1
|
Rios-Galicia B, Villagómez-Garfias C, De la Vega-Camarillo E, Guerra-Camacho JE, Medina-Jaritz N, Arteaga-Garibay RI, Villa-Tanaca L, Hernández-Rodríguez C. The Mexican giant maize of Jala landrace harbour plant-growth-promoting rhizospheric and endophytic bacteria. 3 Biotech 2021; 11:447. [PMID: 34631348 DOI: 10.1007/s13205-021-02983-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/04/2021] [Indexed: 01/02/2023] Open
Abstract
The giant landrace of maize Jala is a native crop cultured in Nayarit and Jalisco States in the occident of México. In this study, after screening 374 rhizospheric and endophytic bacteria isolated from rhizospheric soil, root, and seed tissues of maize Jala, a total of 16 bacterial strains were selected for their plant-growth-promoting potential and identified by 16S rRNA phylogenetic analysis. The isolates exhibited different combinations of phenotypic traits, including solubilisation of phosphate from hydroxyapatite, production of a broad spectrum of siderophores such as cobalt, iron, molybdenum, vanadium, or zinc (Co2+, Fe3+, Mo2 +, V5+, Zn2+), and nitrogen fixation capabilities, which were detected in both rhizospheric and endophytic strains. Additional traits such as production of 1-aminocyclopropane-1-carboxylate deaminase and a high-rate production of Indoleacetic Acid were exclusively detected on endophytic isolates. Among the selected strains, the rhizospheric Burkholderia sp., and Klebsiella variicola, and the endophytic Pseudomonas protegens significantly improved the growth of maize plants in greenhouse assays and controlled the infection against Fusarium sp. 50 on fresh maize cobs. These results present the first deep approach on handling autochthonous microorganisms from native maize with a potential biotechnological application in sustainable agriculture as biofertilizers or biopesticides.
Collapse
Affiliation(s)
- Bibiana Rios-Galicia
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Catalina Villagómez-Garfias
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Esaú De la Vega-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Jairo Eder Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Nora Medina-Jaritz
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Boulevard de la Biodiversidad No. 400, Rancho Las Cruces, 47600 Tepatitlán de Morelos, Jalisco Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| |
Collapse
|
2
|
Leontidou K, Genitsaris S, Papadopoulou A, Kamou N, Bosmali I, Matsi T, Madesis P, Vokou D, Karamanoli K, Mellidou I. Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: genomic characterisation and exploration of phyto-beneficial traits. Sci Rep 2020; 10:14857. [PMID: 32908201 PMCID: PMC7481233 DOI: 10.1038/s41598-020-71652-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/17/2020] [Indexed: 01/25/2023] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are able to provide cross-protection against multiple stress factors and facilitate growth of their plant symbionts in many ways. The aim of this study was to isolate and characterize rhizobacterial strains under natural conditions, associated with naturally occurring representatives of wild plant species and a local tomato cultivar, growing in differently stressed Mediterranean ecosystems. A total of 85 morphologically different rhizospheric strains were isolated; twenty-five exhibited multiple in vitro PGP-associated traits, including phosphate solubilization, indole-3-acetic acid production, and 1-aminocyclopropane-1-carboxylate deaminase activity. Whole genome analysis was applied to eight selected strains for their PGP potential and assigned seven strains to Gammaproteobacteria, and one to Bacteroidetes. The genomes harboured numerous genes involved in plant growth promotion and stress regulation. They also support the notion that the presence of gene clusters with potential PGP functions is affirmative but not necessary for a strain to promote plant growth under abiotic stress conditions. The selected strains were further tested for their ability to stimulate growth under stress. This initial screening led to the identification of some strains as potential PGPR for increasing crop production in a sustainable manner.
Collapse
Affiliation(s)
- Kleopatra Leontidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Savvas Genitsaris
- International Hellenic University, 57001, Thermi, Greece.,Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasia Papadopoulou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Nathalie Kamou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Irene Bosmali
- Institute of Applied Biosciences, CERTH, 57001, Thessaloniki, Greece
| | - Theodora Matsi
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Ifigeneia Mellidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece. .,Institute of Plant Breeding and Genetic Resources, HAO, 57001, Thermi, Thessaloniki, Greece.
| |
Collapse
|
3
|
Esmaeel Q, Jacquard C, Clément C, Sanchez L, Ait Barka E. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.). World J Microbiol Biotechnol 2019; 35:40. [DOI: 10.1007/s11274-019-2613-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
|
4
|
Draft Genome Sequence of Burkholderia reimsis BE51, a Plant-Associated Bacterium Isolated from Agricultural Rhizosphere. Microbiol Resour Announc 2018; 7:MRA00978-18. [PMID: 30533687 PMCID: PMC6256556 DOI: 10.1128/mra.00978-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/06/2018] [Indexed: 01/18/2023] Open
Abstract
Burkholderia reimsis BE51, isolated from maize rhizosphere, has a promising biocontrol activity against a set of phytopathogens. Here, we report its draft genome sequence with the aim of providing insight into the potentially produced secondary metabolites and genes related to plant growth-promoting and biocontrol properties. Burkholderia reimsis BE51, isolated from maize rhizosphere, has a promising biocontrol activity against a set of phytopathogens. Here, we report its draft genome sequence with the aim of providing insight into the potentially produced secondary metabolites and genes related to plant growth-promoting and biocontrol properties.
Collapse
|