genetic maps of the bacteria, this analysis has revealed gene island rearrangements, putative phenotypes (including antimicrobial drug resistance) and genetic mutation mechanisms that enable brachyspires to evolve and respond to stress. The application of Next-Generation Sequencing (NGS) to generate genomic data from many more Brachyspira species and strains increasing will improve our understanding of these enigmatic spirochetes.
Collapse
|
6
|
La T, Neo E, Phillips ND, Hampson DJ. Genes encoding ten newly designated OXA-63 group class D β-lactamases identified in strains of the pathogenic intestinal spirochaete Brachyspira pilosicoli. J Med Microbiol 2015; 64:1425-1435. [PMID: 26315325 DOI: 10.1099/jmm.0.000162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaerobic spirochaete Brachyspira pilosicoli colonizes the large intestine of birds and mammals, including human beings, and may induce colitis and diarrhoea. B. pilosicoli has a recombinant population structure, and strains show extensive genomic rearrangements and different genome sizes. The resident chromosomal gene blaOXA-63 in B. pilosicoli encodes OXA-63, a narrow-spectrum group IV class D β-lactamase. Genes encoding four OXA-63 variants have been described in B. pilosicoli, and the current study was designed to investigate the distribution and diversity of such genes and proteins in strains of B. pilosicoli. PCRs were used to amplify blaOXA-63 group genes from 118 B. pilosicoli strains from different host species and geographical origins. One primer set was targeted externally to the gene and two sets were designed to amplify internal components. A total of 16 strains (13.6%) showed no evidence of possessing blaOXA-63 group genes, 44 (37.3%) had a full gene, 27 (22.9%) apparently had a gene but it failed to amplify with external primers, and 29 (24.6%) had only one or other of the two internal components amplified. Based on translation of the nucleotide sequences, ten new variants of the β-lactamase, designated OXA-470 through OXA-479, were identified amongst the 44 strains that had the full gene amplified. The 16 strains lacking blaOXA-63 group genes had a region of 1674 bp missing around where the gene was expected to reside. Despite apparent genomic rearrangements occurring in B. pilosicoli, positive selection pressures for conservation of blaOXA-63 group genes and OXA proteins appear to have been exerted.
Collapse
Affiliation(s)
- Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Eugene Neo
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Nyree D Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David J Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
7
|
Black M, Moolhuijzen P, Barrero R, La T, Phillips N, Hampson D, Herbst W, Barth S, Bellgard M. Analysis of Multiple Brachyspira hyodysenteriae Genomes Confirms That the Species Is Relatively Conserved but Has Potentially Important Strain Variation. PLoS One 2015; 10:e0131050. [PMID: 26098837 PMCID: PMC4476648 DOI: 10.1371/journal.pone.0131050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/28/2015] [Indexed: 12/19/2022] Open
Abstract
The intestinal spirochete Brachyspira hyodysenteriae is an important pathogen in swine, causing mucohemorrhagic colitis in a disease known as swine dysentery. Based on the detection of significant linkage disequilibrium in multilocus sequence data, the species is considered to be clonal. An analysis of the genome sequence of Western Australian B. hyodysenteriae strain WA1 has been published, and in the current study 19 further strains from countries around the world were sequenced with Illumina technology. The genomes were assembled and aligned to over 97.5% of the reference WA1 genome at a percentage sequence identity better than 80%. Strain regions not aligned to the reference ranged between 0.2 and 2.5%. Clustering of the strain genes found on average 2,354 (88%) core genes, 255 (8.6%) ancillary genes and 77 (2.9%) unique genes per strain. Depending on the strain the proportion of genes with 100% sequence identity to WA1 ranged from 85% to 20%. The result is a global comparative genomic analysis of B. hyodysenteriae genomes revealing potential differential phenotypic markers for numerous strains. Despite the differences found, the genomes were less varied than those of the related pathogenic species Brachyspira pilosicoli, and the analysis supports the clonal nature of the species. From this study, a public genome resource has been created that will serve as a repository for further genetic and phenotypic studies of these important porcine bacteria. This is the first intra-species B. hyodysenteriae comparative genomic analysis.
Collapse
Affiliation(s)
- Michael Black
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Paula Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Nyree Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - David Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Werner Herbst
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig University Giessen, Giessen, Germany
| | - Stefanie Barth
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig University Giessen, Giessen, Germany
| | - Matthew Bellgard
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
- * E-mail:
| |
Collapse
|
8
|
Neo E, La T, Phillips ND, Alikani MY, Hampson DJ. The pathogenic intestinal spirochaete Brachyspira pilosicoli forms a diverse recombinant species demonstrating some local clustering of related strains and potential for zoonotic spread. Gut Pathog 2013; 5:24. [PMID: 23957888 PMCID: PMC3751851 DOI: 10.1186/1757-4749-5-24] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brachyspira pilosicoli is an anaerobic spirochaete that can colonizes the large intestine of many host species. Infection is particularly problematic in pigs and adult poultry, causing colitis and diarrhea, but it is also known to result in clinical problems in human beings. Despite the economic importance of the spirochaete as an animal pathogen, and its potential as a zoonotic agent, it has not received extensive study. METHODS A multilocus sequence typing (MLST) method based on the scheme used for other Brachyspira species was applied to 131 B. pilosicoli isolates originating from different host species and geographical areas. A variety of phylogenetic trees were constructed and analyzed to help understand the data. RESULTS The isolates were highly diverse, with 127 sequence types and 123 amino acid types being identified. Large numbers (50-112) of alleles were present at each locus, with all loci being highly polymorphic. The results of Shimodaira-Hasegawa tests identified extensive genetic recombination, although the calculated standardized index of association value (0.1568; P <0.0005) suggested the existence of some clonality. Strains from different host species and geographical origins generally were widely distributed throughout the population, although in nine of the ten cases where small clusters of related isolates occurred these were from the same geographical areas or farms/communities, and from the same species of origin. An exception to the latter was a cluster of Australian isolates originating from pigs, chickens and a human being, suggesting the likelihood of relatively recent transmission of members of this clonal group between species. CONCLUSIONS The strongly recombinant population structure of B. pilosicoli contrasts to the more highly clonal population structures of the related species Brachyspira hyodysenteriae and Brachyspira intermedia, both of which are specialized enteric pathogens of pigs and poultry. The genomic plasticity of B. pilosicoli may help to explain why it has been able to adapt to colonize the large intestines of a wider range of hosts compared to other Brachyspira species. The identification of a clonal group of isolates that had been recovered from different host species, including a human being, suggests that zoonotic transmission by B. pilosicoli may occur in nature. Evidence for local transmission between the same host species also was obtained.
Collapse
Affiliation(s)
- Eugene Neo
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, 6150 Western Australia, Australia.
| | | | | | | | | |
Collapse
|
9
|
Gupta RS, Mahmood S, Adeolu M. A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum. Front Microbiol 2013; 4:217. [PMID: 23908650 PMCID: PMC3726837 DOI: 10.3389/fmicb.2013.00217] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/11/2013] [Indexed: 12/03/2022] Open
Abstract
The Spirochaetes species cause many important diseases including syphilis and Lyme disease. Except for their containing a distinctive endoflagella, no other molecular or biochemical characteristics are presently known that are specific for either all Spirochaetes or its different families. We report detailed comparative and phylogenomic analyses of protein sequences from Spirochaetes genomes to understand their evolutionary relationships and to identify molecular signatures for this group. These studies have identified 38 conserved signature indels (CSIs) that are specific for either all members of the phylum Spirochaetes or its different main clades. Of these CSIs, a 3 aa insert in the FlgC protein is uniquely shared by all sequenced Spirochaetes providing a molecular marker for this phylum. Seven, six, and five CSIs in different proteins are specific for members of the families Spirochaetaceae, Brachyspiraceae, and Leptospiraceae, respectively. Of the 19 other identified CSIs, 3 are uniquely shared by members of the genera Sphaerochaeta, Spirochaeta, and Treponema, whereas 16 others are specific for the genus Borrelia. A monophyletic grouping of the genera Sphaerochaeta, Spirochaeta, and Treponema distinct from the genus Borrelia is also strongly supported by phylogenetic trees based upon concatenated sequences of 22 conserved proteins. The molecular markers described here provide novel and more definitive means for identification and demarcation of different main groups of Spirochaetes. To accommodate the extensive genetic diversity of the Spirochaetes as revealed by different CSIs and phylogenetic analyses, it is proposed that the four families of this phylum should be elevated to the order level taxonomic ranks (viz. Spirochaetales, Brevinematales ord. nov., Brachyspiriales ord. nov., and Leptospiriales ord. nov.). It is further proposed that the genera Borrelia and Cristispira be transferred to a new family Borreliaceae fam. nov. within the order Spirochaetales.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|